Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 503
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(44): e2413810121, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39432786

RESUMO

Body fossils set limits on feasible reconstructions of functional capacity and behavior in theropod dinosaurs, but do not document in-life behaviors. In contrast, trace fossils such as footprints preserve in-life behaviors that can potentially test and enhance existing reconstructions. Here, we demonstrate how theropod trackways can be used as indirect evidence of pre-avian aerial behavior, expanding the approaches available to study vertebrate flight origins. This involved exploring the behavioral implications of a two-toed Cretaceous-aged theropod trackway produced by a small, bird-like microraptorine moving at high speed. Applying first principle running biomechanics, we were able to conclude that the trackway is atypical, indirectly evidencing pre-avian aerial behavior. This trackway documents the evidence of wing-assisted aerodynamic force production during locomotion, supporting a broader distribution of this behavior than currently known. These findings support previously proposed aerial behavior in early bird-like theropods, showing how trackways will help to deepen our understanding of theropod flight origins.


Assuntos
Aves , Dinossauros , Voo Animal , Fósseis , Animais , Dinossauros/fisiologia , Voo Animal/fisiologia , Fenômenos Biomecânicos , Aves/fisiologia , Comportamento Animal/fisiologia , Locomoção/fisiologia , Evolução Biológica , Corrida/fisiologia
2.
PeerJ ; 12: e17678, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119105

RESUMO

Take-off is a vital part of powered flight which likely constrains the size of birds, yet extinct pterosaurs are known to have reached far larger sizes. Three different hypothesised take-off motions (bipedal burst launching, bipedal countermotion launching, and quadrupedal launching) have been proposed as explanations for how pterosaurs became airborne and circumvented this proposed morphological limit. We have constructed a computational musculoskeletal model of a 5 m wingspan ornithocheiraean pterosaur, reconstructing thirty-four key muscles to estimate the muscle moment arms throughout the three hypothesised take-off motions. Range of motion constrained hypothetical kinematic sequences for bipedal and quadrupedal take-off motions were modelled after extant flying vertebrates. Across our simulations we did not find higher hindlimb moment arms for bipedal take-off motions or noticeably higher forelimb moment arms in the forelimb for quadrupedal take-off motions. Despite this, in all our models we found the muscles utilised in the quadrupedal take-off have the largest total launch applicable moment arms throughout the entire take-off sequences and for the take-off pose. This indicates the potential availability of higher leverage for a quadrupedal take-off than hypothesised bipedal motions in pterosaurs pending further examination of muscle forces.


Assuntos
Dinossauros , Voo Animal , Animais , Fenômenos Biomecânicos , Voo Animal/fisiologia , Dinossauros/fisiologia , Dinossauros/anatomia & histologia , Músculo Esquelético/fisiologia , Músculo Esquelético/anatomia & histologia , Fósseis , Modelos Biológicos , Membro Anterior/fisiologia , Membro Anterior/anatomia & histologia , Simulação por Computador
3.
PeerJ ; 12: e17765, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148680

RESUMO

Therocephalia are an important clade of non-mammalian therapsids that evolved a diverse array of morphotypes and body sizes throughout their evolutionary history. The postcranial anatomy of therocephalians has largely been overlooked, but remains important towards understanding aspects of their palaeobiology and phylogenetic relationships. Here, we provide the first postcranial description of the large akidnognathid eutherocephalian Moschorhinus kitchingi by examining multiple specimens from fossil collections in South Africa. We also compare the postcranial anatomy with previously described therocephalian postcranial material and provide an updated literature review to ensure a reliable foundation of comparison for future descriptive work. Moschorhinus shares all the postcranial features of eutherocephalians that differentiate them from early-diverging therocephalians, but is differentiated from other eutherocephalian taxa by aspects concerning the scapula, interclavicle, sternum, manus, and femur. The novel anatomical data from this contribution shows that Moschorhinus possessed a stocky bauplan with a particularly robust scapula, humerus, and femur. These attributes, coupled with the short and robust skull bearing enlarged conical canines imply that Moschorhinus was well equipped to grapple with and subdue prey items. Additionally, the combination of these attributes differ from those of similarly sized coeval gorgonopsians, which would have occupied a similar niche in late Permian ecosystems. Moreover, Moschorhinus was the only large carnivore known to have survived the Permo-Triassic mass extinction. Thus, the subtle but important postcranial differences may suggest a type of niche partitioning in the predator guild during the Permo-Triassic mass extinction interval.


Assuntos
Evolução Biológica , Fósseis , Animais , África do Sul , Filogenia , Crânio/anatomia & histologia , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Osso e Ossos/anatomia & histologia
4.
Biol Lett ; 20(7): 20240106, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38955226

RESUMO

Feather moulting is a crucial process in the avian life cycle, which evolved to maintain plumage functionality. However, moulting involves both energetic and functional costs. During moulting, plumage function temporarily decreases between the shedding of old feathers and the full growth of new ones. In flying taxa, a gradual and sequential replacement of flight feathers evolved to maintain aerodynamic capabilities during the moulting period. Little is known about the moult strategies of non-avian pennaraptoran dinosaurs and stem birds, before the emergence of crown lineage. Here, we report on two Early Cretaceous pygostylian birds from the Yixian Formation (125 mya), probably referable to Confuciusornithiformes, exhibiting morphological characteristics that suggest a gradual and sequential moult of wing flight feathers. Short primary feathers interpreted as immature are symmetrically present on both wings, as is typical among extant flying birds. Our survey of the enormous collection of the Tianyu Museum confirms previous findings that evidence of active moult in non-neornithine pennaraptorans is rare and likely indicates a moult cycle greater than one year. Documenting moult in Mesozoic feathered dinosaurs is critical for understanding their ecology, locomotor ability and the evolution of this important life-history process in birds.


Assuntos
Evolução Biológica , Aves , Plumas , Fósseis , Muda , Animais , Plumas/anatomia & histologia , Fósseis/anatomia & histologia , Aves/fisiologia , Aves/anatomia & histologia , Muda/fisiologia , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Voo Animal , China , Asas de Animais/anatomia & histologia
5.
Sci Rep ; 14(1): 14833, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961126

RESUMO

Stegosaur tracks were unknown until the identification of Deltapodus more than 20 years ago. Currently, the Iberian Peninsula, especially Teruel Province, is one of the areas globally with the most occurrences of these tracks. However, their identification, based on the global record, is problematic due to their similarities with sauropod tracks. A review of the largest number of analyzed Deltapodus tracks globally, including the holotype of D. ibericus and a description of new occurrences, has been carried out. Our research shows substantial morphological variations, but all the studied tracks can be considered D. ibericus based on the manus morphology and the morphometric data. These variations are related to substrate differences and/or different dynamic foot postures (possibly ontogenetically related) during locomotion, as evidenced by changes within the same trackway. We provide detailed comparisons via 3D modeling with sauropod tracks, and our data show that they generally have proportionally longer manus and wider pes because of the differences in the metapodial bones. The scarcity of stegosaur trackways in the fossil record has prevented the identification of gregarious behavior in this group of herbivorous dinosaurs. Two of the studied tracksites show evidence of this behavior, being the only examples among stegosaurs described thus far in the fossil record.


Assuntos
Comportamento Animal , Dinossauros , Fósseis , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Animais , Comportamento Animal/fisiologia , Locomoção/fisiologia
6.
PeerJ ; 12: e17544, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881866

RESUMO

Much of the ecological discourse surrounding the polarising theropod Spinosaurus has centred on qualitative discussions. Using a quantitative multivariate data analytical approach on size-adjusted linear measurements of the skull, we examine patterns in skull shape across a range of sauropsid clades and three ecological realms (terrestrial, semi-aquatic, and aquatic). We utilise cluster analyses to identify emergent properties of the data which associate properties of skull shape with ecological realm occupancy. Results revealed terrestrial ecologies to be significantly distinct from both semi- and fully aquatic ecologies, the latter two were not significantly different. Spinosaurids (including Spinosaurus) plotted away from theropods in morphospace and close to both marine taxa and wading birds. The position of nares and the degree of rostral elongation had the greatest effect on categorisation. Comparisons of supervised (k-means) and unsupervised clustering demonstrated categorising taxa into three groups (ecological realms) was inappropriate and suggested instead that cluster division is based on morphological adaptations to feeding on aquatic versus terrestrial food items. The relative position of the nares in longirostrine taxa is associated with which skull bones are elongated. Rostral elongation is observed by either elongating the maxilla and the premaxilla or by elongating the maxilla only. This results in the nares positioned towards the orbits or towards the anterior end of the rostrum respectively, with implications on available feeding methods. Spinosaurids, especially Spinosaurus, show elongation in the maxilla-premaxilla complex, achieving similar functional outcomes to elongation of the premaxilla seen in birds, particularly large-bodied piscivorous taxa. Such a skull construction would bolster "stand-and-wait" predation of aquatic prey to a greater extent than serving other proposed feeding methods.


Assuntos
Dinossauros , Ecossistema , Crânio , Animais , Crânio/anatomia & histologia , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Análise por Conglomerados , Fósseis
7.
Naturwissenschaften ; 111(3): 29, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713269

RESUMO

The vast majority of pterosaurs are characterized by relatively large, elongate heads that are often adorned with large, elaborate crests. Projecting out in front of the body, these large heads and any crests must have had an aerodynamic effect. The working hypothesis of the present study is that these oversized heads were used to control the left-right motions of the body during flight. Using digital models of eight non-pterodactyloids ("rhamphorhyncoids") and ten pterodactyloids, the turning moments associated with the head + neck show a close and consistent correspondence with the rotational inertia of the whole body about a vertical axis in both groups, supporting the idea of a functional relationship. Turning moments come from calculating the lateral area of the head (plus any crests) and determining the associated lift (aerodynamic force) as a function of flight speed, with flight speeds being based on body mass. Rotational inertias were calculated from the three-dimensional mass distribution of the axial body, the limbs, and the flight membranes. The close correlation between turning moment and rotational inertia was used to revise the life restorations of two pterosaurs and to infer relatively lower flight speeds in another two.


Assuntos
Cabeça , Crânio , Animais , Fenômenos Biomecânicos/fisiologia , Crânio/anatomia & histologia , Crânio/fisiologia , Cabeça/anatomia & histologia , Cabeça/fisiologia , Voo Animal/fisiologia , Dinossauros/fisiologia , Dinossauros/anatomia & histologia , Fósseis
8.
Curr Biol ; 34(11): 2517-2527.e4, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38754424

RESUMO

A fundamental question in dinosaur evolution is how they adapted to long-term climatic shifts during the Mesozoic and when they developed environmentally independent, avian-style acclimatization, becoming endothermic.1,2 The ability of warm-blooded dinosaurs to flourish in harsher environments, including cold, high-latitude regions,3,4 raises intriguing questions about the origins of key innovations shared with modern birds,5,6 indicating that the development of homeothermy (keeping constant body temperature) and endothermy (generating body heat) played a crucial role in their ecological diversification.7 Despite substantial evidence across scientific disciplines (anatomy,8 reproduction,9 energetics,10 biomechanics,10 osteohistology,11 palaeobiogeography,12 geochemistry,13,14 and soft tissues15,16,17), a consensus on dinosaur thermophysiology remains elusive.1,12,15,17,18,19 Differential thermophysiological strategies among terrestrial tetrapods allow endotherms (birds and mammals) to expand their latitudinal range (from the tropics to polar regions), owing to their reduced reliance on environmental temperature.20 By contrast, most reptilian lineages (squamates, turtles, and crocodilians) and amphibians are predominantly constrained by temperature in regions closer to the tropics.21 Determining when this macroecological pattern emerged in the avian lineage relies heavily on identifying the origin of these key physiological traits. Combining fossils with macroevolutionary and palaeoclimatic models, we unveil distinct evolutionary pathways in the main dinosaur lineages: ornithischians and theropods diversified across broader climatic landscapes, trending toward cooler niches. An Early Jurassic shift to colder climates in Theropoda suggests an early adoption of endothermy. Conversely, sauropodomorphs exhibited prolonged climatic conservatism associated with higher thermal conditions, emphasizing temperature, rather than plant productivity, as the primary driver of this pattern, suggesting poikilothermy with a stronger dependence on higher temperatures in sauropods.


Assuntos
Evolução Biológica , Aves , Dinossauros , Fósseis , Animais , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Aves/fisiologia , Aves/anatomia & histologia , Fósseis/anatomia & histologia , Regulação da Temperatura Corporal/fisiologia , Aclimatação
9.
Anat Rec (Hoboken) ; 307(10): 3261-3273, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38581219

RESUMO

The Permian mesosaurs are well known for being the earliest amniotes to exhibit adaptations for living in a marine environment (Irati-Whitehill Sea). In addition to their set of skeletal features associated with aquatic dwelling life, their dentition includes important characteristics related to feeding in this habitat, which is described in this work, based on the analysis of mesosaur specimens from the Lower Permian Irati Formation of Brazil. Mesosaurs have several slender, conical teeth bordered by enamel apicobasal ridges, a feature predominantly found in aquatic amniotes. Internally, the dentine walls are formed by the arrangement of layers of orthodentine and globular dentine. To prevent tooth loss, the basal area is equipped with plicidentine, a particular type of orthodentine, allied with cementum, alveolar bone trabeculae, and periodontal space that reinforces anchorage and provides some flexibility. The teeth are replaced in a labio-vertical path, and the dentition replaces alternately. This feature is regarded as plesiomorphic, and it ensures the oral cavity is supplied with enough teeth. However, these features do not the assessment of whether mesosaurs teeth were capable of piercing prey with resistant tegument. Instead, we interpret this adaptation as a mechanism for catching prey, at least in adults, and we endorse a possible ontogenetic dietary shift from small to large forms.


Assuntos
Fósseis , Dente , Animais , Dente/anatomia & histologia , Fósseis/anatomia & histologia , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Evolução Biológica
10.
BMC Ecol Evol ; 24(1): 6, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38291378

RESUMO

Studies on pathological fossil bones have allowed improving the knowledge of physiology and ecology, and consequently the life history of extinct organisms. Among extinct vertebrates, non-avian dinosaurs have drawn attention in terms of pathological evidence, since a wide array of fossilized lesions and diseases were noticed in these ancient organisms. Here, we evaluate the pathological conditions observed in individuals of different brachyrostran (Theropoda, Abelisauridae) taxa, including Aucasaurus garridoi, Elemgasem nubilus, and Quilmesaurus curriei. For this, we use multiple methodological approaches such as histology and computed tomography, in addition to the macroscopic evaluation. The holotype of Aucasaurus shows several pathognomonic traits of a failure of the vertebral segmentation during development, causing the presence of two fused caudal vertebrae. The occurrence of this condition in Aucasaurus is the first case to be documented so far in non-tetanuran theropods. Regarding the holotype of Elemgasem, the histology of two fused vertebrae shows an intervertebral space between the centra, thus the fusion is limited to the distal rim of the articular surfaces. This pathology is here considered as spondyloarthropathy, the first evidence for a non-tetanuran theropod. The microstructural arrangement of the right tibia of Quilmesaurus shows a marked variation in a portion of the outer cortex, probably due to the presence of the radial fibrolamellar bone tissue. Although similar bone tissue is present in other extinct vertebrates and the cause of its formation is still debated, it could be a response to some kind of pathology. Among non-avian theropods, traumatic injuries are better represented than other maladies (e.g., infection, congenital or metabolic diseases, etc.). These pathologies are recovered mainly among large-sized theropods such as Abelisauridae, Allosauridae, Carcharodontosauridae, and Tyrannosauridae, and distributed principally among axial elements. Statistical tests on the distribution of injuries in these theropod clades show a strong association between taxa-pathologies, body regions-pathologies, and taxa-body regions, suggesting different life styles and behaviours may underlie the frequency of different injuries among theropod taxa.


Assuntos
Dinossauros , Humanos , Animais , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Osso e Ossos , Coluna Vertebral/diagnóstico por imagem , Fósseis , América do Sul
11.
Bioessays ; 46(1): e2300098, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38018264

RESUMO

The evolution and biodiversity of ageing have long fascinated scientists and the public alike. While mammals, including long-lived species such as humans, show a marked ageing process, some species of reptiles and amphibians exhibit very slow and even the absence of ageing phenotypes. How can reptiles and other vertebrates age slower than mammals? Herein, I propose that evolving during the rule of the dinosaurs left a lasting legacy in mammals. For over 100 million years when dinosaurs were the dominant predators, mammals were generally small, nocturnal, and short-lived. My hypothesis is that such a long evolutionary pressure on early mammals for rapid reproduction led to the loss or inactivation of genes and pathways associated with long life. I call this the 'longevity bottleneck hypothesis', which is further supported by the absence in mammals of regenerative traits. Although mammals, such as humans, can evolve long lifespans, they do so under constraints dating to the dinosaur era.


Assuntos
Dinossauros , Longevidade , Animais , Envelhecimento/fisiologia , Dinossauros/fisiologia , Mamíferos/fisiologia , Répteis , Evolução Biológica
13.
J Morphol ; 284(9): e21619, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37585224

RESUMO

The nasal passage performs multiple functions in amniotes, including olfaction and thermoregulation. These functions would have been present in extinct animals as well. However, fossils preserve only low-resolution versions of the nasal passage due to loss of soft-tissue structures after death. To test the effects of these lower resolution models on interpretations of nasal physiology, we performed a broadly comparative analysis of the nasal passages in extant diapsid representatives, e.g., alligator, turkey, ostrich, iguana, and a monitor lizard. Using computational fluid dynamics, we simulated airflow through 3D reconstructed models of the different nasal passages and compared these soft-tissue-bounded results to similar analyses of the same airways under the lower-resolution limits imposed by fossilization. Airflow patterns in these bony-bounded airways were more homogeneous and slower flowing than those of their soft-tissue counterparts. These data indicate that bony-bounded airway reconstructions of extinct animal nasal passages are far too conservative and place overly restrictive physiological limitations on extinct species. In spite of the diverse array of nasal passage shapes, distinct similarities in airflow were observed, including consistent areas of nasal passage constriction such as the junction of the olfactory region and main airway. These nasal constrictions can reasonably be inferred to have been present in extinct taxa such as dinosaurs.


Assuntos
Dinossauros , Cavidade Nasal , Répteis , Cavidade Nasal/anatomia & histologia , Cavidade Nasal/fisiologia , Animais , Répteis/anatomia & histologia , Répteis/fisiologia , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Struthioniformes/anatomia & histologia , Struthioniformes/fisiologia , Perus/anatomia & histologia , Perus/fisiologia , Anatomia Comparada , Tomografia por Raios X , Modelos Biológicos , Hidrodinâmica , Respiração
14.
J Comp Neurol ; 531(9): 956-958, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37029478

RESUMO

This commentary discusses the main points made in Reiner's article on the prospect that some theropod dinosaurs could have given rise to a lineage that achieved a human level of intelligence, and those made in Herculano-Houzel's article on the potentially monkey-like numbers of neurons in the pallium of large theropods, and the implications of this for their intelligence.


Assuntos
Dinossauros , Animais , Humanos , Dinossauros/fisiologia , Evolução Biológica , Fósseis , Filogenia
15.
J Comp Neurol ; 531(9): 975-1006, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37029483

RESUMO

Noting that some theropod dinosaurs had large brains, large grasping hands, and likely binocular vision, paleontologist Dale Russell suggested that a branch of these dinosaurs might have evolved to a human intelligence level, had dinosaurs not become extinct. I offer reasons why the likely pallial organization in dinosaurs would have made this improbable, based on four assumptions. First, it is assumed that achieving human intelligence requires evolving an equivalent of the about 200 functionally specialized cortical areas characteristic of humans. Second, it is assumed that dinosaurs had an avian nuclear type of pallial organization, in contrast to the mammalian cortical organization. Third, it is assumed that the interactions between the different neuron types making up an information processing unit within pallium are critical to its role in analyzing information. Finally, it is assumed that increasing axonal length between the neuron sets carrying out this operation impairs its efficacy. Based on these assumptions, I present two main reasons why dinosaur pallium might have been unable to add the equivalent of 200 efficiently functioning cortical areas. First, a nuclear pattern of pallial organization would require increasing distances between the neuron groups corresponding to the separate layers of any given mammalian cortical area, as more sets of nuclei equivalent to a cortical area are interposed between the existing sets, increasing axon length and thereby impairing processing efficiency. Second, because of its nuclear organization, dinosaur pallium could not reduce axon length by folding to bring adjacent areas closer together, as occurs in cerebral cortex.


Assuntos
Dinossauros , Animais , Humanos , Dinossauros/fisiologia , Evolução Biológica , Aves/fisiologia , Mamíferos , Córtex Cerebral , Fósseis
17.
J Comp Neurol ; 531(9): 962-974, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36603059

RESUMO

Understanding the neuronal composition of the brains of dinosaurs and other fossil amniotes would offer fundamental insight into their behavioral and cognitive capabilities, but brain tissue is only rarely fossilized. However, when the bony brain case is preserved, the volume and therefore mass of the brain can be estimated with computer tomography; and if the scaling relationship between brain mass and numbers of neurons for the clade is known, that relationship can be applied to estimate the neuronal composition of the brain. Using a recently published database of numbers of neurons in the telencephalon of extant sauropsids (birds, squamates, and testudines), here I show that the neuronal scaling rules that apply to these animals can be used to infer the numbers of neurons that composed the telencephalon of dinosaur, pterosaur, and other fossil sauropsid species. The key to inferring numbers of telencephalic neurons in these species is first using the relationship between their estimated brain and body mass to determine whether bird-like (endothermic) or squamate-like (ectothermic) rules apply to each fossil sauropsid species. This procedure shows that the notion of "mesothermy" in dinosaurs is an artifact due to the mixing of animals with bird-like and squamate-like scaling, and indicates that theropods such as Tyrannosaurus and Allosaurus were endotherms with baboon- and monkey-like numbers of telencephalic neurons, respectively, which would make these animals not only giant but also long-lived and endowed with flexible cognition, and thus even more magnificent predators than previously thought.


Assuntos
Dinossauros , Animais , Dinossauros/fisiologia , Répteis , Neurônios , Fósseis , Primatas , Aves/fisiologia , Evolução Biológica , Filogenia
18.
Anat Rec (Hoboken) ; 306(7): 1669-1696, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35815600

RESUMO

Counts of the number of skeletal specimens of "adult" megaherbivores and large theropods from the Morrison and Dinosaur Park formations-if not biased by taphonomic artifacts-suggest that the big meat-eaters were more abundant, relative to the number of big plant-eaters, than one would expect on the basis of the relative abundance of large carnivores and herbivores in modern mammalian faunas. Models of megaherbivore population density (number of individuals per square kilometer) that attempt to take into account ecosystem productivity, the size structure of megaherbivore populations, and individual megaherbivore energy requirements, when combined with values of the large theropod/megaherbivore abundance ratio, suggest that large theropods may have been more abundant on the landscape than estimates extrapolated from the population density versus body mass relationship of mammalian carnivores. Models of the meat production of megaherbivore populations and the meat requirements of "adult" large theropods suggest that herbivore productivity would have been insufficient to support the associated number of individuals of "adult" large theropods, unless the herbivore production/biomass ratio was substantially higher, and/or the large theropod meat requirement markedly lower, than expectations based on modern mammals. Alternatively, or in addition to one or both of these other factors, large theropods likely included dinosaurs other than megaherbivores as significant components of their diet.


Assuntos
Carnivoridade , Dinossauros , Cadeia Alimentar , Modelos Biológicos , Animais , Canadá , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Carne , Densidade Demográfica , Estados Unidos
19.
Anat Rec (Hoboken) ; 306(7): 1762-1803, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35860957

RESUMO

We name and describe a new iguanodontian dinosaur from the Early Creteceous Kirkwood Formation, Eastern Cape Province, South Africa. This dinosaur is one of only two ornithopod dinosaurs known from the Cretaceous of southern Africa, and is unique in being represented primarily by hatchling to young juvenile individuals as demonstrated by bone histological analysis. All of the juvenile material of this new taxon comes from a single, laterally-restricted bonebed and specimens were primarily recovered as partial to complete single elements, although rare articulated materials and one partial skeleton were found. Sedimentology of the bonebed suggests that this horizon heralds a change in environment upsection to a drier and more seasonal climate. This accumulation of bones is interpreted as seasonal mortality from a nesting site or nesting grounds and may be linked to this environmental shift.


Assuntos
Dinossauros , Animais , Osso e Ossos/citologia , Dinossauros/anatomia & histologia , Dinossauros/classificação , Dinossauros/fisiologia , África do Sul , Fósseis
20.
PeerJ ; 10: e13731, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846881

RESUMO

I present a Bayesian phylogenetic predictive modelling (PPM) framework that allows the prediction of muscle parameters (physiological cross-sectional area, A Phys) in extinct archosaurs from skull width (W Sk) and phylogeny. This approach is robust to phylogenetic uncertainty and highly versatile given its ability to base predictions on simple, readily available predictor variables. The PPM presented here has high prediction accuracy (up to 95%), with downstream biomechanical modelling yielding bite force estimates that are in line with previous estimates based on muscle parameters from reconstructed muscles. This approach does not replace muscle reconstructions but one that provides a powerful means to predict A Phys from skull geometry and phylogeny to the same level of accuracy as that measured from reconstructed muscles in species for which soft tissue data are unavailable or difficult to obtain.


Assuntos
Dinossauros , Animais , Dinossauros/fisiologia , Força de Mordida , Filogenia , Teorema de Bayes , Fenômenos Biomecânicos , Músculo Esquelético/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA