RESUMO
X-linked dystonia-parkinsonism (XDP) is a severe neurodegenerative disorder resulting from an inherited intronic SINE-Alu-VNTR (SVA) retrotransposon in the TAF1 gene that causes dysregulation of TAF1 transcription. The specific mechanism underlying this dysregulation remains unclear, but it is hypothesized to involve the formation of G-quadruplexes (G4) structures within the XDP-SVA that impede transcription. In this study, we show that ZNF91, a critical repressor of SVA retrotransposons, specifically binds to G4-forming DNA sequences. Further, we found that genetic deletion of ZNF91 exacerbates the molecular phenotype associated with the XDP-SVA insertion in patient cells, while no difference was observed when ZNF91 was deleted from isogenic control cells. Additionally, we observed a significant age-related reduction in ZNF91 expression in whole blood and brain, indicating a progressive loss of repression of the XDP-SVA in XDP. These findings indicate that ZNF91 plays a crucial role in controlling the molecular phenotype associated with XDP. Since ZNF91 binds to G4-forming DNA sequences in SVAs, this suggests that interactions between ZNF91 and G4-forming sequences in the XDP-SVA minimize the severity of the molecular phenotype. Our results showing that ZNF91 expression levels significantly decrease with age provide a potential explanation for the age-related progressive neurodegenerative character of XDP. Collectively, our study provides important insights into the protective role of ZNF91 in XDP pathogenesis and suggests that restoring ZNF91 expression, destabilization of G4s, or targeted repression of the XDP-SVA could be future therapeutic strategies to prevent or treat XDP.
Assuntos
Distúrbios Distônicos , Doenças Genéticas Ligadas ao Cromossomo X , Fenótipo , Humanos , Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Quadruplex G , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Masculino , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Retroelementos/genética , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismoRESUMO
SVA (SINE (short interspersed nuclear element)-VNTR (variable number of tandem repeats)-Alu) retrotransposons remain active in humans and contribute to individual genetic variation. Polymorphic SVA alleles harbor gene regulatory potential and can cause genetic disease. However, how SVA insertions are controlled and functionally impact human disease is unknown. Here we dissect the epigenetic regulation and influence of SVAs in cellular models of X-linked dystonia parkinsonism (XDP), a neurodegenerative disorder caused by an SVA insertion at the TAF1 locus. We demonstrate that the KRAB zinc finger protein ZNF91 establishes H3K9me3 and DNA methylation over SVAs, including polymorphic alleles, in human neural progenitor cells. The resulting mini-heterochromatin domains attenuate the cis-regulatory impact of SVAs. This is critical for XDP pathology; removal of local heterochromatin severely aggravates the XDP molecular phenotype, resulting in increased TAF1 intron retention and reduced expression. Our results provide unique mechanistic insights into how human polymorphic transposon insertions are recognized and how their regulatory impact is constrained by an innate epigenetic defense system.
Assuntos
Heterocromatina , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição TFIID , Humanos , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Heterocromatina/metabolismo , Heterocromatina/genética , Epigênese Genética , Elementos Nucleotídeos Curtos e Dispersos/genética , Metilação de DNA , Encéfalo/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Células-Tronco Neurais/metabolismo , Repetições Minissatélites/genética , Retroelementos/genética , Elementos Alu/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Histonas/metabolismo , Histonas/genéticaRESUMO
BACKGROUND: DYT-KMT2B, also known as DYT28, is a childhood-onset hereditary dystonia caused by KMT2B mutation. The pathogenesis of DYT-KMT2B involves haploinsufficiency of KMT2B, an enzyme that catalyzes specific histone methylation (H3K4me3). Dysmorphic features in patients with DYT-KMT2B suggest that KMT2B dysfunction may extend beyond the neuronal system. Therefore, valuable diagnostic insights may be obtained from readily available tissue samples. OBJECTIVES: To explore the altered H3K4me3 levels in non-neural tissue of DYT-KMT2B patients. METHODS: A database analysis was performed to determine in which parts of the body and in which cells KMT2B is highly expressed. Twelve clinically and genetically diagnosed patients with DYT-KMT2B and 12 control subjects participated in this study. Oral mucosa-derived purified histone proteins were analyzed using Western blotting with anti-H3K4me3 and anti-H4 antibodies. RESULTS: Higher expression of KMT2B was observed in oral keratinocytes and gingival fibroblasts, constituting the oral mucosa. In oral mucosa analyses, DYT-KMT2B cases exhibited markedly reduced H3K4me3 levels compared with the controls. Using a cutoff window of 0.90-0.98, the H3K4me3/H4 expression ratio was able to distinguish patient groups. CONCLUSIONS: Oral mucosa H3K4me3 analysis is currently not sufficient as a diagnostic tool for DYT-KMT2B, but has the advantage for screening test since it is a non-invasive means.
Assuntos
Distúrbios Distônicos , Histona-Lisina N-Metiltransferase , Histonas , Mucosa Bucal , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Fibroblastos/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Histonas/genética , Queratinócitos/metabolismo , Metilação , Mucosa Bucal/metabolismoRESUMO
BACKGROUND: X-linked dystonia-parkinsonism (XDP) is a rare movement disorder characterized by profound neurodegeneration in the basal ganglia. The molecular consequences and the bioenergetic state of affected individuals remain largely unexplored. OBJECTIVES: To investigate the bioenergetic state in male patients with XDP and female carriers using 31phosphorus magnetic resonance spectroscopy imaging and to correlate these findings with clinical manifestations. METHODS: We examined the levels of high-energy phosphorus-containing metabolites (HEP) in the basal ganglia and cerebellum of five male patients with XDP, 10 asymptomatic female heterozygous carriers, and 10 SVA-insertion-free controls. RESULTS: HEP levels were reduced in the basal ganglia of patients with XDP (PwXDP) compared to controls, but increased in the cerebellum of both male patients and female carriers. CONCLUSIONS: Our findings suggest a potential compensatory mechanism in the cerebellum of female carriers regardless of sex. Our study highlights alterations in HEP levels in PwXDP patients and female carriers.
Assuntos
Gânglios da Base , Cerebelo , Distúrbios Distônicos , Doenças Genéticas Ligadas ao Cromossomo X , Heterozigoto , Humanos , Feminino , Masculino , Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Distúrbios Distônicos/diagnóstico por imagem , Distúrbios Distônicos/fisiopatologia , Distúrbios Distônicos/patologia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Adulto , Pessoa de Meia-Idade , Gânglios da Base/metabolismo , Gânglios da Base/diagnóstico por imagem , Cerebelo/metabolismo , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Espectroscopia de Ressonância Magnética , Adulto Jovem , Metabolismo EnergéticoRESUMO
X-linked dystonia-parkinsonism (XDP) is a rare neurodegenerative disease endemic to the Philippines. The genetic cause for XDP is an insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within intron 32 of TATA-binding protein associated factor 1 (TAF1) that causes an alteration of TAF1 splicing, partial intron retention, and decreased transcription. Although TAF1 is expressed in all organs, medium spiny neurons (MSNs) within the striatum are one of the cell types most affected in XDP. To define how mutations in the TAF1 gene lead to MSN vulnerability, we carried out a proteomic analysis of human XDP patient-derived neural stem cells (NSCs) and MSNs derived from induced pluripotent stem cells. NSCs and MSNs were grown in parallel and subjected to quantitative proteomic analysis in data-independent acquisition mode on the Orbitrap Eclipse Tribrid mass spectrometer. Subsequent functional enrichment analysis demonstrated that neurodegenerative disease-related pathways, such as Huntington's disease, spinocerebellar ataxia, cellular senescence, mitochondrial function and RNA binding metabolism, were highly represented. We used weighted coexpression network analysis (WGCNA) of the NSC and MSN proteomic data set to uncover disease-driving network modules. Three of the modules significantly correlated with XDP genotype when compared to the non-affected control and were enriched for DNA helicase and nuclear chromatin assembly, mitochondrial disassembly, RNA location and mRNA processing. Consistent with aberrant mRNA processing, we found splicing and intron retention of TAF1 intron 32 in XDP MSN. We also identified TAF1 as one of the top enriched transcription factors, along with YY1, ATF2, USF1 and MYC. Notably, YY1 has been implicated in genetic forms of dystonia. Overall, our proteomic data set constitutes a valuable resource to understand mechanisms relevant to TAF1 dysregulation and to identify new therapeutic targets for XDP.
Assuntos
Distonia , Distúrbios Distônicos , Doenças Neurodegenerativas , Transtornos Parkinsonianos , Humanos , Distonia/genética , Distonia/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteômica , Fator de Transcrição TFIID/genética , Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismoRESUMO
The Lamc2jeb junctional epidermolysis bullosa (EB) mouse model has been used to demonstrate that significant genetic modification of EB symptoms is possible, identifying as modifiers Col17a1 and six other quantitative trait loci, several with strong candidate genes including dystonin (Dst/Bpag1). Here, CRISPR/Cas9 was used to alter exon 23 in mouse skin specific isoform Dst-e (Ensembl GRCm38 transcript name Dst-213, transcript ID ENSMUST00000183302.5, protein size 2639AA) and validate a proposed arginine/glutamine difference at amino acid p1226 in B6 versus 129 mice as a modifier of EB. Frame shift deletions (FSD) in mouse Dst-e exon 23 (Dst-eFSD/FSD) were also identified that cause mice carrying wild-type Lamc2 to develop a phenotype similar to human EB simplex without dystonia musculorum. When combined, Dst-eFSD/FSD modifies Lamc2jeb/jeb (FSD+jeb) induced disease in unexpected ways implicating an altered balance between DST-e (BPAG1e) and a rarely reported rodless DST-eS (BPAG1eS) in epithelium as a possible mechanism. Further, FSD+jeb mice with pinnae removed are found to provide a test bed for studying internal epithelium EB disease and treatment without severe skin disease as a limiting factor while also revealing and accelerating significant nasopharynx symptoms present but not previously noted in Lamc2jeb/jeb mice.
Assuntos
Distonia , Distúrbios Distônicos , Epidermólise Bolhosa Simples , Epidermólise Bolhosa Juncional , Epidermólise Bolhosa , Animais , Camundongos , Distonia/genética , Distonia/metabolismo , Distúrbios Distônicos/metabolismo , Distonina/metabolismo , Epidermólise Bolhosa/genética , Epidermólise Bolhosa Simples/diagnóstico , Epidermólise Bolhosa Simples/genética , Epidermólise Bolhosa Simples/metabolismo , Epidermólise Bolhosa Juncional/genética , Epidermólise Bolhosa Juncional/diagnóstico , Epidermólise Bolhosa Juncional/metabolismo , Pele/metabolismoRESUMO
High-throughput sequencing has been instrumental in uncovering the spectrum of pathogenic genetic alterations that contribute to the etiology of dystonia. Despite the immense heterogeneity in monogenic causes, studies performed during the past few years have highlighted that many rare deleterious variants associated with dystonic presentations affect genes that have roles in certain conserved pathways in neural physiology. These various gene mutations that appear to converge towards the disruption of interconnected cellular networks were shown to produce a wide range of different dystonic disease phenotypes, including isolated and combined dystonias as well as numerous clinically complex, often neurodevelopmental disorder-related conditions that can manifest with dystonic features in the context of multisystem disturbances. In this chapter, we summarize the manifold dystonia-gene relationships based on their association with a discrete number of unifying pathophysiological mechanisms and molecular cascade abnormalities. The themes on which we focus comprise dopamine signaling, heavy metal accumulation and calcifications in the brain, nuclear envelope function and stress response, gene transcription control, energy homeostasis, lysosomal trafficking, calcium and ion channel-mediated signaling, synaptic transmission beyond dopamine pathways, extra- and intracellular structural organization, and protein synthesis and degradation. Enhancing knowledge about the concept of shared etiological pathways in the pathogenesis of dystonia will motivate clinicians and researchers to find more efficacious treatments that allow to reverse pathologies in patient-specific core molecular networks and connected multipathway loops.
Assuntos
Distonia , Distúrbios Distônicos , Humanos , Distonia/genética , Dopamina , Distúrbios Distônicos/metabolismo , Encéfalo/metabolismo , HomeostaseRESUMO
There is a lack of imaging markers revealing the functional characteristics of different brain regions in paediatric dystonia. In this observational study, we assessed the utility of [18F]2-fluoro-2-deoxy-D-glucose (FDG)-PET in understanding dystonia pathophysiology by revealing specific resting awake brain glucose metabolism patterns in different childhood dystonia subgroups. PET scans from 267 children with dystonia being evaluated for possible deep brain stimulation surgery between September 2007 and February 2018 at Evelina London Children's Hospital (ELCH), UK, were examined. Scans without gross anatomical abnormality (e.g. large cysts, significant ventriculomegaly; n = 240) were analysed with Statistical Parametric Mapping (SPM12). Glucose metabolism patterns were examined in the 144/240 (60%) cases with the 10 commonest childhood-onset dystonias, focusing on nine anatomical regions. A group of 39 adult controls was used for comparisons. The genetic dystonias were associated with the following genes: TOR1A, THAP1, SGCE, KMT2B, HPRT1 (Lesch Nyhan disease), PANK2 and GCDH (Glutaric Aciduria type 1). The acquired cerebral palsy (CP) cases were divided into those related to prematurity (CP-Preterm), neonatal jaundice/kernicterus (CP-Kernicterus) and hypoxic-ischaemic encephalopathy (CP-Term). Each dystonia subgroup had distinct patterns of altered FDG-PET uptake. Focal glucose hypometabolism of the pallidi, putamina or both, was the commonest finding, except in PANK2, where basal ganglia metabolism appeared normal. HPRT1 uniquely showed glucose hypometabolism across all nine cerebral regions. Temporal lobe glucose hypometabolism was found in KMT2B, HPRT1 and CP-Kernicterus. Frontal lobe hypometabolism was found in SGCE, HPRT1 and PANK2. Thalamic and brainstem hypometabolism were seen only in HPRT1, CP-Preterm and CP-term dystonia cases. The combination of frontal and parietal lobe hypermetabolism was uniquely found in CP-term cases. PANK2 cases showed a distinct combination of parietal hypermetabolism with cerebellar hypometabolism but intact putaminal-pallidal glucose metabolism. HPRT1, PANK2, CP-kernicterus and CP-preterm cases had cerebellar and insula glucose hypometabolism as well as parietal glucose hypermetabolism. The study findings offer insights into the pathophysiology of dystonia and support the network theory for dystonia pathogenesis. 'Signature' patterns for each dystonia subgroup could be a useful biomarker to guide differential diagnosis and inform personalized management strategies.
Assuntos
Paralisia Cerebral , Distonia , Distúrbios Distônicos , Kernicterus , Adulto , Recém-Nascido , Humanos , Criança , Fluordesoxiglucose F18/metabolismo , Distonia/metabolismo , Kernicterus/complicações , Kernicterus/metabolismo , Encéfalo/metabolismo , Distúrbios Distônicos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Glucose/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Reguladoras de Apoptose/metabolismoRESUMO
BACKGROUND: X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disorder caused by the intronic insertion of a SINE-VNTR-Alu (SVA) retrotransposon carrying an (AGAGGG)n repeat expansion in the TAF1 gene. The molecular mechanisms by which this mutation causes neurodegeneration remain elusive. OBJECTIVES: We investigated whether (AGAGGG)n repeats undergo repeat-associated non-AUG (RAN) translation, a pathogenic mechanism common among repeat expansion diseases. METHODS: XDP-specific RAN translation reporter plasmids were generated, transfected in HEK293 cells, and putative dipeptide repeat proteins (DPRs) were detected by Western blotting. Immunocytochemistry was performed in COS-7 cells to determine the subcellular localization of one DPR. RESULTS: We detected putative DPRs from two reading frames, supporting the translation of poly-(Glu-Gly) and poly-(Arg-Glu) species. XDP RAN translation initiates within the (AGAGGG)n sequence and poly-(Glu-Gly) DPRs formed nuclear inclusions in transfected cells. CONCLUSIONS: In summary, our work provides the first in-vitro proof of principle that the XDP-linked (AGAGGG)n repeat expansions can undergo RAN translation. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Distúrbios Distônicos , Doenças Genéticas Ligadas ao Cromossomo X , Humanos , Células HEK293 , Distúrbios Distônicos/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Íntrons , Proteína C9orf72/genéticaRESUMO
This review provides an overview of the synaptic dysfunctions of neuronal circuits and underlying neurochemical alterations observed in the hyperkinetic movement disorders, dystonia and dyskinesia. These disorders exhibit similar changes in expression of synaptic plasticity and neuromodulation. This includes alterations in physical attributes of synapses, synaptic protein expression, and neurotransmitter systems, such as glutamate and gamma-aminobutyric acid (GABA), and neuromodulators, such as dopamine, acetylcholine, serotonin, adenosine, and endocannabinoids. A full understanding of the mechanisms and consequences of disruptions in synaptic function and plasticity will lend insight into the development of these disorders and new ways to combat maladaptive changes.
Assuntos
Discinesias , Distonia , Distúrbios Distônicos , Antiparkinsonianos , Corpo Estriado/metabolismo , Discinesias/metabolismo , Distonia/induzido quimicamente , Distonia/metabolismo , Distúrbios Distônicos/induzido quimicamente , Distúrbios Distônicos/metabolismo , Humanos , Levodopa/efeitos adversosRESUMO
An exome sequencing result on a child with atypical gait was reported as negative; follow-up biochemical evaluation and reanalysis led to diagnosis of treatable DOPA-responsive dystonia.
Assuntos
Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Exoma/fisiologia , GTP Cicloidrolase/deficiência , GTP Cicloidrolase/genética , Carbidopa/uso terapêutico , Criança , Agonistas de Dopamina/uso terapêutico , Combinação de Medicamentos , Distúrbios Distônicos/diagnóstico , Humanos , Levodopa/uso terapêutico , Masculino , Sequenciamento do Exoma/métodosRESUMO
Collagen VI is a key component of muscle basement membranes, and genetic variants can cause monogenic muscular dystrophies. Conversely, human genetic studies recently implicated collagen VI in central nervous system function, with variants causing the movement disorder dystonia. To elucidate the neurophysiological role of collagen VI, we generated mice with a truncation of the dystonia-related collagen α3 VI (COL6A3) C-terminal domain (CTD). These Col6a3CTT mice showed a recessive dystonia-like phenotype in both sexes. We found that COL6A3 interacts with the cannabinoid receptor 1 (CB1R) complex in a CTD-dependent manner. Col6a3CTT mice of both sexes have impaired homeostasis of excitatory input to the basal pontine nuclei (BPN), a motor control hub with dense COL6A3 expression, consistent with deficient endocannabinoid (eCB) signaling. Aberrant synaptic input in the BPN was normalized by a CB1R agonist, and motor performance in Col6a3CTT mice of both sexes was improved by CB1R agonist treatment. Our findings identify a readily therapeutically addressable synaptic mechanism for motor control.SIGNIFICANCE STATEMENT Dystonia is a movement disorder characterized by involuntary movements. We previously identified genetic variants affecting a specific domain of the COL6A3 protein as a cause of dystonia. Here, we created mice lacking the affected domain and observed an analogous movement disorder. Using a protein interaction screen, we found that the affected COL6A3 domain mediates an interaction with the cannabinoid receptor 1 (CB1R). Concordantly, our COL6A3-deficient mice showed a deficit in synaptic plasticity linked to a deficit in cannabinoid signaling. Pharmacological cannabinoid augmentation rescued the motor impairment of the mice. Thus, cannabinoid augmentation could be a promising avenue for treating dystonia, and we have identified a possible molecular mechanism mediating this.
Assuntos
Canabinoides , Colágeno Tipo VI , Distonia , Distúrbios Distônicos , Neurônios Motores , Plasticidade Neuronal , Animais , Canabinoides/metabolismo , Canabinoides/farmacologia , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Distonia/genética , Distonia/metabolismo , Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Feminino , Masculino , Camundongos , Neurônios Motores/efeitos dos fármacos , Mutação , Plasticidade Neuronal/efeitos dos fármacos , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismoRESUMO
BACKGROUND: X-linked dystonia parkinsonism is a generalized, progressive dystonia followed by parkinsonism with onset in adulthood and accompanied by striatal neurodegeneration. Causative mutations are located in a noncoding region of the TATA-box binding protein-associated factor 1 (TAF1) gene and result in aberrant splicing. There are 2 major TAF1 isoforms that may be decreased in symptomatic patients, including the ubiquitously expressed canonical cTAF1 and the neuronal-specific nTAF1. OBJECTIVE: The objective of this study was to determine the behavioral and transcriptomic effects of decreased cTAF1 and/or nTAF1 in vivo. METHODS: We generated adeno-associated viral (AAV) vectors encoding microRNAs targeting Taf1 in a splice-isoform selective manner. We performed intracerebroventricular viral injections in newborn mice and rats and intrastriatal infusions in 3-week-old rats. The effects of Taf1 knockdown were assayed at 4 months of age with evaluation of motor function, histology, and RNA sequencing of the striatum, followed by its validation. RESULTS: We report motor deficits in all cohorts, more pronounced in animals injected at P0, in which we also identified transcriptomic alterations in multiple neuronal pathways, including the cholinergic synapse. In both species, we show a reduced number of striatal cholinergic interneurons and their marker mRNAs after Taf1 knockdown in the newborn. CONCLUSION: This study provides novel information regarding the requirement for TAF1 in the postnatal maintenance of striatal cholinergic neurons, the dysfunction of which is involved in other inherited forms of dystonia. © 2021 International Parkinson and Movement Disorder Society.
Assuntos
Distonia , Distúrbios Distônicos , Histona Acetiltransferases/genética , Transtornos Parkinsonianos , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Adulto , Animais , Colinérgicos , Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Humanos , Camundongos , Isoformas de Proteínas , RatosRESUMO
Myoclonus-dystonia (MD) is a rare childhood-onset movement disorder, with an estimated prevalence of about 2 per 1,000,.000 in Europe, characterized by myoclonic jerks in combination with focal or segmental dystonia. Pathogenic variants in the gene encoding ε-sarcoglycan (SGCE), a maternally imprinted gene, are the most frequent genetic cause of MD. To date, the exact role of ε-sarcoglycan and the pathogenic mechanisms that lead to MD are still unknown. However, there are more than 40 reported isoforms of human ε-sarcoglycan, pointing to a complex biology of this protein. Additionally, some of these are brain-specific isoforms, which may suggest an important role within the central nervous system. In the present review, we aim to provide an overview of the current state of knowledge of ε-sarcoglycan. We will focus on the genetic landscape of SGCE and the presence and plausible role of ε-sarcoglycan in the brain. Finally, we discuss the importance of the brain-specific isoforms and hypothesize that SGCE may play essential roles in normal synaptic functioning and their alteration will be strongly related to MD.
Assuntos
Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Sarcoglicanas/genética , Sarcoglicanas/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Distúrbios Distônicos/diagnóstico , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologiaRESUMO
Dystonia is a debilitating hyperkinetic movement disorder, which can be transmitted as a monogenic trait. Here, we describe homozygous frameshift, nonsense, and missense variants in TSPOAP1, which encodes the active-zone RIM-binding protein 1 (RIMBP1), as a genetic cause of autosomal recessive dystonia in 7 subjects from 3 unrelated families. Subjects carrying loss-of-function variants presented with juvenile-onset progressive generalized dystonia, associated with intellectual disability and cerebellar atrophy. Conversely, subjects carrying a pathogenic missense variant (p.Gly1808Ser) presented with isolated adult-onset focal dystonia. In mice, complete loss of RIMBP1, known to reduce neurotransmission, led to motor abnormalities reminiscent of dystonia, decreased Purkinje cell dendritic arborization, and reduced numbers of cerebellar synapses. In vitro analysis of the p.Gly1808Ser variant showed larger spike-evoked calcium transients and enhanced neurotransmission, suggesting that RIMBP1-linked dystonia can be caused by either reduced or enhanced rates of spike-evoked release in relevant neural networks. Our findings establish a direct link between dysfunction of the presynaptic active zone and dystonia and highlight the critical role played by well-balanced neurotransmission in motor control and disease pathogenesis.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Alelos , Sinalização do Cálcio , Dendritos/metabolismo , Distúrbios Distônicos , Mutação de Sentido Incorreto , Células de Purkinje/metabolismo , Transmissão Sináptica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Animais , Dendritos/genética , Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos KnockoutRESUMO
BACKGROUND: Myoclonus dystonia (MDS) is a dominantly inherited genetic disorder caused by loss-of-function mutations in the epsilon sarcoglycan gene (SGCE). CASE PRESENTATION: We here in report a twenty months old Saudi boy who presented to us with a concern that the child is unable to walk properly. On assessment, he was flexing his left arm and left leg that usually followed by a back-ward fall. Diagnosis of dystonia induced with initiation of movement was suggested that later on proven genetically to be pathogenic mutation of sarcoglycan gene. Carbamazepine therapy was initiated with dramatic response. Response was maintained at 4 years follow up. CONCLUSIONS: Our patient and the other previously reported cases might highlight the response of SGCE mutations to carbamazepine therapy.
Assuntos
Carbamazepina/uso terapêutico , DNA/genética , Distúrbios Distônicos/tratamento farmacológico , Testes Genéticos/métodos , Mutação , Sarcoglicanas/genética , Anticonvulsivantes/uso terapêutico , Análise Mutacional de DNA , Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Humanos , Lactente , Masculino , Sarcoglicanas/metabolismo , Resultado do TratamentoRESUMO
Dopa-responsive dystonia (DRD) and DRD plus are diseases of the dopamine pathway with sizeable genetic diversity and myriad presentations. DRD has onset in childhood or adolescence with focal dystonia, commonly affecting lower limb, diurnal fluctuations with evening worsening of symptoms and a demonstrable sleep benefit. DRD "plus" has "atypical features" which include infantile onset, psychomotor delay, cognitive abnormalities, oculogyric crisis, seizures, irritability, spasticity, hypotonia, ptosis, hyperthermia and cerebellar dysfunction. Neurodegeneration, however, is not a feature of either DRD or DRD-plus disorders. Tetrahydrobiopterin (BH4), a key cofactor, deficiency leads to inadequate dopamine and serotonin synthesis. Norepinephrine deficiency may coexist, depending on the enzyme defect. Hyperphenylalaninemia (HPA) is a clue for BH4 paucity. However, HPA is conspicuously absent in autosomal-dominant guanosine triphosphate cyclohydrolase 1 deficiency and sepiapterin reductase deficiency. DRD look-alike is a group of neurodegenerative disorders involving the nigrostriatal dopaminergic system, which could present with dystonia responsive to dopaminergic drugs or neurodegenerative or non-neurodegenerative disorders without involving the nigrostriatal dopaminergic system yet responsive to levodopa. Although levodopa is the mainstay of therapy, response to this drug can be unsatisfactory in DRD plus and DRD look-alike and other drugs are tried. Simultaneous management of HPA leads to remarkable improvement in both motor and cognitive functions. The aim of this review is to help neurology practitioners in treating patients with DRD, DRD-plus and DRD look-alike as many of them have excellent outcome with appropriate therapy.
Assuntos
Dopamina/metabolismo , Distonia/diagnóstico , Distúrbios Distônicos/diagnóstico , Oxirredutases do Álcool/metabolismo , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Distonia/tratamento farmacológico , Distonia/metabolismo , Distúrbios Distônicos/tratamento farmacológico , Distúrbios Distônicos/metabolismo , Humanos , Levodopa/uso terapêuticoRESUMO
Individuals with Rett syndrome (RTT) commonly demonstrate Parkinsonian features and dystonia at teen age; however, the pathological reason remains unclear. Abnormal iron accumulation in deep gray matter were reported in some Parkinsonian-related disorders. In this study, we investigated the iron accumulation in deep gray matter of RTT and its correlation with dystonia severity. We recruited 18 RTT-diagnosed participants with MECP2 mutations, from age 4 to 28, and 28 age-gender matched controls and investigated the iron accumulation by susceptibility weighted image (SWI) in substantia nigra (SN), globus pallidus (GP), putamen, caudate nucleus, and thalamus. Pearson's correlation was applied for the relation between iron accumulation and dystonia severity. In RTT, the severity of dystonia scales showed significant increase in subjects older than 10 years, and the contrast ratios of SWI also showed significant differences in putamen, caudate nucleus and the average values of SN, putamen, and GP between RTT and controls. The age demonstrated moderate to high negative correlations with contrast ratios. The dystonia scales were correlated with the average contrast ratio of SN, putamen and GP, indicating iron accumulation in dopaminergic system and related grey matter. As the first SWI study for RTT individuals, we found increased iron deposition in dopaminergic system and related grey matter, which may partly explain the gradually increased dystonia.
Assuntos
Distúrbios Distônicos/metabolismo , Sobrecarga de Ferro/metabolismo , Ferro/metabolismo , Síndrome de Rett/metabolismo , Adolescente , Adulto , Mapeamento Encefálico/métodos , Estudos de Casos e Controles , Criança , Pré-Escolar , Distúrbios Distônicos/patologia , Feminino , Substância Cinzenta/metabolismo , Substância Cinzenta/patologia , Humanos , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/patologia , Imageamento por Ressonância Magnética/métodos , Proteína 2 de Ligação a Metil-CpG/genética , Mutação , Síndrome de Rett/genética , Índice de Gravidade de Doença , Adulto JovemRESUMO
OBJECTIVE: The study was undertaken to identify a monogenic cause of early onset, generalized dystonia. METHODS: Methods consisted of genome-wide linkage analysis, exome and Sanger sequencing, clinical neurological examination, brain magnetic resonance imaging, and protein expression studies in skin fibroblasts from patients. RESULTS: We identified a heterozygous variant, c.388G>A, p.Gly130Arg, in the eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2) gene, segregating with early onset isolated generalized dystonia in 5 patients of a Taiwanese family. EIF2AK2 sequencing in 191 unrelated patients with unexplained dystonia yielded 2 unrelated Caucasian patients with an identical heterozygous c.388G>A, p.Gly130Arg variant, occurring de novo in one case, another patient carrying a different heterozygous variant, c.413G>C, p.Gly138Ala, and one last patient, born from consanguineous parents, carrying a third, homozygous variant c.95A>C, p.Asn32Thr. These 3 missense variants are absent from gnomAD, and are located in functional domains of the encoded protein. In 3 patients, additional neurological manifestations were present, including intellectual disability and spasticity. EIF2AK2 encodes a kinase (protein kinase R [PKR]) that phosphorylates eukaryotic translation initiation factor 2 alpha (eIF2α), which orchestrates the cellular stress response. Our expression studies showed abnormally enhanced activation of the cellular stress response, monitored by PKR-mediated phosphorylation of eIF2α, in fibroblasts from patients with EIF2AK2 variants. Intriguingly, PKR can also be regulated by PRKRA (protein interferon-inducible double-stranded RNA-dependent protein kinase activator A), the product of another gene causing monogenic dystonia. INTERPRETATION: We identified EIF2AK2 variants implicated in early onset generalized dystonia, which can be dominantly or recessively inherited, or occur de novo. Our findings provide direct evidence for a key role of a dysfunctional eIF2α pathway in the pathogenesis of dystonia. ANN NEUROL 2021;89:485-497.
Assuntos
Distúrbios Distônicos/genética , Fibroblastos/metabolismo , eIF-2 Quinase/genética , Adolescente , Adulto , Idade de Início , Povo Asiático , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Distúrbios Distônicos/metabolismo , Distúrbios Distônicos/fisiopatologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , População Branca , Sequenciamento do Exoma , Adulto Jovem , eIF-2 Quinase/metabolismoRESUMO
X-linked Dystonia-Parkinsonism (XDP) is a neurodegenerative disease linked to an insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within an intron of TAF1. This SVA insertion induces aberrant TAF1 splicing and partial intron retention, thereby decreasing levels of the full-length transcript. Here we sought to determine if these altered transcriptional dynamics caused by the SVA are also accompanied by local changes in histone acetylation, given that these modifications influence gene expression. Because TAF1 protein may itself exhibit histone acetyltransferase activity, we also examined whether decreased TAF1 expression in XDP cell lines and post-mortem brain affects global levels of acetylated histone H3 (AcH3). The results demonstrate that total AcH3 are not altered in XDP post-mortem prefrontal cortex or cell lines. We also did not detect local differences in AcH3 associated with TAF1 exons or intronic sites flanking the SVA insertion. There was, however, a decrease in AcH3 association with the exon immediately proximal to the intronic SVA, and this decrease was normalized by CRISPR/Cas-excision of the SVA. Collectively, these data suggest that the SVA insertion alters histone status in this region, which may contribute to the dysregulation of TAF1 expression.