Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Sci Rep ; 14(1): 13327, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858445

RESUMO

This study investigates the environmental impact of burning herbicide-contaminated biomass, focusing on atrazine (ATZ) and diuron (DIU) sprayed on rice straw prior to burning. Samples of soil, biomass residues, total suspended particulate (TSP), particulate matter with an aerodynamic diameter ≤ 10 µm (PM10), and aerosols were collected and analyzed. Soil analysis before and after burning contaminated biomass showed significant changes, with 2,4-dichlorophenoxyacetic acid (2,4-D) initially constituting 79.2% and decreasing by 3.3 times post-burning. Atrazine-desethyl, sebuthylazine, and terbuthylazine were detected post-burning. In raw rice straw biomass, terbuthylazine dominated at 80.0%, but burning ATZ-contaminated biomass led to the detection of atrazine-desethyl and notable increases in sebuthylazine and terbuthylazine. Conversely, burning DIU-contaminated biomass resulted in a shift to 2,4-D dominance. Analysis of atmospheric components showed changes in TSP, PM10, and aerosol samples. Linuron in ambient TSP decreased by 1.6 times after burning ATZ-contaminated biomass, while atrazine increased by 2.9 times. Carcinogenic polycyclic aromatic hydrocarbons (PAHs), including benzo[a]anthracene (BaA), benzo[a]pyrene (BaP), and benzo[b]fluoranthene (BbF), increased by approximately 9.9 to 13.9 times after burning ATZ-contaminated biomass. In PM10, BaA and BaP concentrations increased by approximately 11.4 and 19.0 times, respectively, after burning ATZ-contaminated biomass. This study sheds light on the environmental risks posed by burning herbicide-contaminated biomass, emphasizing the need for sustainable agricultural practices and effective waste management. The findings underscore the importance of regulatory measures to mitigate environmental contamination and protect human health.


Assuntos
Atrazina , Biomassa , Diurona , Herbicidas , Oryza , Solo , Atrazina/análise , Oryza/química , Herbicidas/análise , Solo/química , Diurona/análise , Poluentes do Solo/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise
2.
Environ Sci Pollut Res Int ; 31(3): 3572-3581, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38085476

RESUMO

Diuron and Irgarol are common antifouling biocides used in paints to prevent the attachment and growth of fouling organisms on ship hulls and other submerged structures. Concerns about their toxicity to non-target aquatic organisms have led to various restrictions on their use in antifouling paints worldwide. Previous studies have shown the widespread presence of these substances in port areas along the Brazilian coast, with a concentration primarily in the southern part of the country. In this study, we conducted six sampling campaigns over the course of 1 year to assess the presence and associated risks of Diuron and Irgarol in water collected from areas under the influence of the Maranhão Port Complex in the Brazilian Northeast. Our results revealed the absence of Irgarol in the study area, irrespective of the sampling season and site. In contrast, the mean concentrations of Diuron varied between 2.0 ng L-1 and 34.1 ng L-1 and were detected at least once at each sampling site. We conducted a risk assessment of Diuron levels in this area using the risk quotient (RQ) method. Our findings indicated that Diuron levels at all sampling sites during at least one campaign yielded an RQ greater than 1, with a maximum of 22.7, classifying the risk as "high" based on the proposed risk classification. This study underscores the continued concern regarding the presence of antifouling biocides in significant ports and marinas in Brazilian ports, despite international bans.


Assuntos
Incrustação Biológica , Desinfetantes , Poluentes Químicos da Água , Diurona/análise , Desinfetantes/análise , Brasil , Estuários , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Triazinas/análise
3.
Arch Environ Contam Toxicol ; 85(4): 333-348, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37910194

RESUMO

A monitoring survey of antifouling biocides was conducted in the Harima Nada Sea and Osaka Bay of the Seto Inland Sea, Japan to assess contamination by organotin (OT) compounds and alternative biocides. The concentrations of tributyltin (TBT) compounds in surface water ranged from 1.0 to 2.8 ng/L, and the detected TBT concentrations in the bottom water layer were higher than those in the surface water. The concentrations of TBT compounds in sediment samples ranged from 2.0 to 28 ng/g dry weight (dw), respectively. The concentrations of alternative biocides in the water and sediment were lower than those before the banning of TBT by the International Maritime Organization (IMO). Although triphenyltin (TPT) compounds were not detected in water samples, TPT compounds were detected in the range of < 0.1-2700 ng/g dw in sediment samples. Their concentrations in the water samples were as follows: diuron, < 1-53 ng/L; Sea-Nine 211, < 1-1.8 ng/L; Irgarol 1051, < 1-4.0 ng/L; dichlofluanid, < 1-343 ng/L; and chlorothalonil, < 1-1 ng/L, and the ranges of these alternative compounds in sediment samples were diuron, 32-488 ng/g dw; Sea-Nine 211, 47-591 ng/g dw; Irgarol, 33-128 ng/g dw; dichlofluanid, 67-8038 ng/g dw; and chlorothalonil, 31-2975 ng/g dw. Thus, the OTs and alternative biocides have still been detected in water and sediment samples from closed sea areas.


Assuntos
Incrustação Biológica , Desinfetantes , Poluentes Químicos da Água , Sedimentos Geológicos , Desinfetantes/análise , Japão , Diurona/análise , Incrustação Biológica/prevenção & controle , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Água
4.
Environ Sci Pollut Res Int ; 30(22): 61888-61903, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36934191

RESUMO

Organotin-based (OTs: TBT and TPT) antifouling paints have been banned worldwide, but recent inputs have been detected in tropical coastal areas. However, there is a lack of studies evaluating the toxicity of both legacy and their substitute antifouling booster biocides (e.g., Irgarol and diuron) on neotropical species. Therefore, the acute toxicity of four antifouling biocides (TBT, TPT, Irgarol, and diuron) was investigated using the marine planktonic organisms Acartia tonsa and Mysidopsis juniae, the estuarine tanaid Monokalliapseudes schubarti (water exposure), and the burrowing amphipod Tiburonella viscana (spiked sediment exposure). Results confirmed the high toxicity of the OTs, especially to planktonic species, being about two orders of magnitude higher than Irgarol and diuron. Toxic effects of antifouling compounds were observed at levels currently found in tropical coastal zones, representing a threat to planktonic and benthic invertebrates. Furthermore, deterministic PNECmarine sediment values suggest that environmental hazards in tropical regions may be higher due to the higher sensitivity of tropical organisms. Since regulations on antifouling biocides are still restricted to a few countries, more ecotoxicological studies are needed to derivate environmental quality standards based on realistic scenarios. The present study brings essential contributions regarding the ecological risks of these substances in tropical and subtropical zones.


Assuntos
Anfípodes , Incrustação Biológica , Desinfetantes , Poluentes Químicos da Água , Animais , Diurona/toxicidade , Diurona/análise , Plâncton , Desinfetantes/toxicidade , Desinfetantes/análise , Incrustação Biológica/prevenção & controle , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Organismos Aquáticos , Monitoramento Ambiental , Triazinas/análise
5.
Mar Pollut Bull ; 189: 114718, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36807046

RESUMO

This review summarized booster biocides studies from Latin America and the Caribbean during the last two decades. Studies were focused on six countries, with most of them in Brazil. In water and sediment, diuron and Irgarol were the most abundant and frequent biocides, probably due to their former intense use. Antifouling paint particles were also reported and had mainly DCOIT, which is currently the most used booster biocide. Toxicity of individual booster biocides was tested in laboratory, and most effects were related to chlorothalonil, DCOIT, dichlofluanid, and Irgarol, including, but not limited to DNA damage, fertility decrease, and mortality at different trophic levels. This review highlighted the need for further studies on environmental occurrence of booster biocides in Latin America and Caribbean associated to ecotoxicological studies. Such information is essential to determine the potential ecological risks and to create directives regarding safe limits of booster biocides in aquatic systems.


Assuntos
Incrustação Biológica , Desinfetantes , Poluentes Químicos da Água , América Latina , Desinfetantes/toxicidade , Desinfetantes/análise , Incrustação Biológica/prevenção & controle , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Região do Caribe , Pintura , Diurona/análise , Triazinas/análise , Monitoramento Ambiental
6.
J Hazard Mater ; 448: 130914, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758438

RESUMO

Herbicides have already reported environmental contamination in several countries with intense agricultural activity. The transport of these molecules due to leaching and surface runoff has frequently caused contamination of rivers, groundwater and soil in non-agricultural areas. Thereby, we propose to investigate the sensitivity and phytoremediation capacity of 5 native Cerrado species to sequential exposure to 2,4-D, atrazine, diuron and hexazinone. We hypothesized that species have different sensitivity levels to sequential exposure to these herbicides absorbed from contaminated simulated groundwater model. The objectives of this work were: i) to determine the sensitivity of native cerrado species by sequential exposure to 2,4-D, atrazine, diuron and hexazinone via contaminated simulated groundwater model; ii) to evaluate the presence and degradation capacity of these herbicides in the soil and water leached by tolerant species. Some species showed high phytoremediation potential for groundwater already contaminated with 2,4-D, atrazine, diuron and hexazinone. S. macranthera and C. antiphilitica are tolerant and reduce the concentration of herbicides in simulated groundwater model. Among these species, C. antiphilitica reduces the concentration of all herbicides, suggesting greater adaptability to compose decontamination strategies in areas close to agricultural systems that use 2,4-D herbicides, atrazine, diuron and hexazinone. Also, our results show that herbicides can act as a selection factor for Cerrado forest species, however, two species can mitigate the effects of contamination due to their ability to degrade herbicides.


Assuntos
Atrazina , Água Subterrânea , Herbicidas , Poluentes do Solo , Herbicidas/metabolismo , Diurona/análise , Poluentes do Solo/metabolismo , Solo , Florestas , Ácido 2,4-Diclorofenoxiacético
7.
Mar Pollut Bull ; 187: 114500, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586200

RESUMO

This study provides a comprehensive compilation of published toxicological and environmental data further used to assess the ecological risks of six antifouling biocides, including tributyltin (TBT), Irgarol 1051, Diuron, Chlorothalonil, 4,5-Dichloro-N-octyl-3(2H)-isothiazolone (DCOIT), and Dichlofluanid. The standard maximum concentration and standard continuous concentration of antifouling biocides were derived by the species susceptibility distribution method. Following that, the ecological risk assessment of antifouling biocides in the aquatic environment was conducted using the hazard quotient, margin of safety, joint probability curve, and Monte Carlo random sampling method. The following is a concise list of the antifouling biocide dangers associated with acute and chronic risks: Irgarol 1051 > TBT > Diuron > DCOIT > Chlorothalonil > Dichlofluanid. It is strongly advised that systematic and ongoing monitoring of these biocides in coastal areas take place, as well as the creation of acceptable and efficient environmental protection measures, to safeguard the coastal environment's services and functions.


Assuntos
Incrustação Biológica , Desinfetantes , Poluentes Químicos da Água , Diurona/toxicidade , Diurona/análise , Qualidade da Água , Desinfetantes/análise , Incrustação Biológica/prevenção & controle , Triazinas/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental
8.
Environ Sci Pollut Res Int ; 30(8): 20804-20820, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36260229

RESUMO

The increase in food needs due to high population growth in Niger has led to the intensification of urban agriculture and the increased use of pesticides. The objective of this study is primarily to assess the polar pesticide contamination (mainly herbicides) of the Niger River and its tributary, the Mekrou River, in Niger, using both grab sampling and POCIS (Polar Organic Chemical Integrative Samplers), and then to evaluate the risk to the aquatic environment. Two water sampling campaigns were carried out during the wet and dry seasons. The polar pesticides were analyzed by liquid chromatography coupled with tandem mass spectrometry, which allowed the identification of compounds with concentrations in the grab samples above the WHO guide values and the EU directive: diuron with 2221 ng/L (EU quality guideline: 200 ng/L), atrazine with 742 ng/L (EU quality guideline: 600 ng/L) and acetochlor with 238 ng/L (EU quality guideline: 100 ng/L). The risk assessment study indicated that diuron and atrazine present a high risk for the aquatic environment during the wet season. The main source of water contamination is the intensive use of pesticides in urban agriculture near the city of Niamey, and the intensive cotton farming in the Benin. Moreover, the surveys (30 producers interviewed) showed that 70% of the pesticides used are not approved by the Interstate Committee for Drought Control in the Sahel (CILSS) and some are prohibited in Niger. The inventory of pesticides sold in the zone showed that active ingredients used by producers are 48% insecticides, 45% herbicides, and 7% fungicides.


Assuntos
Atrazina , Herbicidas , Praguicidas , Poluentes Químicos da Água , Praguicidas/análise , Rios/química , Diurona/análise , Atrazina/análise , Níger , Monitoramento Ambiental/métodos , Herbicidas/análise , Água/análise , Poluentes Químicos da Água/análise
9.
Anal Methods ; 14(42): 4202-4208, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36255350

RESUMO

Diuron (DR) as a chemical herbicide persists in soil and water for a long time and causes extensive harm to humans. We have produced an excellent monoclonal antibody (mAb) with the ability to sensitively and specifically recognize DR in water and sugarcane samples. The semi-inhibitory concentration (IC50) of this mAb was 0.28 ng mL-1, and the limit of detection (LOD) was 0.07 ng mL-1. Based on the mAb, an immunochromatographic assay (ICA) strip was developed. The visual detection limits of the strip assay were estimated, and the critical values of DR in water and sugarcane samples were determined to be 5 and 10 ng mL-1, respectively, when assessed by the naked eye. The ICA strip was validated by HPLC-MS for water and sugarcane samples which had been spiked with DR. This ICA strip could be a useful tool for in-site and rapid detection of DR in water and sugarcane samples.


Assuntos
Antineoplásicos Imunológicos , Saccharum , Humanos , Anticorpos Monoclonais/química , Diurona/análise , Água/análise , Limite de Detecção , Contaminação de Alimentos/análise , Antineoplásicos Imunológicos/análise , Grão Comestível/química
10.
Water Res ; 224: 119108, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36122448

RESUMO

Heavy metals and pesticides (HMPs) are common contaminants due to their extensive use worldwide. Diffusive gradients in thin films (DGT) are a good method for measuring the bioavailable concentration of pollutants. This study represents the first evaluation of HMP toxicity in aquatic biota using the DGT technique in sediments. Zhelin Bay was selected as the case study site because it has been contaminated by pollutants. Nonmetric multidimensional scaling (NMS) analysis reveals that a diverse range of pollutants (V, Cr, Ni, Cu, Zn, As, Se, InHg, Mo, Cd, Sb, W, Pb, CLP, PYR) are mainly influenced by sediment characteristics. Assessment of single HMP toxicity found that the risk quotient (RQ) values for Mn, Cu, inorganic Hg (InHg), chlorpyrifos (CLP) and diuron (DIU) are significantly higher than 1, indicating that the adverse effects of these single HMPs should not be ignored. The combined toxicity of HMP mixtures based on probabilistic ecotoxicological risk assessment shows that Zhelin Bay surface sediments had a medium probability (54.6%) of toxic effects to aquatic biota.


Assuntos
Clorpirifos , Mercúrio , Metais Pesados , Praguicidas , Poluentes Químicos da Água , Biota , Cádmio/análise , China , Diurona/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Isoniazida/análogos & derivados , Chumbo/análise , Mercúrio/análise , Metais Pesados/análise , Praguicidas/análise , Medição de Risco , Poluentes Químicos da Água/análise
11.
Environ Toxicol Chem ; 41(11): 2667-2678, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35959884

RESUMO

Pesticide risk assessment within the European Union Water Framework Directive is largely deficient in the assessment of the actual exposure and chemical mixture effects. Pesticide contamination, in particular herbicidal loading, has been shown to exert pressure on surface waters. Such pollution can have direct impact on autotrophic species, as well as indirect impacts on freshwater communities through primary production degradation. The present study proposes a screening method combining polar organic chemical integrative samplers (POCIS) with mode of action-specific toxicity testing on microalgae exposed to POCIS extracts as a standard approach to effectively address the problem of herbicide mixture effects detection. This methodology has been tested using Luxembourgish rivers as a case study and has proven to be a fast and reliable information source that is complementary to chemical analysis, allowing assessment of missing target analytes. Pesticide pressure in the 24 analyzed streams was mainly exerted by flufenacet, terbuthylazine, nicosulfuron, and foramsulfuron, with occasional impacts by the nonagricultural biocide diuron. Algae tests were more sensitive to endpoints affecting photosystem II and reproduction than to growth and could be best predicted with the concentration addition model. In addition, analysis revealed that herbicide mixture toxicity is correlated with macrophyte disappearance in the field, relating mainly to emissions from maize cultures. Combining passive sampler extracts with standard toxicity tests offers promising perspectives for ecological risk assessment. The full implementation of the proposed approach, however, requires adaptation of the legislation to scientific progress. Environ Toxicol Chem 2022;41:2667-2678. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Desinfetantes , Herbicidas , Microalgas , Praguicidas , Poluentes Químicos da Água , Humanos , Herbicidas/toxicidade , Herbicidas/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Diurona/análise , Complexo de Proteína do Fotossistema II , Compostos Orgânicos/análise , Praguicidas/análise , Testes de Toxicidade , Água , Desinfetantes/análise
12.
Arch Microbiol ; 204(7): 418, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35737117

RESUMO

The herbicide diuron is extensively used in the agriculture sector and is detected widely in the environment. Although several studies on the degradation of diuron by aerobic microorganisms have been reported, the degradation of diuron by anaerobic microorganisms has not been received much attention. Also, no pure culture that can degrade diuron under anaerobic conditions has yet been reported. The evaluation of diuron degradation in the soil and sediment slurries showed that diuron led to a decrease in the biodiversity of the bacterial communities. Two mixed bacterial cultures, one from the soil and the other from sediment slurries, were isolated from the enrichment media under anaerobic conditions. After 30 days of incubation at 30 °C, the mixed bacterial culture from the soil degraded 84.5 ± 5.5%, and that from the sediment slurry degraded 94.5 ± 3.0% of diuron in liquid mineral medium at an initial concentration of 20 mg/L. 1-(3,4-dichlorophenylurea (DCPU), 3-(3-chlorophenyl)-1,1-dimethylurea (CPDMU), and 3,4-dichloroaniline (3,4-DCA) were the major diuron metabolites produced by both the indigenous microorganisms and the isolated bacteria.


Assuntos
Herbicidas , Poluentes do Solo , Anaerobiose , Bactérias/metabolismo , Biodegradação Ambiental , Diurona/análise , Diurona/metabolismo , Herbicidas/análise , Herbicidas/metabolismo , Solo , Poluentes do Solo/metabolismo
13.
Environ Sci Pollut Res Int ; 29(45): 67894-67907, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35524849

RESUMO

We assessed the contamination, dynamics, and health risks of the pesticides cyanazine, simetryn, fenarimol, isoprothiolane, diazinon, irgarol, fenitrothion, and diuron in marine samples (seawater, sediments, plankton, fish, and other edible organisms) at various locations in the Seto Inland Sea in Japan in 2016 and 2017. Pesticide concentrations were highest at sampling sites close to the coastline, and mean concentrations in seawater were slightly higher in surface water than in bottom water. All eight pesticides were detected in plankton. Diazinon concentrations (77-387 ng/g dw) were highest in sediments and cyanazine was the most frequently detected pesticide (88%, n = 17) in sediments. Only cyanazine (2.7-41.9 ng/g dw), simetryn (1.0-34.3 ng/g dw), and diazinon (6.3-308.8 ng/g dw) were detected in fish and other edible marine organisms. Based on the calculated bioconcentration factor, the results showed that plankton, fish, and marine animals bioaccumulated pesticides. The highest hazard quotients were calculated for diazinon in red seabream and greenling, indicating a possible risk to consumers. It is, therefore, imperative to promote strict implementation of pollution control, integrated pest management practices, and policy formulation on pesticides. Usage of diazinon must be controlled and monitored to ensure large residues do not reach aquatic ecosystems and marine coastlines.


Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , Diazinon , Diurona/análise , Ecossistema , Monitoramento Ambiental/métodos , Fenitrotion , Peixes , Sedimentos Geológicos , Japão , Praguicidas/análise , Medição de Risco , Água do Mar , Água , Poluentes Químicos da Água/análise
14.
Artigo em Inglês | MEDLINE | ID: mdl-35162387

RESUMO

The phenylurea herbicides are persistent in soil and water, making necessary the de-velopment of techniques for their removal from the environment. To identify new options in this regard, bacterial strains were isolated from a soil historically managed with pesticides. Ochrobactrum anthropi CD3 showed the ability to remove completely herbicides such as diuron, linuron, chlorotoluron and fluometuron from aqueous solution, and up to 89% of isoproturon. In the case of diuron and linuron, their main metabolite, 3,4-dichloroaniline (3,4-DCA), which has a higher toxicity than the parent compounds, was formed, but remained in solution without further degradation. O. anthropi CD3 was also tested for bioremediation of two different agricultural soils artificially contaminated with diuron, employing bioremediation techniques: (i) biostimulation, using a nutrient solution (NS), (ii) bioaugmentation, using O. anthropi CD3, and iii) bioavailability enhancement using 2-hydroxypropyl-ß-cyclodextrin (HPBCD). When bioaugmentation and HPBCD were jointly applied, 50% of the diuron initially added to the soil was biodegraded in a range from 4.7 to 0.7 d. Also, 3,4-DCA was degraded in soil after the strain was inoculated. At the end of the soil biodegradation assay an ecotoxicity test confirmed that after inoculating O. anthropi CD3 the toxicity was drastically reduced.


Assuntos
Herbicidas , Ochrobactrum , Poluentes do Solo , Biodegradação Ambiental , Diurona/análise , Diurona/metabolismo , Estudos de Viabilidade , Herbicidas/metabolismo , Herbicidas/toxicidade , Ochrobactrum/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/análise
15.
Environ Sci Pollut Res Int ; 29(26): 39102-39115, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35098463

RESUMO

A simple and straightforward QuEChERS extraction method was proposed for the simultaneous determination of atrazine (ATZ), desethylatrazine (DEA), desisopropylatrazine (DIA), carbaryl (CBL), carbendazim (CBD), and diuron (DIU) in soil with high agricultural activity from southeastern Brazil, using high-performance liquid chromatography-diode-array detection/fluorescence detection. Screening studies carried out by 24 factorial design indicate better recoveries when less sample (1.0 g) and the volume of solvent (2.0 mL of ACN) were applied, compared to the original QuEChERS method. Furthermore, interactions between factors were not negligible in the experimental set, except for ATZ and DIU, in which only water volume influenced their recovery. The influence of the type (primary secondary amine (PSA), C18, and Florisil) and the sorbent amount ratio to the compounds' concentration were also considered. PSA (25 mg) was selected as the best sorbent without losing analytical response. The limits of quantification (LOQ) were estimated to be 5.0 to 15 µg kg-1 in the soil matrix. Analytical performances were consistent with linearity (R2 ≥ 0.998), recovery from 74.7 to 108%, and relative standard deviations (RSD) between 2.6 and 20.2%. Robustness was assessed by fractional factorial Plackett-Burman design. The method is recommended for chemicals that are soluble in water, and it was successfully applied in the analysis of real soil samples containing the analytes in the range of µg kg-1, proving to be suitable for the study of soils strongly impacted by agricultural activity.


Assuntos
Atrazina , Resíduos de Praguicidas , Praguicidas , Atrazina/análise , Brasil , Quimiometria , Diurona/análise , Humanos , Masculino , Resíduos de Praguicidas/análise , Praguicidas/análise , Antígeno Prostático Específico , Solo , Extração em Fase Sólida/métodos , Água/análise
16.
Environ Sci Pollut Res Int ; 29(20): 29368-29381, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34988806

RESUMO

Effect-directed analysis (EDA) aims at identifying the compound(s) responsible for toxicity in a complex environmental sample where several dozens of contaminants can be present. In this study, we used an environmental mixture extracted from the Polar Organic Chemical Integrative Sampler (POCIS) previously immersed downstream a landfill (River Ponteils, South West France), to perform an EDA approach using a microalgal bioassay based on the photosynthetic capacities of diatom (Nitzschia palea) cultures. Adverse effects on photosynthetic capacities were recorded when algae were exposed to the entire POCIS extract (> 85% inhibition at the highest concentration tested). This result was coherent with the detection of diuron and isoproturon, which were the 2 most concentrated herbicides in the extract. However, the EDA process did not allow pointing out the specific compound(s) responsible for the observed toxicity but rather suggested that multiple compounds were involved in the overall toxicity and caused mixture effects.


Assuntos
Herbicidas , Microalgas , Poluentes Químicos da Água , Diatomáceas , Diurona/análise , Diurona/toxicidade , Monitoramento Ambiental , Herbicidas/toxicidade , Compostos Orgânicos/análise , Compostos Orgânicos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
17.
Curr Microbiol ; 79(1): 11, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34905076

RESUMO

Diuron, a phenylurea herbicide, has been extensively applied in controlling a wide range of weeds in several crops. In the current study, a mixed culture of three bacterial strains, i.e., Bacillus subtilis DU1, Acinetobacter baumannii DU, and Pseudomonas sp. DUK, isolated from sugarcane soil, completely degraded diuron and 3,4-DCA in liquid media at 20 mg L-1 within 48 h. During diuron degradation, a few metabolites (DCPMU, DCPU, and 3,4-DCA) were produced. Further determination of ring-cleavage pathways demonstrated that Acinetobacter baumannii DU and Pseudomonas fluorescens DUK degraded diuron and 3,4-DCA via ortho-cleavage. In contrast, Bacillus subtilis DU transformed these compounds via meta-cleavage pathways. Moreover, diuron caused a significant shift in the bacterial community in soil without diuron history. The augmentation of mountain soil with the isolated bacteria resulted in nearly three times higher degradation rate of diuron than the degradation by indigenous microorganisms. This study provides important information on in situ diuron bioremediation from contaminated sites by bioaugmentation with a mixed bacterial culture.


Assuntos
Herbicidas , Poluentes do Solo , Bactérias/genética , Biodegradação Ambiental , Diurona/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise
18.
Environ Sci Pollut Res Int ; 28(37): 52247-52257, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34002317

RESUMO

Irgarol 1051 and diuron are photosystem II inhibitors in agricultural activities and antifouling paints in the shipping sector. This study focused on three major ports (western, southern, and eastern) surrounding Peninsular Malaysia to construct the distribution of both biocides on the basis of the seasonal and geographical changes. Surface seawater samples were collected from November 2011 to April 2012 and pretreated using the solid-phase extraction technique followed by quantification with GC-MS and LC-MS-MS for Irgarol 1051 and diuron, respectively. Generally, the distribution of Irgarol 1051 was lowest during November 2011 and highest during April 2012, and similar patterns were observed at all ports, whereas the distribution of diuron was rather vague. The increasing pattern of Irgarol 1051 from time to time is probably related to its accumulation in the seawater as a result of its half-life and consistent utilization. On the basis of the discriminant analysis, the temporal distribution of Irgarol 1051 varied at Klang North Port, Klang South Port, and Pasir Gudang Port, whereas diuron was temporally varied only at Kemaman Port. Furthermore, Irgarol 1051 was spatially varied during November 2011, whereas diuron did not show any significant changes throughout all sampling periods. Ecological risk assessment exhibited a high risk for diuron and Irgarol 1051, but Irgarol 1051 should be of greater concern because of its higher risk compared to that of diuron. Thus, it is recommended that the current Malaysian guidelines and regulations of biocide application should be reevaluated and improved to protect the ecosystem, as well as to prevent ecological risks to the aquatic environment.


Assuntos
Incrustação Biológica , Desinfetantes , Poluentes Químicos da Água , Incrustação Biológica/prevenção & controle , Diurona/análise , Ecossistema , Malásia , Pintura , Medição de Risco , Estações do Ano , Triazinas , Poluentes Químicos da Água/análise
19.
Chemosphere ; 276: 130155, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33743422

RESUMO

Although booster biocides (Irgarol, diuron, chlorothalonil, dichlofluanid, and DCOIT) have been detected in sediments along the Brazilian coastal areas, the risk associated to their occurrence and levels is still unknown. Thus, the ecological risk of booster biocides to sediment-dwelling organisms from the Brazilian coast was assessed using a risk characterization approach through the Risk Quotient (Measured environmental concentration (MEC)/Predicted no effect concentrations (PNECs)). Sedimentary PNECs for Irgarol, diuron, chlorothalonil and DCOIT were derived based on published ecotoxicological data from both freshwater and marine studies, while a NORMAN methodology was used to derived it for dichlofluanid. Results showed that DCOIT, diuron, Irgarol, chlorothalonil, and dichlofluanid can pose high risk on 47%, 35%, 15%, 1% and 1%, respectively, of the 113 Brazilian sites appraised. Considering the trend of expansion of navigation/maritime activities, DCOIT may worsen its impact over the coastal areas of Brazil, especially ports, but also ship/boatyards, marinas, and maritime traffic zones. The present study is an important contribution to support advance on policy formulation concerning booster biocides worldwide, particularly considering the lack of regulation on the use of antifouling biocides in Brazil.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Brasil , Desinfetantes/análise , Desinfetantes/toxicidade , Diurona/análise , Diurona/toxicidade , Monitoramento Ambiental , Sedimentos Geológicos , Medição de Risco , Triazinas/análise , Triazinas/toxicidade , Poluentes Químicos da Água/análise
20.
Mar Pollut Bull ; 161(Pt A): 111698, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33022498

RESUMO

Examination of the impact of Diuron contamination on blood cockles (Tegillarca granosa) was conducted by combining field screening at three sampling events and a toxicity test. Diuron was extracted using the liquid-liquid extraction (LLE) technique and analyzed using HPLC-UV. The median lethal concentration (LC50) of Diuron on T. granosa was tested under a 72-h exposure. Diuron in water samples ranged from not detected (ND) to 3910 ppb, which was the highest concentration detected in samples after the irrigation water was discharged from the paddy plantation. Diuron was not detected in sediment samples. Mortality of T. granosa ranged from 4.74 to 38.33% with the highest percentages recorded after the release of the irrigation water. The LC50 value of Diuron was 1.84 ppm. This study suggests that irrigation water from paddy plantation that drifts to coastal areas containing Diuron harms T. granosa at the study area.


Assuntos
Arcidae , Cardiidae , Poluentes Químicos da Água , Animais , Diurona/análise , Diurona/toxicidade , Monitoramento Ambiental , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA