Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Blood ; 143(17): 1689-1701, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38364184

RESUMO

ABSTRACT: Over the past 10 years, there has been a marked increase in recognition of the interplay between the intestinal microbiome and the hematopoietic system. Despite their apparent distance in the body, a large literature now supports the relevance of the normal intestinal microbiota to steady-state blood production, affecting both hematopoietic stem and progenitor cells as well as differentiated immune cells. Microbial metabolites enter the circulation where they can trigger cytokine signaling that influences hematopoiesis. Furthermore, the state of the microbiome is now recognized to affect outcomes from hematopoietic stem cell transplant, immunotherapy, and cellular therapies for hematologic malignancies. Here we review the mechanisms by which microbiotas influence hematopoiesis in development and adulthood as well as the avenues by which microbiotas are thought to impact stem cell transplant engraftment, graft-versus-host disease, and efficacy of cell and immunotherapies. We highlight areas of future research that may lead to reduced adverse effects of antibiotic use and improved outcomes for patients with hematologic conditions.


Assuntos
Microbioma Gastrointestinal , Doenças Hematológicas , Hematopoese , Humanos , Doenças Hematológicas/terapia , Doenças Hematológicas/microbiologia , Animais , Transplante de Células-Tronco Hematopoéticas , Doença Enxerto-Hospedeiro/microbiologia , Doença Enxerto-Hospedeiro/terapia , Doença Enxerto-Hospedeiro/imunologia
2.
Blood ; 142(16): 1387-1398, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37856089

RESUMO

The correlation existing between gut microbiota diversity and survival after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has so far been studied in adults. Pediatric studies question whether this association applies to children as well. Stool samples from a multicenter cohort of 90 pediatric allo-HSCT recipients were analyzed using 16S ribosomal RNA amplicon sequencing to profile the gut microbiota and estimate diversity with the Shannon index. A global-to-local networking approach was used to characterize the ecological structure of the gut microbiota. Patients were stratified into higher- and lower-diversity groups at 2 time points: before transplantation and at neutrophil engraftment. The higher-diversity group before transplantation exhibited a higher probability of overall survival (88.9% ± 5.7% standard error [SE] vs 62.7% ± 8.2% SE; P = .011) and lower incidence of grade 2 to 4 and grade 3 to 4 acute graft-versus-host disease (aGVHD). No significant difference in relapse-free survival was observed between the 2 groups (80.0% ± 6.0% SE vs 55.4% ± 10.8% SE; P = .091). The higher-diversity group was characterized by higher relative abundances of potentially health-related microbial families, such as Ruminococcaceae and Oscillospiraceae. In contrast, the lower-diversity group showed an overabundance of Enterococcaceae and Enterobacteriaceae. Network analysis detected short-chain fatty acid producers, such as Blautia, Faecalibacterium, Roseburia, and Bacteroides, as keystones in the higher-diversity group. Enterococcus, Escherichia-Shigella, and Enterobacter were instead the keystones detected in the lower-diversity group. These results indicate that gut microbiota diversity and composition before transplantation correlate with survival and with the likelihood of developing aGVHD.


Assuntos
Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Adulto , Humanos , Criança , Transplante de Células-Tronco Hematopoéticas/métodos , Transplante Homólogo , Doença Enxerto-Hospedeiro/microbiologia , Probabilidade
3.
Br J Haematol ; 201(4): 725-737, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36468273

RESUMO

Dysbiosis of the gut microbiota has been reported to increase early complications after allogeneic haematopoietic stem cell transplantation (allo-HSCT). However, it remains unclear whether gut microbial alterations persist during late complications, such as chronic graft-versus-host disease (cGVHD) or secondary cancers. Here, we analysed the gut microbiota of 59 patients who survived for 1-21.7 years (median, 6.4 years) after allo-HSCT. Long-term survivors showed lower gut microbial diversity than the age- and sex-matched healthy controls. This decreased diversity was reflected in the reduced abundance of the butyrate-producing bacteria. Patients with a history of grade 3 acute graft-versus-host disease (aGVHD) exhibited higher Veillonella abundance than patients with a history of grade 1-2 or non-aGVHD cases. The abundance of Faecalibacterium showed no decrease only in limited cGVHD cases. Additionally, the microbial structure in the secondary cancer group was significantly different (p < 0.05) from that in the non-secondary cancer group. This study is the first to show that microbial dysbiosis is present over a 10-year lifetime after discharge following allo-HSCT. Our results suggest that these prolonged gut microbial alterations may be associated with the development and exacerbation of late complications in post-transplant survivors.


Assuntos
Síndrome de Bronquiolite Obliterante , Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Disbiose/complicações , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Alta do Paciente , Doença Enxerto-Hospedeiro/microbiologia
4.
Blood ; 140(22): 2385-2397, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35969834

RESUMO

Following allogeneic hematopoietic cell transplantation (allo-HCT), the gastrointestinal (GI) tract is frequently affected by acute graft-versus-host disease (aGVHD), the pathophysiology of which is associated with a dysbiotic microbiome. Since microbial composition varies along the length of the GI tract, the authors hypothesized that microbiome features correlate with the pattern of organ involvement after allo-HCT. We evaluated 266 allo-HCT recipients from whom 1303 stool samples were profiled by 16S ribosomal gene sequencing. Patients were classified according to which organs were affected by aGVHD. In the 20 days prior to disease onset, GVHD patients had lower abundances of members of the class Clostridia, lower counts of butyrate producers, and lower ratios of strict-to-facultative (S/F) anaerobic bacteria compared with allograft recipients who were free of GVHD. GI GVHD patients showed significant reduction in microbial diversity preonset. Patients with lower GI aGVHD had lower S/F anaerobe ratios compared with those with isolated upper GI aGVHD. In the 20 days after disease onset, dysbiosis was observed only in GVHD patients with GI involvement, particularly those with lower-tract disease. Importantly, Clostridial and butyrate-producer abundance as well as S/F anaerobe ratio were predictors of longer overall survival; higher abundance of butyrate producers and higher S/F anaerobe ratio were associated with decreased risk of GVHD-related death. These findings suggest that the intestinal microbiome can serve as a biomarker for outcomes of allo-HCT patients with GVHD.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Microbiota , Humanos , Doença Enxerto-Hospedeiro/microbiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Fezes/microbiologia , Disbiose/etiologia , Bactérias , Butiratos
5.
Ann Hematol ; 101(6): 1283-1294, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35332375

RESUMO

Intestinal microbiota is an important prognostic factor for allogeneic hematopoietic stem cell transplantation (allo-HSCT), but its role in predicting survival has not been determined. Here, stool samples at day 15 ± 1 posttransplant were obtained from 209 patients at two centers. Microbiota was examined using 16S rRNA sequencing. The microbiota diversity and abundance of specific bacteria (including Lachnospiraceae, Ruminococcaceae, Erysipelotrichaceae, and Enterobacteriaceae) were assigned a value of 0 or 1 depending on whether they were positive or negative associated with survival, respectively. An accumulated intestinal microbiota (AIM) score was generated, and patients were divided into low- and high-score groups. A low score was associated with a better 3-year cumulative overall survival (OS) as well as lower mortality than a high score (88.5 vs. 43.9% and 7.1 vs. 35.8%, respectively; both P < 0.001). In multivariate analysis, a high score was found to be an independent risk factor for OS and transplant-related mortality (hazard ratio = 5.68 and 3.92, respectively; P < 0.001 and 0.003, respectively). Furthermore, the AIM score could serve as a predictor for survival (area under receiver operating characteristic curve = 0.836, P < 0.001). Therefore, the intestinal microbiota score at neutrophil recovery could predict survival following allo-HSCT.


Assuntos
Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Microbiota , Firmicutes/genética , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/microbiologia , Humanos , RNA Ribossômico 16S/genética
6.
APMIS ; 130(12): 741-750, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35060190

RESUMO

Mucosal microbiotas and their role in stem cell transplantation. Patients with hematological disorders such as leukemia often undergo allogeneic hematopoietic stem cell transplantation, and thereby receive stem cells from a donor for curation of disease. This procedure also involves immunosuppressive and antimicrobial treatments that disturb the important interactions between the microbiota and the immune system, especially at mucosal sites. After transplantation, bacterial diversity decreases together with a depletion of Clostridia, and shifts toward predominance of Proteobacteria. Infectious and inflammatory complications, such as graft-versus-host disease, also interfere with patient recovery. This review collects and contextualizes current knowledge of the role of mucosal microbiotas at different body sites in stem cell transplantation, proposes underlying mechanisms, and discusses potential clinical value of bacterial markers for improved treatment strategies.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Microbiota , Humanos , Transplante Homólogo/efeitos adversos , Transplante Homólogo/métodos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Doença Enxerto-Hospedeiro/microbiologia , Transplante de Células-Tronco/efeitos adversos
7.
Clin Infect Dis ; 74(4): 614-621, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34043764

RESUMO

BACKGROUND: Butyrogenic bacteria play an important role in gut microbiome homeostasis and intestinal epithelial integrity. Previous studies have demonstrated an association between administration of short-chain fatty acids like butyrate and protection from acute graft-vs-host disease (GvHD) after allogeneic stem cell transplantation (ASCT). METHODS: In the current study, we examined the abundance and butyrogenic capacity of butyrate-producing bacteria in 28 healthy donors and 201 patients after ASCT. We prospectively collected serial stool samples and performed polymerase chain reaction analysis of the butyrate-producing bacterial enzyme butyryl-coenzyme A (CoA):acetate CoA-transferase (BCoAT) in fecal nucleic acid extracts. RESULTS: Our data demonstrate a strong and prolonged suppression of butyrogenic bacteria early in the course of ASCT. In a multivariable analysis, early use of broad-spectrum antibiotics before day 0 (day of transplantation) was identified as an independent factor associated with low BCoAT copy numbers (odds ratio, 0.370 [95% confidence interval, .175-.783]; P = .009). Diminished butyrogens correlated with other biomarkers of microbial diversity, such as low 3-indoxylsulfate levels, reduced abundance of Clostridiales and low inverse Simpson and effective Shannon indices (all P < .001). Low BCoAT copy numbers at GvHD-onset were correlated with GI-GvHD severity (P = .002) and associated with a significantly higher GvHD-associated mortality rate (P = .04). Furthermore, low BCoAT copy numbers at day 30 were associated with a significantly higher transplantation-related mortality rate (P = .02). CONCLUSIONS: Our results are consistent with the hypothesis that alterations in the microbiome play an important role in GvHD pathogenesis and that microbial parameters such as BCoAT might serve as biomarkers to identify patients at high risk of lethal GI-GvHD.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Bactérias , Butiratos , Doença Enxerto-Hospedeiro/microbiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Transplante Homólogo/efeitos adversos
8.
Front Immunol ; 12: 753287, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777363

RESUMO

Microbiota can exert immunomodulatory effects by short-chain fatty acids (SCFA) in experimental models of graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (allo-SCT). Therefore we aimed to analyze the expression of SCFAs sensing G-protein coupled receptor GPR109A and GPR43 by quantitative PCR in 338 gastrointestinal (GI) biopsies obtained from 199 adult patients undergoing allo-SCT and assessed the interaction of GPR with FOXP3 expression and regulatory T cell infiltrates. GPR expression was strongly upregulated in patients with stage II-IV GvHD (p=0.000 for GPR109A, p=0.01 for GPR43) and at the onset of GvHD (p 0.000 for GPR109A, p=0.006 for GPR43) and correlated strongly with FOXP3 and NLRP3 expression. The use of broad-spectrum antibiotics (Abx) drastically suppressed GPR expression as well as FOXP3 expression in patients' gut biopsies (p=0.000 for GPRs, FOXP3 mRNA and FOXP3+ cellular infiltrates). Logistic regression analysis revealed treatment with Abx as an independent factor associated with GPR and FOXP3 loss. The upregulation of GPRs was evident only in the absence of Abx (p=0.001 for GPR109A, p=0.014 for GPR43) at GvHD onset. Thus, GPR expression seems to be upregulated in the presence of commensal bacteria and associates with infiltration of FOXP3+ T regs, suggesting a protective, regenerative immunomodulatory response. However, Abx, which has been shown to induce dysbiosis, interferes with this protective response.


Assuntos
Antibacterianos/efeitos adversos , Disbiose/induzido quimicamente , Microbioma Gastrointestinal/efeitos dos fármacos , Doença Enxerto-Hospedeiro/microbiologia , Intestinos/metabolismo , Receptores de Superfície Celular/biossíntese , Receptores Acoplados a Proteínas G/biossíntese , Adulto , Aloenxertos , Antibacterianos/farmacologia , Biópsia , Butiratos/farmacologia , Linhagem Celular Tumoral , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Disbiose/microbiologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Ácidos Graxos Voláteis/fisiologia , Feminino , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/genética , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/metabolismo , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Imunomodulação , Intestinos/microbiologia , Intestinos/patologia , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/biossíntese , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G/genética , Índice de Gravidade de Doença , Simbiose , Linfócitos T Reguladores/imunologia , Regulação para Cima
9.
Front Immunol ; 12: 703298, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512627

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an evidence based- cellular immunotherapy for hematological malignancies. Immune reactions not only promote graft-versus-tumor effects that kill hematological malignant cells but also graft-versus-host disease (GVHD) that is the primary complication characterized by systemic organ damages consisting of T-cells and antigen presenting cells (APCs) activation. GVHD has long been recognized as an immunological reaction that requires an immunosuppressive treatment targeting immune cells. However immune suppression cannot always prevent GVHD or effectively treat it once it has developed. Recent studies using high-throughput sequencing technology investigated the impact of microbial flora on GVHD and provided profound insights of the mechanism of GVHD other than immune cells. Allo-HSCT affects the intestinal microbiota and microbiome-metabolome axis that can alter intestinal homeostasis and the severity of experimental GVHD. This axis can potentially be manipulated via dietary intervention or metabolites produced by intestinal bacteria affected post-allo-HSCT. In this review, we discuss the mechanism of experimental GVHD regulation by the complex microbial community-metabolites-host tissue axis. Furthermore, we summarize the major findings of microbiome-based immunotherapeutic approaches that protect tissues from experimental GVHD. Understanding the complex relationships between gut microbiota-metabolites-host tissues axis provides crucial insight into the pathogenesis of GVHD and advances the development of new therapeutic approaches.


Assuntos
Microbioma Gastrointestinal/imunologia , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/microbiologia , Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Aloenxertos , Animais , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/microbiologia , Neoplasias Hematológicas/terapia , Humanos
10.
Front Immunol ; 12: 692225, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220852

RESUMO

Acute graft-versus-host disease (aGVHD) is one of the major causes of death after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Recently, aGVHD onset was linked to intestinal microbiota (IM) dysbiosis. However, other bacterial-rich gastrointestinal sites, such as the mouth, which hosts several distinctive microbiotas, may also impact the risk of GVHD. The dental biofilm microbiota (DBM) is highly diverse and, like the IM, interacts with host cells and modulates immune homeostasis. We characterized changes in the DBM of patients during allo-HSCT and evaluated whether the DBM could be associated with the risk of aGVHD. DBM dysbiosis during allo-HSCT was marked by a gradual loss of bacterial diversity and changes in DBM genera composition, with commensal genera reductions and potentially pathogenic bacteria overgrowths. High Streptococcus and high Corynebacterium relative abundance at preconditioning were associated with a higher risk of aGVHD (67% vs. 33%; HR = 2.89, P = 0.04 and 73% vs. 37%; HR = 2.74, P = 0.04, respectively), while high Veillonella relative abundance was associated with a lower risk of aGVHD (27% vs. 73%; HR = 0.24, P < 0.01). Enterococcus faecalis bloom during allo-HSCT was observed in 17% of allo-HSCT recipients and was associated with a higher risk of aGVHD (100% vs. 40%; HR = 4.07, P < 0.001) and severe aGVHD (60% vs. 12%; HR = 6.82, P = 0.01). To the best of our knowledge, this is the first study demonstrating that DBM dysbiosis is associated with the aGVHD risk after allo-HSCT.


Assuntos
Bactérias/crescimento & desenvolvimento , Doença Enxerto-Hospedeiro/microbiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Boca/microbiologia , Adulto , Idoso , Bactérias/genética , Disbiose , Feminino , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Ribotipagem , Medição de Risco , Fatores de Risco , Fatores de Tempo , Transplante Homólogo/efeitos adversos , Resultado do Tratamento , Adulto Jovem
12.
Front Immunol ; 12: 644982, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815399

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for many hematological disorders and autoimmune diseases, but acute graft-versus-host disease (aGVHD) has remained a major obstacle that limits allo-HSCT and exhibits a daunting mortality rate. The gastrointestinal system is among the most common sites affected by aGVHD. Experimental advances in the field of intestinal microbiota research enhanced our understanding - not only of the quantity and diversity of intestinal microbiota - but also their association with homeostasis of the immune system and disease pathogenesis, including that of aGVHD. Meanwhile, ever-growing clinical evidence suggest that the intestinal microbiota is dysregulated in patients who develop aGVHD and that the imbalance may affect clinical outcomes, indicating a potential predictive role for microbiota dysregulation in aGVHD severity and prognosis. The current animal and human studies investigating the intestinal microbiota in aGVHD and the understanding of the influence and management of the microbiota in the clinic are reviewed herein. Taken together, monitoring and remodeling the intestinal microecology following allo-HSCT may provide us with promising avenues for diagnosing, preventing or treating aGVHD in the clinic.


Assuntos
Microbioma Gastrointestinal/imunologia , Doença Enxerto-Hospedeiro , Doenças Hematológicas , Transplante de Células-Tronco Hematopoéticas , Enteropatias , Intestinos , Animais , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/microbiologia , Doença Enxerto-Hospedeiro/mortalidade , Doenças Hematológicas/imunologia , Doenças Hematológicas/microbiologia , Doenças Hematológicas/mortalidade , Doenças Hematológicas/terapia , Humanos , Enteropatias/imunologia , Enteropatias/microbiologia , Enteropatias/mortalidade , Intestinos/imunologia , Intestinos/microbiologia , Transplante Homólogo
13.
Expert Rev Anti Infect Ther ; 19(10): 1259-1280, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33711240

RESUMO

INTRODUCTION: Hematopoietic Stem Cell Transplantation (HSCT) is a life-saving procedure for multiple types of hematological cancer, autoimmune diseases, and genetic-linked metabolic diseases in humans. Recipients of HSCT transplant are at high risk of microbial infections that significantly correlate with the presence of graft-versus-host disease (GVHD) and the degree of immunosuppression. Infection in HSCT patients is a leading cause of life-threatening complications and mortality. AREAS COVERED: This review covers issues pertinent to infection in the HSCT patient, including bacterial and viral infection; strategies to reduce GVHD; infection patterns; resistance and treatment options; adverse drug reactions to antimicrobials, problems of antimicrobial resistance; perturbation of the microbiome; the role of prebiotics, probiotics, and antimicrobial peptides. We highlight potential strategies to minimize the use of antimicrobials. EXPERT OPINION: Measures to control infection and its transmission remain significant HSCT management policy and planning issues. Transplant centers need to consider carefully prophylactic use of antimicrobials for neutropenic patients. The judicious use of appropriate antimicrobials remains a crucial part of the treatment protocol. However, antimicrobials' adverse effects cause microbiome diversity and dysbiosis and have been shown to increase morbidity and mortality.


Assuntos
Anti-Infecciosos/administração & dosagem , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Animais , Anti-Infecciosos/efeitos adversos , Infecções Bacterianas/etiologia , Infecções Bacterianas/prevenção & controle , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/microbiologia , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Prebióticos/administração & dosagem , Probióticos/administração & dosagem , Viroses/etiologia , Viroses/prevenção & controle
15.
JCI Insight ; 6(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33554953

RESUMO

Graft-versus-host disease (GVHD) is a pathological process caused by an exaggerated donor lymphocyte response to host antigens after allogeneic hematopoietic cell transplantation (allo-HCT). Donor T cells undergo extensive clonal expansion and differentiation, which culminate in damage to recipient target organs. Damage to the gastrointestinal tract is a main contributor to morbidity and mortality. The loss of diversity among intestinal bacteria caused by pretransplant conditioning regimens leads to an outgrowth of opportunistic pathogens and exacerbated GVHD after allo-HCT. Using murine models of allo-HCT, we found that an increase of Bacteroides in the intestinal microbiota of the recipients was associated with reduced GVHD in mice given fecal microbial transplantation. Administration of Bacteroides fragilis through oral gavage increased gut microbiota diversity and beneficial commensal bacteria and significantly ameliorated acute and chronic GVHD development. Preservation of gut integrity following B. fragilis exposure was likely attributed to increased short chain fatty acids, IL-22, and regulatory T cells, which in turn improved gut tight junction integrity and reduced inflammatory cytokine production of pathogenic T cells. The current study provides a proof of concept that a single strain of commensal bacteria can be a safe and effective means to protect gut integrity and ameliorate GVHD after allo-HCT.


Assuntos
Bacteroides fragilis/imunologia , Microbioma Gastrointestinal/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Aloenxertos , Animais , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/microbiologia , Efeito Enxerto vs Leucemia/imunologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Isoantígenos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Linfócitos T/imunologia , Células Tumorais Cultivadas
16.
Nat Commun ; 12(1): 805, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547295

RESUMO

Efforts to improve the prognosis of steroid-resistant gut acute graft-versus-host-disease (SR-Gut-aGVHD) have suffered from poor understanding of its pathogenesis. Here we show that the pathogenesis of SR-Gut-aGVHD is associated with reduction of IFN-γ+ Th/Tc1 cells and preferential expansion of IL-17-IL-22+ Th/Tc22 cells. The IL-22 from Th/Tc22 cells causes dysbiosis in a Reg3γ-dependent manner. Transplantation of IFN-γ-deficient donor CD8+ T cells in the absence of CD4+ T cells produces a phenocopy of SR-Gut-aGVHD. IFN-γ deficiency in donor CD8+ T cells also leads to a PD-1-dependent depletion of intestinal protective CX3CR1hi mononuclear phagocytes (MNP), which also augments expansion of Tc22 cells. Supporting the dual regulation, simultaneous dysbiosis induction and depletion of CX3CR1hi MNP results in full-blown Gut-aGVHD. Our results thus provide insights into SR-Gut-aGVHD pathogenesis and suggest the potential efficacy of IL-22 antagonists and IFN-γ agonists in SR-Gut-aGVHD therapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Disbiose/imunologia , Doença Enxerto-Hospedeiro/imunologia , Interferon gama/imunologia , Interleucinas/imunologia , Fagócitos/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/transplante , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/imunologia , Modelos Animais de Doenças , Disbiose/genética , Disbiose/microbiologia , Disbiose/patologia , Microbioma Gastrointestinal/imunologia , Regulação da Expressão Gênica , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/microbiologia , Doença Enxerto-Hospedeiro/patologia , Interferon gama/deficiência , Interferon gama/genética , Interleucina-17/deficiência , Interleucina-17/genética , Interleucina-17/imunologia , Interleucinas/genética , Intestinos/imunologia , Intestinos/microbiologia , Intestinos/patologia , Depleção Linfocítica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas a Pancreatite/genética , Proteínas Associadas a Pancreatite/imunologia , Fagócitos/citologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais , Linfócitos T Auxiliares-Indutores , Linfócitos T Reguladores , Irradiação Corporal Total , Interleucina 22
17.
Nat Commun ; 12(1): 65, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397897

RESUMO

Fecal microbiota transplant (FMT) has emerged as a potential treatment for severe colitis associated with graft-versus-host disease (GvHD) following hematopoietic stem cell transplant. Bacterial engraftment from FMT donor to recipient has been reported, however the fate of fungi and viruses after FMT remains unclear. Here we report longitudinal dynamics of the gut bacteriome, mycobiome and virome in a teenager with GvHD after receiving four doses of FMT at weekly interval. After serial FMTs, the gut bacteriome, mycobiome and virome of the patient differ from compositions before FMT with variable temporal dynamics. Diversity of the gut bacterial community increases after each FMT. Gut fungal community initially shows expansion of several species followed by a decrease in diversity after multiple FMTs. In contrast, gut virome community varies substantially over time with a stable rise in diversity. The bacterium, Corynebacterium jeikeium, and Torque teno viruses, decrease after FMTs in parallel with an increase in the relative abundance of Caudovirales bacteriophages. Collectively, FMT may simultaneously impact on the various components of the gut microbiome with distinct effects.


Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro/microbiologia , Doença Enxerto-Hospedeiro/virologia , Micobioma , Viroma , Adolescente , Biodiversidade , Humanos , Masculino , Microbiota
18.
Curr Opin Genet Dev ; 66: 25-35, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33388483

RESUMO

Allogeneic hematopoietic cell transplantation (allo-HCT) is a curative-intent therapy for patients with hematological malignancies, but despite advances in the field in recent years, there is still a significant risk of post-transplant mortality. In addition to relapse of the underlying malignancy, the key contributors to this high mortality are graft-versus-host disease (GVHD) and infection. The intestinal microbiota is the collective term describing the community of bacteria, fungi, viruses and protozoa that resides in the human gastrointestinal tract. Bacterial communities have been studied most comprehensively, and disruption of these communities has been associated with the development of a variety of medical conditions in large clinical associative studies. Preclinical studies suggest a mechanistic role for the intestinal microbiota in the instruction and maintenance of both intestinal and systemic immune cell function. This review outlines our current understanding of the relationship between gut bacteria and allo-HCT outcomes, including infection, immune reconstitution, GVHD and relapse, drawing on evidence from both clinical associative studies and preclinical mechanistic studies.


Assuntos
Microbioma Gastrointestinal/genética , Doença Enxerto-Hospedeiro/genética , Neoplasias Hematológicas/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/microbiologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/microbiologia , Neoplasias Hematológicas/mortalidade , Transplante de Células-Tronco Hematopoéticas/mortalidade , Humanos , Transplante Homólogo/efeitos adversos , Transplante Homólogo/mortalidade
19.
Expert Rev Hematol ; 14(1): 79-96, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33297779

RESUMO

INTRODUCTION: Despite significant advances in treatment and prevention, graft-versus-host disease (GVHD) still represents the main cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Thus, considerable research efforts have been made to find and validate reliable biomarkers for diagnosis, prognosis, and risk stratification of GVHD. AREAS COVERED: In this review the most recent evidences on different types of biomarkers studied for GVHD, such as genetic, plasmatic, cellular markers, and those associated with microbiome, were summarized. A comprehensive search of peer-review literature was performed in PubMed including meta-analysis, preclinical and clinical trials, using the terms: cellular and plasma biomarkers, graft-versus-host disease, cytokines, and allogeneic hematopoietic stem cell transplantation. EXPERT OPINION: In the near future, several validated biomarkers will be available to help clinicians in the diagnosis of GVHD, the identification of patients at high risk of GVHD development and in patients' stratification according to its severity. Then, immunosuppressive treatment could be tailored to each patient's real needs. However, more efforts are needed to achieve this goal. Although most of the proposed biomarkers currently lack validation with large-scale clinical data, their study led to improved knowledge of the biological basis of GVHD, and ultimately to implementation of GHVD treatment.


Assuntos
Doença Enxerto-Hospedeiro/diagnóstico , Animais , Biomarcadores/análise , Doença Crônica , Marcadores Genéticos/genética , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/microbiologia , Doença Enxerto-Hospedeiro/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Microbiota , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA