Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172.369
Filtrar
1.
Dev Cell ; 59(9): 1091-1093, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38714155

RESUMO

Polar localization of proteins is important for plant growth and development. Identifying the interactors of polarized proteins provides spatial information and cell-type functions. In this issue of Developmental Cell, Wallner et al. (2024) utilize opposing polarity domain proteins to identify interactors and their functions during cell division in Arabidopsis stomata.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Divisão Celular , Polaridade Celular , Desenvolvimento Vegetal , Polaridade Celular/fisiologia , Divisão Celular/fisiologia , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/citologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Desenvolvimento Vegetal/fisiologia
2.
Nature ; 629(8011): 458-466, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658765

RESUMO

Heteroplasmy occurs when wild-type and mutant mitochondrial DNA (mtDNA) molecules co-exist in single cells1. Heteroplasmy levels change dynamically in development, disease and ageing2,3, but it is unclear whether these shifts are caused by selection or drift, and whether they occur at the level of cells or intracellularly. Here we investigate heteroplasmy dynamics in dividing cells by combining precise mtDNA base editing (DdCBE)4 with a new method, SCI-LITE (single-cell combinatorial indexing leveraged to interrogate targeted expression), which tracks single-cell heteroplasmy with ultra-high throughput. We engineered cells to have synonymous or nonsynonymous complex I mtDNA mutations and found that cell populations in standard culture conditions purge nonsynonymous mtDNA variants, whereas synonymous variants are maintained. This suggests that selection dominates over simple drift in shaping population heteroplasmy. We simultaneously tracked single-cell mtDNA heteroplasmy and ancestry, and found that, although the population heteroplasmy shifts, the heteroplasmy of individual cell lineages remains stable, arguing that selection acts at the level of cell fitness in dividing cells. Using these insights, we show that we can force cells to accumulate high levels of truncating complex I mtDNA heteroplasmy by placing them in environments where loss of biochemical complex I activity has been reported to benefit cell fitness. We conclude that in dividing cells, a given nonsynonymous mtDNA heteroplasmy can be harmful, neutral or even beneficial to cell fitness, but that the 'sign' of the effect is wholly dependent on the environment.


Assuntos
Divisão Celular , Linhagem da Célula , DNA Mitocondrial , Aptidão Genética , Heteroplasmia , Seleção Genética , Análise de Célula Única , Animais , Feminino , Humanos , Camundongos , Divisão Celular/genética , Linhagem Celular , Linhagem da Célula/genética , DNA Mitocondrial/genética , Edição de Genes , Heteroplasmia/genética , Mitocôndrias/genética , Mutação , Análise de Célula Única/métodos
3.
J Pathol ; 263(2): 226-241, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38572612

RESUMO

Loss of the cell-cell adhesion protein E-cadherin underlies the development of diffuse-type gastric cancer (DGC), which is characterized by the gradual accumulation of tumor cells originating from the gastric epithelium in the surrounding stroma. How E-cadherin deficiency drives DGC formation remains elusive. Therefore, we investigated the consequences of E-cadherin loss on gastric epithelial organization utilizing a human gastric organoid model and histological analyses of early-stage DGC lesions. E-cadherin depletion from gastric organoids recapitulates DGC initiation, with progressive loss of a single-layered architecture and detachment of individual cells. We found that E-cadherin deficiency in gastric epithelia does not lead to a general loss of epithelial cohesion but disrupts the spindle orientation machinery. This leads to a loss of planar cell division orientation and, consequently, daughter cells are positioned outside of the gastric epithelial layer. Although basally delaminated cells fail to detach and instead reintegrate into the epithelium, apically mispositioned daughter cells can trigger the gradual loss of the single-layered epithelial architecture. This impaired architecture hampers reintegration of mispositioned daughter cells and enables basally delaminated cells to disseminate into the surrounding matrix. Taken together, our findings describe how E-cadherin deficiency disrupts gastric epithelial architecture through displacement of dividing cells and provide new insights in the onset of DGC. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Caderinas , Divisão Celular , Organoides , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Caderinas/metabolismo , Humanos , Organoides/patologia , Organoides/metabolismo , Mucosa Gástrica/patologia , Mucosa Gástrica/metabolismo , Movimento Celular , Antígenos CD/metabolismo , Células Epiteliais/patologia , Células Epiteliais/metabolismo
4.
Cell Signal ; 119: 111172, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38604342

RESUMO

Simvastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, which is a rate-limiting enzyme of the cholesterol synthesis pathway. It has been used clinically as a lipid-lowering agent to reduce low-density lipoprotein (LDL) cholesterol levels. In addition, antitumor activity has been demonstrated. Although simvastatin attenuates the prenylation of small GTPases, its effects on cell division in which small GTPases play an important role, have not been examined as a mechanism underlying its cytostatic effects. In this study, we determined its effect on cell division. Cell cycle synchronization experiments revealed a delay in mitotic progression in simvastatin-treated cells at concentrations lower than the IC50. Time-lapse imaging analysis indicated that the duration of mitosis, especially from mitotic entry to anaphase onset, was prolonged. In addition, simvastatin increased the number of cells exhibiting misoriented anaphase/telophase and bleb formation. Inhibition of the spindle assembly checkpoint (SAC) kinase Mps1 canceled the mitotic delay. Additionally, the number of cells exhibiting kinetochore localization of BubR1, an essential component of SAC, was increased, suggesting an involvement of SAC in the mitotic delay. Enhancement of F-actin formation and cell rounding at mitotic entry indicates that cortical actin dynamics were affected by simvastatin. The cholesterol removal agent methyl-ß-cyclodextrin (MßCD) accelerated mitotic progression differently from simvastatin, suggesting that cholesterol loss from the plasma membrane is not involved in the mitotic delay. Of note, the small GTPase RhoA, which is a critical factor for cortical actin dynamics, exhibited upregulated expression. In addition, Rap1 was likely not geranylgeranylated. Our results demonstrate that simvastatin affects actin dynamics by modifying small GTPases, thereby activating the spindle assembly checkpoint and causing abnormal cell division.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Sinvastatina , Sinvastatina/farmacologia , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Células HeLa , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mitose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo
5.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619327

RESUMO

Tissue morphogenesis is intimately linked to the changes in shape and organisation of individual cells. In curved epithelia, cells can intercalate along their own apicobasal axes, adopting a shape named 'scutoid' that allows energy minimization in the tissue. Although several geometric and biophysical factors have been associated with this 3D reorganisation, the dynamic changes underlying scutoid formation in 3D epithelial packing remain poorly understood. Here, we use live imaging of the sea star embryo coupled with deep learning-based segmentation to dissect the relative contributions of cell density, tissue compaction and cell proliferation on epithelial architecture. We find that tissue compaction, which naturally occurs in the embryo, is necessary for the appearance of scutoids. Physical compression experiments identify cell density as the factor promoting scutoid formation at a global level. Finally, the comparison of the developing embryo with computational models indicates that the increase in the proportion of scutoids is directly associated with cell divisions. Our results suggest that apico-basal intercalations appearing immediately after mitosis may help accommodate the new cells within the tissue. We propose that proliferation in a compact epithelium induces 3D cell rearrangements during development.


Assuntos
Proliferação de Células , Embrião não Mamífero , Morfogênese , Animais , Epitélio , Embrião não Mamífero/citologia , Contagem de Células , Estrelas-do-Mar/embriologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Divisão Celular
6.
Sci Rep ; 14(1): 9029, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641657

RESUMO

Double-stranded RNA-activated protein kinase R (PKR) is highly expressed in colorectal cancer (CRC). However, the role of PKR in CRC remains unclear. The aim of this study was to clarify whether C16 (a PKR inhibitor) exhibits antitumor effects and to identify its target pathway in CRC. We evaluated the effects of C16 on CRC cell lines using the MTS assay. Enrichment analysis was performed to identify the target pathway of C16. The cell cycle was analyzed using flow cytometry. Finally, we used immunohistochemistry to examine human CRC specimens. C16 suppressed the proliferation of CRC cells. Gene Ontology (GO) analysis revealed that the cell cycle-related GO category was substantially enriched in CRC cells treated with C16. C16 treatment resulted in G1 arrest and increased p21 protein and mRNA expression. Moreover, p21 expression was associated with CRC development as observed using immunohistochemical analysis of human CRC tissues. C16 upregulates p21 expression in CRC cells to regulate cell cycle and suppress tumor growth. Thus, PKR inhibitors may serve as a new treatment option for patients with CRC.


Assuntos
Neoplasias Colorretais , Inibidores de Proteínas Quinases , Humanos , Apoptose , Ciclo Celular , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Inibidores de Proteínas Quinases/farmacologia , Indóis/farmacologia , Tiazóis/farmacologia , eIF-2 Quinase/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p21/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo
7.
Nat Commun ; 15(1): 3355, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637514

RESUMO

Surface layers (S-layers) are proteinaceous, two-dimensional paracrystalline arrays that constitute a major component of the cell envelope in many prokaryotic species. In this study, we investigated S-layer biogenesis in the bacterial model organism Caulobacter crescentus. Fluorescence microscopy revealed localised incorporation of new S-layer at the poles and mid-cell, consistent with regions of cell growth in the cell cycle. Light microscopy and electron cryotomography investigations of drug-treated bacteria revealed that localised S-layer insertion is retained when cell division is inhibited, but is disrupted upon dysregulation of MreB or lipopolysaccharide. We further uncovered that S-layer biogenesis follows new peptidoglycan synthesis and localises to regions of high cell wall turnover. Finally, correlated cryo-light microscopy and electron cryotomographic analysis of regions of S-layer insertion showed the presence of discontinuities in the hexagonal S-layer lattice, contrasting with other S-layers completed by defined symmetric defects. Our findings present insights into how C. crescentus cells form an ordered S-layer on their surface in coordination with the biogenesis of other cell envelope components.


Assuntos
Proteínas de Bactérias , Caulobacter crescentus , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/metabolismo , Glicoproteínas de Membrana/metabolismo , Divisão Celular , Membrana Celular/metabolismo
8.
Sci Rep ; 14(1): 9008, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637579

RESUMO

This investigation aimed to explore the prognostic factors in elderly patients with unresected gastric cancer (GC) who have received chemotherapy and to develop a nomogram for predicting their cancer-specific survival (CSS). Elderly gastric cancer patients who have received chemotherapy but no surgery in the Surveillance, Epidemiology, and End Results Database between 2004 and 2015 were included in this study. Cox analyses were conducted to identify prognostic factors, leading to the formulation of a nomogram. The nomogram was validated using receiver operating characteristic (ROC) and calibration curves. The findings elucidated six prognostic factors encompassing grade, histology, M stage, radiotherapy, tumor size, and T stage, culminating in the development of a nomogram. The ROC curve indicated that the area under curve of the nomogram used to predict CSS for 3, 4, and 5 years in the training queue as 0.689, 0.708, and 0.731, and in the validation queue, as 0.666, 0.693, and 0.708. The calibration curve indicated a high degree of consistency between actual and predicted CSS for 3, 4, and 5 years. This nomogram created to predict the CSS of elderly patients with unresected GC who have received chemotherapy could significantly enhance treatment accuracy.


Assuntos
Nomogramas , Neoplasias Gástricas , Idoso , Humanos , Neoplasias Gástricas/tratamento farmacológico , Calibragem , Divisão Celular , Bases de Dados Factuais , Programa de SEER
9.
Zebrafish ; 21(2): 171-176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621215

RESUMO

The transgenic (TG) zebrafish allows researchers to bio-image specific biological phenomena in cells and tissues in vivo. We established TG lines to monitor changes in the ovaries of live fish. The original TG line with ovarian fluorescence was occasionally established. Although the cDNA integrated into the line was constructed for the expression of enhanced green fluorescent protein (EGFP) driven by the medaka ß-actin promoter, the expression of EGFP is restricted to the oocytes and gills in adult fish. Furthermore, we found that germinal vesicles (GVs) in oocytes of the established line can be observed by relatively strong fluorescence around the GV. In this study, we tried to capture the dynamic processes of germinal vesicle breakdown (GVBD) during meiotic cell division using the GV fluorescent oocytes. As a result, GV migration and GVBD could be monitored in real time. We also succeeded in observing actin filaments involved in the migration of GV to the animal pole. This strain can be used for education in the process of oocyte meiotic cell division.


Assuntos
Ectoderma/embriologia , Estruturas Embrionárias , Ovário , Peixe-Zebra , Feminino , Animais , Oócitos , Animais Geneticamente Modificados , Divisão Celular
10.
Sci Rep ; 14(1): 8544, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609444

RESUMO

The continuous balance of growth and degradation inside cells maintains homeostasis. Disturbance of this balance by internal or external factors cause state of disease, while effective disease treatments seek to restore this balance. Here, we present a method based on quantitative phase imaging (QPI) based measurements of cell mass and the velocity of mass transport to quantify the balance of growth and degradation within intracellular control volumes. The result, which we call Lagrangian velocimetry for intracellular net growth (LVING), provides high resolution maps of intracellular biomass production and degradation. We use LVING to quantify the growth in different regions of the cell during phases of the cell cycle. LVING can also be used to quantitatively compare the effect of range of chemotherapy drug doses on subcellular growth processes. Finally, we applied LVING to characterize the effect of autophagy on the growth machinery inside cells. Overall, LVING reveals both the structure and distribution of basal growth within cells, as well as the disruptions to this structure that occur during alterations in cell state.


Assuntos
Autofagia , Receptores Proteína Tirosina Quinases , Proliferação de Células , Ciclo Celular , Divisão Celular
11.
Int J Mol Sci ; 25(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38612439

RESUMO

Prostate cancer (PCa) is the most prevalent non-cutaneous cancer in men. Early PCa detection has been made possible by the adoption of screening methods based on the serum prostate-specific antigen and Gleason score (GS). The aim of this study was to correlate gene expression with the differentiation level of prostate adenocarcinomas, as indicated by GS. We used data from The Cancer Genome Atlas (TCGA) and included 497 prostate cancer patients, 52 of which also had normal tissue sample sequencing data. Gene ontology analysis revealed that higher GSs were associated with greater responses to DNA damage, telomere lengthening, and cell division. Positive correlation was found with transcription factor activator of the adenovirus gene E2 (E2F) and avian myelocytomatosis viral homolog (MYC) targets, G2M checkpoints, DNA repair, and mitotic spindles. Immune cell deconvolution revealed high M0 macrophage counts and an increase in M2 macrophages dependent on the GS. The molecular pathways most correlated with GSs were cell cycle, RNA transport, and calcium signaling (depleted). A combinatorial approach identified a set of eight genes able to differentiate by k-Nearest Neighbors (kNN) between normal tissues, low-Gleason tissues, and high-Gleason tissues with high accuracy. In conclusion, our study could be a step forward to better understanding the link between gene expression and PCa progression and aggressiveness.


Assuntos
Redes Reguladoras de Genes , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Ciclo Celular , Divisão Celular , Adenoviridae
12.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612471

RESUMO

Acquired immunodeficiency syndrome (AIDS) is an enormous global health threat stemming from human immunodeficiency virus (HIV-1) infection. Up to now, the tremendous advances in combination antiretroviral therapy (cART) have shifted HIV-1 infection from a fatal illness into a manageable chronic disorder. However, the presence of latent reservoirs, the multifaceted nature of HIV-1, drug resistance, severe off-target effects, poor adherence, and high cost restrict the efficacy of current cART targeting the distinct stages of the virus life cycle. Therefore, there is an unmet need for the discovery of new therapeutics that not only bypass the limitations of the current therapy but also protect the body's health at the same time. The main goal for complete HIV-1 eradication is purging latently infected cells from patients' bodies. A potential strategy called "lock-in and apoptosis" targets the budding phase of the life cycle of the virus and leads to susceptibility to apoptosis of HIV-1 infected cells for the elimination of HIV-1 reservoirs and, ultimately, for complete eradication. The current work intends to present the main advantages and disadvantages of United States Food and Drug Administration (FDA)-approved anti-HIV-1 drugs as well as plausible strategies for the design and development of more anti-HIV-1 compounds with better potency, favorable pharmacokinetic profiles, and improved safety issues.


Assuntos
Síndrome da Imunodeficiência Adquirida , HIV-1 , Estados Unidos , Humanos , United States Food and Drug Administration , Apoptose , Divisão Celular
13.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612774

RESUMO

D-arginine (D-Arg) can promote embryogenic callus (EC) proliferation and increase the rate of somatic embryo induction of litchi (Litchi chinensis Sonn.), yet the mechanism underlying the processes is incompletely understood. To investigate the mechanism, physiological responses of polyamines (PAs) [putrescine (Put), spermidine (Spd), and spermine (Spm)] were investigated for D-Arg-treated litchi EC and enzyme activity related to polyamine metabolism, plant endogenous hormones, and polyamine- and embryogenic-related genes were explored. Results showed that the exogenous addition of D-Arg reduces the activity of diamine oxidase (DAO) and polyamine oxidase (PAO) in EC, reduces the production of H2O2, promotes EC proliferation, and increases the (Spd + Spm)/Put ratio to promote somatic embryo induction. Exogenous D-Arg application promoted somatic embryogenesis (SE) by increasing indole-3-acetyl glycine (IAA-Gly), kinetin-9-glucoside (K9G), and dihydrozeatin-7-glucoside (DHZ7G) levels and decreasing trans-zeatin riboside (tZR), N-[(-)-jasmonoyl]-(L)-valine (JA-Val), jasmonic acid (JA), and jasmonoyl-L-isoleucine (Ja-ILE) levels on 18 d, as well as promoting cell division and differentiation. The application of exogenous D-Arg regulated EC proliferation and somatic embryo induction by altering gene expression levels of the WRKY family, AP2/ERF family, C3H family, and C2H2 family. These results indicate that exogenous D-Arg could regulate the proliferation of EC and the SE induction of litchi by changing the biosynthesis of PAs through the alteration of gene expression pattern and endogenous hormone metabolism.


Assuntos
Ciclopentanos , Isoleucina/análogos & derivados , Litchi , Oxilipinas , Litchi/genética , Peróxido de Hidrogênio , Desenvolvimento Embrionário , Poliaminas , Espermidina , Putrescina , Espermina , Arginina , Divisão Celular , Glucosídeos
14.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612889

RESUMO

The ubiquitin-proteasome system (UPS) is a pivotal cellular mechanism responsible for the selective degradation of proteins, playing an essential role in proteostasis, protein quality control, and regulating various cellular processes, with ubiquitin marking proteins for degradation through a complex, multi-stage process. The shuttle proteins family is a very unique group of proteins that plays an important role in the ubiquitin-proteasome system. Ddi1, Dsk2, and Rad23 are shuttle factors that bind ubiquitinated substrates and deliver them to the 26S proteasome. Besides mediating the delivery of ubiquitinated proteins, they are also involved in many other biological processes. Ddi1, the least-studied shuttle protein, exhibits unique physicochemical properties that allow it to play non-canonical functions in the cells. It regulates cell cycle progression and response to proteasome inhibition and defines MAT type of yeast cells. The Ddi1 contains UBL and UBA domains, which are crucial for binding to proteasome receptors and ubiquitin respectively, but also an additional domain called RVP. Additionally, much evidence has been provided to question whether Ddi1 is a classical shuttle protein. For many years, the true nature of this protein remained unclear. Here, we highlight the recent discoveries, which shed new light on the structure and biological functions of the Ddi1 protein.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Citoplasma , Proteínas Ubiquitinadas , Divisão Celular , Saccharomyces cerevisiae
15.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612909

RESUMO

Skin aging is a complex process involving structural and functional changes and is characterized by a decrease in collagen content, reduced skin thickness, dryness, and the formation of wrinkles. This process is underpinned by multiple mechanisms including the free radical theory, inflammation theory, photoaging theory, and metabolic theory. The skin immune system, an indispensable part of the body's defense mechanism, comprises macrophages, lymphocytes, dendritic cells, and mast cells. These cells play a pivotal role in maintaining skin homeostasis and responding to injury or infection. As age advances, along with various internal and external environmental stimuli, skin immune cells may undergo senescence or accelerated aging, characterized by reduced cell division capability, increased mortality, changes in gene expression patterns and signaling pathways, and altered immune cell functions. These changes collectively impact the overall function of the immune system. This review summarizes the relationship between skin aging and immunity and explores the characteristics of skin aging, the composition and function of the skin immune system, the aging of immune cells, and the effects of these cells on immune function and skin aging. Immune dysfunction plays a significant role in skin aging, suggesting that immunoregulation may become one of the important strategies for the prevention and treatment of skin aging.


Assuntos
Envelhecimento da Pele , Pele , Mastócitos , Divisão Celular
16.
FEMS Yeast Res ; 242024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592962

RESUMO

How mutations in mitochondrial electron transport chain (ETC) proteins impact the cell cycle of Candida albicans was investigated in this study. Using genetic null mutants targeting ETC complexes I (CI), III (CIII), and IV (CIV), the cell cycle stages (G0/G1, S phase, and G2/M) were analyzed via fluorescence-activated cell sorting (FACS). Four CI null mutants exhibited distinct alterations, including extended S phase, shortened G2/M population, and a reduction in cells size exceeding 10 µM. Conversely, CIII mutants showed an increased population in G1/G0 phase. Among four CI mutants, ndh51Δ/Δ and goa1Δ/Δ displayed aberrant cell cycle patterns correlated with previously reported cAMP/PKA downregulation. Specifically, nuo1Δ/Δ and nuo2Δ/Δ mutants exhibited increased transcription of RIM15, a central hub linking cell cycle with nutrient-dependent TOR1 and cAMP/PKA pathways and Snf1 aging pathway. These findings suggest that suppression of TOR1 and cAMP/PKA pathways or enhanced Snf1 disrupts cell cycle progression, influencing cell longevity and growth among CI mutants. Overall, our study highlights the intricate interplay between mitochondrial ETC, cell cycle, and signaling pathways.


Assuntos
Candida albicans , Mitocôndrias , Candida albicans/fisiologia , Fase S , Mitocôndrias/metabolismo , Ciclo Celular , Divisão Celular
17.
PLoS Pathog ; 20(4): e1012121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593161

RESUMO

Efflux pumps of the resistance-nodulation-cell division (RND) superfamily, particularly the AcrAB-TolC, and MexAB-OprM, besides mediating intrinsic and acquired resistance, also intervene in bacterial pathogenicity. Inhibitors of such pumps could restore the activities of antibiotics and curb bacterial virulence. Here, we identify pyrrole-based compounds that boost antibiotic activity in Escherichia coli and Pseudomonas aeruginosa by inhibiting their archetype RND transporters. Molecular docking and biophysical studies revealed that the EPIs bind to AcrB. The identified efflux pump inhibitors (EPIs) inhibit the efflux of fluorescent probes, attenuate persister formation, extend post-antibiotic effect, and diminish resistant mutant development. The bacterial membranes remained intact upon exposure to the EPIs. EPIs also possess an anti-pathogenic potential and attenuate P. aeruginosa virulence in vivo. The intracellular invasion of E. coli and P. aeruginosa inside the macrophages was hampered upon treatment with the lead EPI. The excellent efficacy of the EPI-antibiotic combination was evidenced in animal lung infection and sepsis protection models. These findings indicate that EPIs discovered herein with negligible toxicity are potential antibiotic adjuvants to address life-threatening Gram-negative bacterial infections.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Animais , Virulência , Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Resistência Microbiana a Medicamentos , Bactérias/metabolismo , Divisão Celular , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Escherichia coli/metabolismo
18.
Oncol Rep ; 51(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577924

RESUMO

Colorectal cancer (CRC) ranks as the second leading cause of cancer­related death worldwide due to its aggressive nature. After surgical resection, >50% of patients with CRC require adjuvant therapy. As a result, eradicating cancer cells with medications is a promising method to treat patients with CRC. In the present study, a novel compound was synthesized, which was termed compound 225#. The inhibitory activity of compound 225# against CRC was determined by MTT assay, EdU fluorescence labeling and colony formation assay; the effects of compound 225# on the cell cycle progression and apoptosis of CRC cells were detected by flow cytometry and western blotting; and the changes in autophagic flux after the administration of compound 225# were detected using the double fluorescence fusion protein mCherry­GFP­LC3B and western blotting. The results demonstrated that compound 225# exhibited antiproliferative properties, inhibiting the proliferation and expansion of CRC cell lines in a time­ and dose­dependent manner. Furthermore, compound 225# triggered G2/M cell cycle arrest by influencing the expression of cell cycle regulators, such as CDK1, cyclin A1 and cyclin B1, which is also closely related to the activation of DNA damage pathways. The cleavage of PARP and increased protein expression levels of PUMA suggested that apoptosis was triggered after treatment with compound 225#. Moreover, the increase in LC3­II expression and stimulation of autophagic flux indicated the activation of an autophagy pathway. Notably, compound 225# induced autophagy, which was associated with endoplasmic reticulum (ER) stress. In accordance with the in vitro findings, the in vivo results demonstrated that compound 225# effectively inhibited the growth of HCT116 tumors in mice without causing any changes in their body weight. Collectively, the present results demonstrated that compound 225# not only inhibited proliferation and promoted G2/M­phase cell cycle arrest and apoptosis, but also initiated cytoprotective autophagy in CRC cells by activating ER stress pathways. Taken together, these findings provide an experimental basis for the evaluation of compound 225# as a novel potential medication for CRC treatment.


Assuntos
Apoptose , Neoplasias Colorretais , Humanos , Animais , Camundongos , Pontos de Checagem do Ciclo Celular , Divisão Celular , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Ciclo Celular
19.
Physiol Plant ; 176(1): e14182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618986

RESUMO

The molecular mechanisms guiding oriented cell divisions in the root vascular tissues of Arabidopsis thaliana are still poorly characterised. By overlapping bulk and single-cell transcriptomic datasets, we unveiled TETRASPANIN1 (TET1) as a putative regulator in this process. TET1 is expressed in root vascular cells, and loss-of-function mutants contain fewer vascular cell files. We further generated and characterised a CRISPR deletion mutant and showed, unlike previously described mutants, that the full knock out is additionally missing endodermal cells in a stochastic way. Finally, we show that HA-tagged versions of TET1 are functional in contrast to fluorescent TET1 translational fusions. Immunostaining using HA-TET1 lines complementing the mutant phenotype suggested a dual plasma membrane and intracellular localisation in the root vasculature and a polar membrane localisation in the young cortex, endodermal and initial cells. Taken together, we show that TET1 is involved in both vascular proliferation and ground tissue patterning. Our initial results pave the way for future work to decipher its precise mode of action.


Assuntos
Arabidopsis , Arabidopsis/genética , Divisão Celular , Membrana Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Perfilação da Expressão Gênica
20.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612390

RESUMO

Dormancy release and reactivation in temperate trees are mainly controlled by temperature and are affected by age, but the underlying molecular mechanisms are still unclear. In this study, we explored the effects of low temperatures in winter and warm temperatures in spring on dormancy release and reactivation in Larix kaempferi. Further, we established the relationships between cell-cycle genes and cambium cell division. The results showed that chilling accelerated L. kaempferi bud break overall, and the longer the duration of chilling is, the shorter the bud break time is. After dormancy release, warm temperatures induced cell-cycle gene expression; when the configuration value of the cell-cycle genes reached 4.97, the cambium cells divided and L. kaempferi reactivated. This study helps to predict the impact of climate change on wood production and provides technical support for seedling cultivation in greenhouses.


Assuntos
Larix , Larix/genética , Câmbio , Genes cdc , Divisão Celular , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA