Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.104
Filtrar
1.
Indian J Med Res ; 160(1): 70-77, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39382508

RESUMO

Background & objectives The co-presence of non-emphysematous airflow obstruction in interstitial Lung disease (ILD) is not elaborated. The present study aims the job with spirometry. Methods ILD affected individuals with or without airflow obstruction (FEV1/FVC<0.7 or >0.7) on spirometry were compared in terms of FEV1 and FEF25-75 derived variables [FEF25-75 (%-predicted), FEV1-FEF25-75 distance, reversibility of FEV1 and FEF25-75 to salbutamol and change in FEV1 and FEF25-75 in %-predicted values]. Those showing significant difference (P=0.0001) suggesting obstruction were selected to draw respective receiver operating curve (ROC) curves to identify the best cut-off value for individual parameters. The efficacy of each surrogate was tested to identify airflow obstruction in both the initial 'overlap' as well as the 'unmixed' ILD affected individual for the presence of airflow obstruction. Results FEV1/FVC identified 30 overlap from 235 ILDs. The FEF25-75 (%-predicted), FEV1-FEF25-75 distance, FEF25-75 reversibility (in ml) and FEV1 (%-predicted) were significantly (P<0.0001) different between the two groups. Of these, the FEF25-75 (%-predicted) had high specificity and sensitivity (93.33 and 79.47%) to identify airflow limitation in the initial unmixed ILD-group. The surrogates with their cut off values identified 92 extra individuals making it 122/235 (51.91%) of ILD having airflow obstruction. The 'unmixed' group showed higher frequency and degree of FEV1 reversibility. Interpretation & conclusions The findings of this study suggest that the airflow obstruction in ILD involves both the intrathoracic large and small airways. Although seemingly parallel, their relative status (qualitative and quantitative) needs research especially in light of the a etio pathology and the extent of involvement of ILD.


Assuntos
Doenças Pulmonares Intersticiais , Espirometria , Humanos , Doenças Pulmonares Intersticiais/fisiopatologia , Doenças Pulmonares Intersticiais/complicações , Feminino , Masculino , Pessoa de Meia-Idade , Volume Expiratório Forçado , Idoso , Curva ROC , Adulto , Obstrução das Vias Respiratórias/fisiopatologia , Obstrução das Vias Respiratórias/diagnóstico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/patologia
2.
Respir Res ; 25(1): 376, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39420370

RESUMO

Chronic obstructive pulmonary disease (COPD) is an irreversible and progressive chronic inflammatory lung disease which affects millions of people worldwide. Activated fibroblasts are observed to accumulate in lung of COPD patients and promote COPD progression through aberrant extracellular matrix (ECM) deposition. In this study, we identified that miR-1307-5p expression was significantly increased in lung fibroblasts derived from COPD patients. Mechanistically, we found that upregulation of miR-1307-5p promoted TGF-ß induced lung fibroblast activation and transdifferentiation. We also identified FBXL16 as a direct target for miR-1307-5p mediated myofibroblast activation in COPD. Knockdown of FBXL16 by siRNA prominently increased the expression of myofibroblast markers in MRC-5 fibroblasts after TGF-ß administration. Ectopic expression of FBXL16 in MRC-5 counteracted miR-1307-5p agomir-induced fibroblast transdifferentiation. Furthermore, We found that miR-1307-5p promoted pulmonary fibroblast transdifferentiation through FBXL16 regulated HIF1α degradation. In general, our findings indicate that miR-1307-5p is important for COPD pathogenesis, and may serve as a potential target for COPD treatment.


Assuntos
Transdiferenciação Celular , Proteínas F-Box , Fibroblastos , Subunidade alfa do Fator 1 Induzível por Hipóxia , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Animais , Feminino , Humanos , Masculino , Camundongos , Células Cultivadas , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/biossíntese , Fibroblastos/metabolismo , Fibroblastos/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/genética
3.
J Cell Mol Med ; 28(20): e70110, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39422548

RESUMO

The role of eosinophilic inflammation in the pathogenesis of chronic obstructive pulmonary disease (COPD) remains ambiguous and likely differs from its role in asthma. The molecular processes underlying the differences between eosinophils from asthma and COPD have not been sufficiently studied. The objective of this study was to compare the transcriptomic profiles of blood eosinophils in COPD and asthma. Eosinophils were isolated from peripheral blood drawn from stable mild-to-moderate COPD and asthma patients. RNA was isolated from eosinophils and sequenced using an NGSelect RNA. The prepared libraries were sequenced on an Illumina platform. The study group included five patients with asthma and four patients with COPD. The RNA-Seq data analysis identified 26 differentially expressed genes between COPD and asthma (according to adjusted p-value). In total, 6 genes were upregulated (e.g. CCL3L1, CCL4L2, GPR82) and 20 were downregulated (e.g. JUN, IFITM3, DUSP1, GNG7) in peripheral eosinophils of COPD patients compared to asthma. The genes associated with signalling of IL-4 and IL-13 pathways were downregulated in COPD eosinophils compared to asthma. In conclusion, blood eosinophils from COPD and asthma patients present different transcriptomic profiles suggesting their different function in pathobiology of both obstructive airway diseases. These differences might indicate the direction of the search of targeted therapy in COPD.


Assuntos
Asma , Eosinófilos , Perfilação da Expressão Gênica , Doença Pulmonar Obstrutiva Crônica , Transcriptoma , Humanos , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Asma/genética , Asma/patologia , Eosinófilos/metabolismo , Eosinófilos/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Transcriptoma/genética , Idoso , Regulação da Expressão Gênica
4.
PLoS One ; 19(10): e0312228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39423200

RESUMO

This study delved into the interplay between CD244 and Src Homology 2 Domain Containing Phosphatase-2 (SHP2) in chronic obstructive pulmonary disease (COPD) pathogenesis, focusing on apoptosis and inflammation in cigarette smoke extract (CSE)-treated human bronchial epithelial (HBE) cells. Analysis of the GSE100153 dataset identified 290 up-regulated and 344 down-regulated differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) highlighted the turquoise module had the highest correlation with COPD samples. Functional enrichment analysis linked these DEGs to critical COPD processes and pathways like neutrophil degranulation, protein kinase B activity, and diabetic cardiomyopathy. Observations on CD244 expression revealed its upregulation with increasing CSE concentrations, suggesting a dose-dependent relationship with inflammatory cytokines (IL-6, IL-8, TNF-α). CD244 knockdown mitigated CSE-induced apoptosis and inflammation, while overexpression exacerbated these responses. Co-immunoprecipitation (Co-IP) confirmed the physical interaction between CD244 and SHP2, emphasizing their regulatory connection. Analysis of Concurrently, the Nuclear Factor-kappa B (NF-κB) and Mitogen-activated protein kinase (MAPK) signaling pathways showed that modulating CD244 expression impacted key pathway components (p-JNK, p-IKKß, p-ERK, p-P38, p-lkBα, p-P65), an effect reversed upon SHP2 knockdown. These findings underscore the pivotal role of the CD244/SHP2 axis in regulating inflammatory and apoptotic responses in CSE-exposed HBE cells, suggesting its potential as a therapeutic target in COPD treatment strategies.


Assuntos
Apoptose , Inflamação , NF-kappa B , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , NF-kappa B/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Transdução de Sinais , Sistema de Sinalização das MAP Quinases , Linhagem Celular , Fator 2 Associado a Receptor de TNF
5.
Aging (Albany NY) ; 16(19): 12928-12951, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39379099

RESUMO

Pulmonary macrophages from COPD patients are characterized by lower phagocytic and bactericidal activity whereas there is hypersecretion of pro-inflammatory cytokines. The prominent decline of GATA2 expression in pulmonary macrophages from COPD patients inspired us to figure out its role during COPD development. The expression levels of GATA2 were decreased in alveolar macrophages isolated from cigarette smoke (CS)-induced COPD mice and cigarette smoke extract (CSE)-treated macrophages. In vitro, both CSE and GATA2 knockdown via siRNAs elevated pro-inflammatory cytokines expression whereas inhibiting phagocytosis in macrophages. Integrated analysis of transcriptomics of GATA2-knockdown macrophages and the results of ChIP sequencing of GATA2 together with dual-luciferase reporter assay identified Abca1 and Pacsin1 as functional target genes of GATA2. Mechanistically, ABCA1 mediates the pro-inflammatory secretion phenotype and the dysfunction in early stage of phagocytosis of macrophages through TLR4/MyD88 and MEGF10/GULP1 pathways, respectively. PACSIN1/SUNJ1 partially mediates the disruption effects of GATA2 downregulation on maturation of phagolysosomes in macrophages. Together, our study suggests that GATA2 influences multiple functions of pulmonary macrophages by simultaneous transcriptional regulation of several target genes, contributing to the dysfunctions of pulmonary macrophages in response to CS, which provides an impetus for further investigations of GATA2 or other underappreciated transcription factors as regulatory hubs in COPD pathogenesis.


Assuntos
Regulação para Baixo , Fator de Transcrição GATA2 , Macrófagos Alveolares , Fagocitose , Doença Pulmonar Obstrutiva Crônica , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Animais , Macrófagos Alveolares/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Camundongos , Humanos , Masculino , Fenótipo , Camundongos Endogâmicos C57BL , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Feminino , Citocinas/metabolismo
6.
J Cell Mol Med ; 28(19): e70125, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39365189

RESUMO

Airway mucus hypersecretion, a crucial pathological feature of chronic obstructive pulmonary disease (COPD), contributes to the initiation, progression, and exacerbation of this disease. As a macromolecular mucin, the secretory behaviour of Mucin5AC (MUC5AC) is highly dependent on a series of modifying and folding processes that occur in the endoplasmic reticulum (ER). In this study, we focused on the ER quality control protein KDEL receptor (KDELR) and demonstrated that KDELR2 and MUC5AC were colocalized in the airway epithelium of COPD patients and COPD model rats. In addition, knockdown of KDELR2 markedly reduced the expression of MUC5AC both in vivo and in vitro and knockdown of ATF6 further decreased the levels of KDELR2. Furthermore, pretreatment with 4µ8C, an IRE1α inhibitor, led to a partial reduction in the expression of KDELR2 and MUC5AC both in vivo and in vitro, which indicated the involvement of IRE1α/XBP-1s in the upstream signalling cascade. Our study revealed that KDELR2 plays a crucial role in airway MUC5AC hypersecretion in COPD, which might be dependent on ATF6 and IRE1α/XBP-1s upstream signalling.


Assuntos
Endorribonucleases , Mucina-5AC , Proteínas Serina-Treonina Quinases , Doença Pulmonar Obstrutiva Crônica , Idoso , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Fator 6 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/genética , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Endorribonucleases/genética , Mucina-5AC/metabolismo , Mucina-5AC/genética , Muco/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Ratos Sprague-Dawley , Transdução de Sinais , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética
7.
Adv Respir Med ; 92(5): 429-443, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39452061

RESUMO

Studies have shown that eosinophilic COPD (eCOPD) is a distinct phenotype of the disease. It is well established that innate lymphoid cells are involved in the development of eosinophilic inflammation. Interleukin(IL)-25, thymic stromal lymphopoietin (TSLP) and IL-33 are a group of cytokines produced by epithelium in response to danger signals, e.g., cigarette smoke, and potent activators of ILC2s. In the present study, we examined circulating and sputum ILC2 numbers and expression of intracellular IL-5 as well as receptors for TSLP, IL-33 and IL-25 by ILC2s in non-atopic COPD patients with and without (neCOPD) airway eosinophilic inflammation and healthy smokers. In addition, we examined the association between ILC2s and clinical indicators of COPD burden (i.e., symptom intensity and risk of exacerbations). ILC2s were enumerated in peripheral blood and induced sputum by means of flow cytometry. We noted significantly greater numbers of airway IL-5+ILC2s and TSLPR+ILC2s in eCOPD compared with neCOPD (p < 0.05 and p < 0.01, respectively) and HSs (p < 0.001 for both). In addition, we showed that IL-5+ILC2s, IL-17RB+ILC2s and ST2+ILC2s are significantly increased in the sputum of eCOPD patients compared with HSs. In all COPD patients, sputum ILC2s positively correlated with sputum eosinophil percentage (r = 0.48, p = 0.002). We did not find any significant correlations between sputum ILC2s and dyspnea intensity as measured by the modified Medical Research Council scale (mMRC) and symptom intensity measured by the COPD Assessment Test (CAT). These results suggest the involvement of epithelial alarmin-activated ILC2s in the pathobiology of eosinophilic COPD.


Assuntos
Imunidade Inata , Linfócitos , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Linfócitos/metabolismo , Linfócitos/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Interleucina-33/metabolismo , Citocinas/metabolismo , Escarro , Interleucina-5/metabolismo , Idoso , Interleucina-17/metabolismo , Eosinófilos/imunologia , Eosinófilos/metabolismo , Linfopoietina do Estroma do Timo
8.
Theranostics ; 14(14): 5512-5527, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39310101

RESUMO

Rationale: COPD patients are largely asymptomatic until the late stages when prognosis is generally poor. In this study, we shifted the focus to pre-COPD and smoking stages, and found enrichment of hypoxia inducible factor (HIF)-3α is in pre-COPD samples. Smoking induced regional tissue hypoxia and emphysema have been found in COPD patients. However, the mechanisms underlying hypoxia especially HIF-3α and COPD have not been investigated. Methods: We performed bulk-RNA sequencing on 36 peripheral lung tissue specimens from non-smokers, smokers, pre-COPD and COPD patients, and using "Mfuzz" algorithm to analysis the dataset dynamically. GSE171541 and EpCAM co-localization analyses were used to explore HIF-3α localization. Further, SftpcCreert2/+R26LSL-Hif3a knock-in mice and small molecular inhibitors in vitro were used to explore the involvement of HIF-3α in the pathophysiology of COPD. Results: Reactive oxygen species (ROS) and hypoxia were enriched in pre-COPD samples, and HIF-3α was downregulated in alveolar epithelial cells in COPD. In vitro experiments using lentivirus transfection, bulk-RNA seq, and RSL3 showed that the activation of the HIF-3α-GPx4 axis inhibited alveolar epithelial cell ferroptosis when treated with cigarettes smoking extracts (CSE). Further results from SftpcCreert2/+R26LSL-Hif3a knock-in mice demonstrated overexpression of HIF-3α inhibited alveolar epithelial cells ferroptosis and prevented the decline of lung function. Conclusion: Hypoxia and oxidation-related damage begins years before the onset of COPD symptoms, suggesting the imbalance and impairment of intracellular homeostatic system. The activation of the HIF-3α-GPx4 axis is a promising treatment target. By leveraging this comprehensive analysis method, more potential targets could be found and enhancing our understanding of the pathogenesis.


Assuntos
Células Epiteliais Alveolares , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Ferroptose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Doença Pulmonar Obstrutiva Crônica , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Ferroptose/efeitos dos fármacos , Animais , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos , Células Epiteliais Alveolares/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Espécies Reativas de Oxigênio/metabolismo , Masculino , Feminino , Fumar/efeitos adversos , Pessoa de Meia-Idade , Camundongos Endogâmicos C57BL , Proteínas Repressoras , Proteínas Reguladoras de Apoptose
9.
Respir Res ; 25(1): 353, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342154

RESUMO

BACKGROUND: In recent years, e-cigarettes have been used as alternatives among adult smokers. However, the impact of e-cigarette use on human bronchial epithelial (HBE) cells remains controversial. METHODS: We collected primary HBE cells of healthy nonsmokers and chronic obstructive pulmonary disease (COPD) smokers, and analyzed the impact of e- cigarette vapor extract (ECE) or cigarette smoke extract (CSE) on HBE cell differentiation and injury by single-cell RNA sequencing, immunostaining, HE staining, qPCR and ELISA. We obtained serum and sputum from healthy non- smokers, smokers and e-cigarette users, and analyzed cell injury markers and mucin proteins. RESULTS: ECE treatment led to a distinct differentiation program of ciliated cells and unique patterns of their cell-cell communications compared with CSE. ECE treatment caused increased Notch signaling strength in a ciliated cell subpopulation, and HBE cell remodeling and injury including hypoplasia of ciliated cells and club cells, and shorter cilia. ECE-induced hypoplasia of ciliated cells and shorter cilia were ameliorated by the Notch signaling inhibition. CONCLUSIONS: This study reveals distinct characteristics in e-cigarette vapor-induced airway epithelial remodeling, pointing to Notch signaling pathway as a potential targeted intervention for e-cigarette vapor-caused ciliated cell differentiation defects and cilia injury. In addition, a decrease in SCGB1A1 proteins is associated with e- cigarette users, indicating a potential lung injury marker for e-cigarette users.


Assuntos
Remodelação das Vias Aéreas , Vapor do Cigarro Eletrônico , Análise de Célula Única , Transcriptoma , Humanos , Vapor do Cigarro Eletrônico/toxicidade , Vapor do Cigarro Eletrônico/efeitos adversos , Transcriptoma/efeitos dos fármacos , Remodelação das Vias Aéreas/efeitos dos fármacos , Remodelação das Vias Aéreas/fisiologia , Análise de Célula Única/métodos , Masculino , Células Cultivadas , Feminino , Pessoa de Meia-Idade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Adulto , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Sistemas Eletrônicos de Liberação de Nicotina , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Brônquios/efeitos dos fármacos , Brônquios/patologia , Brônquios/metabolismo , Cílios/efeitos dos fármacos , Cílios/patologia , Cílios/metabolismo , Diferenciação Celular/efeitos dos fármacos
10.
Respir Res ; 25(1): 349, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342213

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a widespread respiratory disease. This study examines extracellular vesicles (EVs) and proteins contained in EVs in COPD. METHODS: Blood samples were collected from 40 COPD patients and 10 health controls. Cytokines including IFN-γ, TNF-α, IL-1ß, IL-6, IL-8, and IL-17, were measured by ELISA. Small EVs samples were extracted from plasma and identified by transmission electron microscope (TEM), nanoparticle tracking analysis (NTA), and Western blot. Protein components contained in EVs were analyzed by Tandem Mass Tags (TMT) to identify differential proteins. Treg-derived EV was extracted and added to isolated CD8+, Treg, and Th17 subsets to assess its effect on T-lymphocytes. RESULTS: ELISA revealed higher levels of all cytokines and flow cytometry suggested a higher proportion of Treg and Th17 cells in COPD patients. After identification, TMT analysis identified 207 unique protein components, including five potential COPD biomarkers: BTRC, TRIM28, CD209, NCOA3, and SSR3. Flow cytometry revealed that Treg-derived EVs inhibited differentiation into CD8+, CD4+, and Th17 cells. CONCLUSION: The study shows that cytokines, T-lymphocyte subsets differences in COPD and Treg-derived EVs influence T-lymphocyte differentiation. Identified biomarkers may assist in understanding COPD pathogenesis, prognosis, and therapy. The study contributes to COPD biomarker research.


Assuntos
Vesículas Extracelulares , Doença Pulmonar Obstrutiva Crônica , Linfócitos T Reguladores , Humanos , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/sangue , Masculino , Feminino , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Pessoa de Meia-Idade , Idoso , Espectrometria de Massas em Tandem , Citocinas/metabolismo , Citocinas/sangue , Biomarcadores/sangue , Biomarcadores/metabolismo , Células Cultivadas , Células Th17/imunologia , Células Th17/metabolismo
11.
Cell Rep Med ; 5(9): 101732, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39255796

RESUMO

Lung parenchyma destruction represents a severe condition commonly found in chronic obstructive pulmonary disease (COPD), a leading cause of morbidity and mortality worldwide. Promoting lung regeneration is crucial for achieving clinical improvement. However, no therapeutic drugs are approved to improve the regeneration capacity due to incomplete understanding of the underlying pathogenic mechanisms. Here, we identify a positive feedback loop formed between adipose triglyceride lipase (ATGL)-mediated lipolysis and overexpression of CD36 specific to lung epithelial cells, contributing to disease progression. Genetic deletion of CD36 in lung epithelial cells and pharmacological inhibition of either ATGL or CD36 effectively reduce COPD pathogenesis and promote lung regeneration in mice. Mechanistically, disruption of the ATGL-CD36 loop rescues Z-DNA binding protein 1 (ZBP1)-induced cell necroptosis and restores WNT/ß-catenin signaling. Thus, we uncover a crosstalk between lipolysis and lung epithelial cells, suggesting the regenerative potential for therapeutic intervention by targeting the ATGL-CD36-ZBP1 axis in COPD.


Assuntos
Antígenos CD36 , Lipase , Lipólise , Pulmão , Necroptose , Doença Pulmonar Obstrutiva Crônica , Regeneração , Animais , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/genética , Antígenos CD36/metabolismo , Antígenos CD36/genética , Necroptose/genética , Regeneração/fisiologia , Camundongos , Lipase/metabolismo , Lipase/genética , Humanos , Pulmão/patologia , Pulmão/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Camundongos Endogâmicos C57BL , Masculino , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Via de Sinalização Wnt , Camundongos Knockout , Aciltransferases
12.
Int J Mol Sci ; 25(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39273437

RESUMO

Even with recent advances in pathobiology and treatment options, chronic obstructive pulmonary disease (COPD) remains a major contributor to morbidity and mortality. To develop new ways of combating this disease, breakthroughs in our understanding of its mechanisms are sorely needed. Investigating the involvement of underanalyzed lung cell types, such as endothelial cells (ECs), is one way to further our understanding of COPD. JCAD is a junctional protein in endothelial cells (ECs) arising from the KIAA1462 gene, and a mutation in this gene has been implicated in the risk of developing COPD. In our study, we induced inflammation and emphysema in mice via the global knockout of KIAA1462/JCAD (JCAD-KO) and confirmed it in HPMECs and A549 to examine how the loss of JCAD could affect COPD development. We found that KIAA1462/JCAD loss reduced acute lung inflammation after elastase treatment. Even after 3 weeks of elastase, JCAD-KO mice demonstrated a preserved lung parenchymal structure and vasculature. In vitro, after KIAA1462 expression is silenced, both endothelial and epithelial cells showed alterations in pro-inflammatory gene expression after TNF-α treatment. We concluded that JCAD loss could ameliorate COPD through its anti-inflammatory and anti-angiogenic effects, and that KIAA1462/JCAD could be a novel target for COPD therapy.


Assuntos
Células Endoteliais , Pulmão , Camundongos Knockout , Doença Pulmonar Obstrutiva Crônica , Animais , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/genética , Camundongos , Humanos , Células Endoteliais/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Células A549 , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
13.
Int J Mol Sci ; 25(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39273443

RESUMO

Vascular smooth muscle cells (SMCs) can transition between a quiescent contractile or "differentiated" phenotype and a "proliferative-dedifferentiated" phenotype in response to environmental cues, similar to what in occurs in the wound healing process observed in fibroblasts. When dysregulated, these processes contribute to the development of various lung and cardiovascular diseases such as Chronic Obstructive Pulmonary Disease (COPD). Long non-coding RNAs (lncRNAs) have emerged as key modulators of SMC differentiation and phenotypic changes. In this study, we examined the expression of lncRNAs in primary human pulmonary artery SMCs (hPASMCs) during cell-to-cell contact-induced SMC differentiation. We discovered a novel lncRNA, which we named Differentiation And Growth Arrest-Related lncRNA (DAGAR) that was significantly upregulated in the quiescent phenotype with respect to proliferative SMCs and in cell-cycle-arrested MRC5 lung fibroblasts. We demonstrated that DAGAR expression is essential for SMC quiescence and its knockdown hinders SMC differentiation. The treatment of quiescent SMCs with the pro-inflammatory cytokine Tumor Necrosis Factor (TNF), a known inducer of SMC dedifferentiation and proliferation, elicited DAGAR downregulation. Consistent with this, we observed diminished DAGAR expression in pulmonary arteries from COPD patients compared to non-smoker controls. Through pulldown experiments followed by mass spectrometry analysis, we identified several proteins that interact with DAGAR that are related to cell differentiation, the cell cycle, cytoskeleton organization, iron metabolism, and the N-6-Methyladenosine (m6A) machinery. In conclusion, our findings highlight DAGAR as a novel lncRNA that plays a crucial role in the regulation of cell proliferation and SMC differentiation. This paper underscores the potential significance of DAGAR in SMC and fibroblast physiology in health and disease.


Assuntos
Diferenciação Celular , Proliferação de Células , Fibroblastos , Miócitos de Músculo Liso , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fibroblastos/metabolismo , Diferenciação Celular/genética , Miócitos de Músculo Liso/metabolismo , Proliferação de Células/genética , Artéria Pulmonar/metabolismo , Artéria Pulmonar/citologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Células Cultivadas
14.
Am J Physiol Lung Cell Mol Physiol ; 327(5): L740-L748, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39316676

RESUMO

Chronic obstructive pulmonary disease (COPD), comprised of chronic bronchitis and emphysema, is a leading cause of morbidity and mortality worldwide. Mitogen-activated protein 2 kinase (MAP2K) pathway activation is present in COPD lung tissue and a genetic polymorphism in Map2k1 associates with FEV1 decline in COPD, suggesting it may contribute to disease pathogenesis. To test the functional contribution of Map2k1 in cigarette smoke (CS)-induced lung inflammation, we used a short-term CS exposure model in mice deficient in myeloid Map2k1 (LysmCre+Mek1fl) and wild-type mice (Mek1fl). Mice deficient in myeloid Map2k1 had enhanced CS-induced lung inflammation characterized by increased neutrophil recruitment, vascular leak, augmented expression of elastolytic matrix metalloproteinases, and increased type I interferon-stimulated gene expression. The augmented neutrophilic inflammatory response could be abrogated by IFNAR1 blockade. These findings indicate that myeloid Map2k1 regulates the immune response to CS via inhibition of the type I interferon pathway. Overall, these results suggest that Map2k1 is a critical determinant in modulating the severity of CS-induced lung inflammation and its expression is protective.NEW & NOTEWORTHY Activation of the mitogen-activated protein kinases (MAPK)-ERK1/2 pathway is present in COPD lung tissue compared with healthy lungs. Our study using mice deficient in myeloid Map2k1 reveals that Map2k1 is a critical determinant in modulating the severity of CS-induced lung inflammation via suppression of type I interferon responses, and its expression is protective.


Assuntos
Interferon Tipo I , Animais , Interferon Tipo I/metabolismo , Camundongos , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/etiologia , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 1/genética , Camundongos Endogâmicos C57BL , Pneumonia/metabolismo , Pneumonia/patologia , Pulmão/patologia , Pulmão/metabolismo , Camundongos Knockout , Transdução de Sinais , Inflamação/patologia , Inflamação/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Receptor de Interferon alfa e beta/genética , Masculino
15.
J Clin Invest ; 134(21)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255033

RESUMO

The airway surface liquid (ASL) plays a crucial role in lung defense mechanisms, and its composition and volume are regulated by the airway epithelium. The cystic fibrosis transmembrane conductance regulator (CFTR) is abundantly expressed in a rare airway epithelial cell type called an ionocyte. Recently, we demonstrated that ionocytes can increase liquid absorption through apical CFTR and basolateral barttin/chloride channels, while airway secretory cells mediate liquid secretion through apical CFTR channels and basolateral NKCC1 transporters. Th2-driven (IL-4/IL-13) airway diseases, such as asthma, cause goblet cell metaplasia, accompanied by increased mucus production and airway secretions. In this study, we investigate the effect of IL-13 on chloride and liquid transport performed by ionocytes. IL-13 treatment of human airway epithelia was associated with reduced epithelial liquid absorption rates and increased ASL volume. Additionally, IL-13 treatment reduced the abundance of CFTR-positive ionocytes and increased the abundance of CFTR-positive secretory cells. Increasing ionocyte abundance attenuated liquid secretion caused by IL-13. Finally, CFTR-positive ionocytes were less common in asthma and chronic obstructive pulmonary disease and were associated with airflow obstruction. Our findings suggest that loss of CFTR in ionocytes contributes to the liquid secretion observed in IL-13-mediated airway diseases.


Assuntos
Asma , Regulador de Condutância Transmembrana em Fibrose Cística , Células Epiteliais , Interleucina-13 , Mucosa Respiratória , Interleucina-13/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Asma/metabolismo , Asma/patologia , Asma/genética , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Masculino , Feminino , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Cloretos/metabolismo , Pessoa de Meia-Idade , Adulto
16.
Toxicol Lett ; 401: 35-43, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39260748

RESUMO

Fine particulate matter (PM2.5) has been identified as a significant contributing factor to the exacerbation of chronic obstructive pulmonary disease (COPD). It has been observed that PM2.5 may induce lung fibrosis in COPD, although the precise molecular mechanism behind this remains unclear. In a previous study, we demonstrated that PM2.5 upregulates oxidative stress induced growth inhibitor 1 (OSGIN1), which in turn leads to injury in airway epithelial cells, thereby, suggesting a potential link between PM2.5 exposure and COPD. Based on this, we hypothesized that OSGIN1 plays a role in PM2.5-induced fibrosis in COPD. Human bronchial epithelial cells (HBEs) were treated with cigarette smoke extract (CSE) to construct an in vitro model of COPD. Our findings revealed that PM2.5 increased fibrosis indicators and upregulated OSGIN1 in CSE-stimulated HBEs (CSE-HBEs), and knockdown of OSGIN1 reduced the expression of fibrosis indicators. Through the use of microRNA target prediction software and the Gene Expression Omnibus database, we predicted miRNAs that targeted OSGIN1 in COPD. Subsequently, real-time polymerase chain reaction and western blot analysis confirmed that PM2.5 modulated miR-654-5p to regulate OSGIN1 in CSE-HBEs. Western blot demonstrated that OSGIN1 induced autophagy, thereby exacerbating fibrosis in CSE-HBEs. In summary, our results suggest that PM2.5 upregulates OSGIN1 through inhibiting miR-654-5p, leading to increased autophagy and fibrosis in CSE-HBEs.


Assuntos
Autofagia , MicroRNAs , Material Particulado , Doença Pulmonar Obstrutiva Crônica , Humanos , Material Particulado/toxicidade , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Autofagia/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Linhagem Celular , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/genética , Fumaça/efeitos adversos , Brônquios/efeitos dos fármacos , Brônquios/patologia , Brônquios/metabolismo
17.
Ecotoxicol Environ Saf ; 284: 116931, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39181074

RESUMO

Cigarette smoke (CS) is a prevalent chemical indoor air contaminant known to be the primary cause of EMT during airway remodeling in COPD. While some evidence indicates the involvement of SMAD4 in EMT across certain diseases, its specific role in CS-induced EMT in airway remodeling associated with COPD is not established. In our research, we observed a substantial upregulation in SMAD4 expression, O-GlcNAcylation and EMT in patients with COPD, as well as in vitro and in vivo COPD models induced by CS, than those of the controls. Downregulation of SMAD4 resulted in a reduction in CS-induced EMT in vitro and in vivo. As a post-translational modification of proteins, O-GlcNAcylation is dynamically controlled by the duo of enzymes: O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) and O-GlcNAcase (OGA). We further discovered the enhancement of O-GlcNAcylation levels induced by CS was due to an elevated OGT expression, as the expression of OGA remained unchanged. Using an OGT inhibitor (OSMI-1) counteracted the effects of SMAD4 on EMT. Whereas, overexpressing OGT increased SMAD4 expression and promoted EMT. OGT-mediated SMAD4 O-GlcNAcylation shielded SMAD4 from proteasomal degradation by reducing its ubiquitination, thereby aiding in SMAD4 stabilization in response to EMT induced by CS. Overall, this research uncovers a fresh pathway for CS-induced EMT in the airway remodeling of COPD and offers valuable insights.


Assuntos
Remodelação das Vias Aéreas , Transição Epitelial-Mesenquimal , N-Acetilglucosaminiltransferases , Doença Pulmonar Obstrutiva Crônica , Proteína Smad4 , Doença Pulmonar Obstrutiva Crônica/patologia , N-Acetilglucosaminiltransferases/metabolismo , Proteína Smad4/metabolismo , Remodelação das Vias Aéreas/efeitos dos fármacos , Humanos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Animais , Fumaça/efeitos adversos , Camundongos , Masculino , Feminino
18.
Am J Physiol Lung Cell Mol Physiol ; 327(4): L600-L606, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39137524

RESUMO

Elastin is an extracellular matrix protein (ECM) that supports elasticity of the lung, and in patients with chronic obstructive pulmonary disease (COPD) and emphysema, the structural changes that reduce the amount of elastic recoil, lead to loss of pulmonary function. We recently demonstrated that elastin is a target of peptidyl arginine deiminase (PAD) enzyme-induced citrullination, thereby leading to enhanced susceptibility of this ECM protein to proteolysis. This study aimed to investigate the impact of PAD activity in vivo and furthermore assessed whether pharmacological inhibition of PAD activity protects against pulmonary emphysema. Using a Serpina1a-e knockout mouse model, previously shown to develop inflammation-mediated emphysema, we validated the involvement of PADs in airway disease. In line with emphysema development, intratracheal administration of lipopolysaccharide in combination with PADs provoked significant airspace enlargement (P < 0.001) and diminished lung function, including loss of lung tissue elastance (P = 0.0217) and increases in lung volumes (P = 0.0463). Intraperitoneal treatment of mice with the PAD inhibitor, BB-Cl-amidine, prevented PAD/LPS-mediated lung function decline and emphysema and reduced levels of citrullinated airway elastin (P = 0.0199). These results provide evidence for the impact of PADs on lung function decline, indicating promising potential for the future development of PAD-based therapeutics for preserving lung function in patients with COPD.NEW & NOTEWORTHY This study provides evidence for the impact of peptidyl arginine deiminase (PAD) enzymes on lung function decline, indicating promising potential for the future development of PAD-based therapeutics for preserving lung function in patients with COPD.


Assuntos
Citrulinação , Elastina , Camundongos Knockout , Doença Pulmonar Obstrutiva Crônica , Animais , Masculino , Camundongos , alfa 1-Antitripsina/metabolismo , Citrulina/metabolismo , Modelos Animais de Doenças , Elastina/metabolismo , Lipopolissacarídeos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Processamento de Proteína Pós-Traducional , Desiminases de Arginina em Proteínas/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/patologia
19.
Am J Physiol Lung Cell Mol Physiol ; 327(4): L464-L472, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39104316

RESUMO

Chronic obstructive pulmonary disease (COPD) is regarded as an accelerated-age disease in which chronic inflammation, maladaptive immune responses, and senescence cell burden coexist. Accordingly, cellular senescence has emerged as a potential mechanism involved in COPD pathophysiology. In this study, 25 stable patients with COPD underwent a daily physical activity promotion program for 6 mo. We reported that increase of physical activity was related to a reduction of the senescent cell burden in circulating lymphocytes of patients with COPD. Senescent T-lymphocyte population, characterized by absence of surface expression of CD28, was reduced after physical activity intervention, and the reduction was associated to the increase of physical activity level. In addition, the mRNA expression of cyclin-dependent kinase inhibitors, a hallmark of cell senescence, was reduced and, in accordance, the proliferative capacity of lymphocytes was improved postintervention. Moreover, we observed an increase in functionality in T cells from patients after intervention, including improved markers of activation, enhanced cytotoxicity, and altered cytokine secretions in response to viral challenge. Lastly, physical activity intervention reduced the potential of lymphocytes' secretome to induce senescence in human primary fibroblasts. In conclusion, our study provides, for the first time, evidence of the potential of physical activity intervention in patients with COPD to reduce the senescent burden in circulating immune cells.NEW & NOTEWORTHY For the first time, we identified in patients with COPD a relation between physical activity intervention with respiratory function improvement and cellular senescence burden in lymphocytes that improved the T cell functionality and proliferative capacity of patients. In addition, our experiments highlight the possible impact of T-cell senescence in other cell types which could be related to some of the clinical lung complications observed in COPD.


Assuntos
Senescência Celular , Exercício Físico , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Masculino , Feminino , Exercício Físico/fisiologia , Idoso , Pessoa de Meia-Idade , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Proliferação de Células , Citocinas/metabolismo , Ativação Linfocitária
20.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125750

RESUMO

Autophagy is a complex physiological pathway mediating homeostasis and survival of cells degrading damaged organelles and regulating their recycling. Physiologic autophagy can maintain normal lung function, decrease lung cellular senescence, and inhibit myofibroblast differentiation. It is well known that autophagy is activated in several chronic inflammatory diseases; however, its role in the pathogenesis of chronic obstructive pulmonary disease (COPD) and the expression of autophagy-related genes (ATGs) in lower airways of COPD patients is still controversial. The expression and localization of all ATG proteins that represented key components of the autophagic machinery modulating elongation, closure, and maturation of autophagosome membranes were retrospectively measured in peripheral lungs of patients with stable COPD (n = 10), control smokers with normal lung function (n = 10), and control nonsmoking subjects (n = 8) using immunohistochemical analysis. These results show an increased expression of ATG4 protein in alveolar septa and bronchiolar epithelium of stable COPD patients compared to smokers with normal lung function and non-smoker subjects. In particular, the genes in the ATG4 protein family (including ATG4A, ATG4B, ATG4C, and ATG4D) that have a key role in the modulation of the physiological autophagic machinery are the most important ATGs increased in the compartment of lower airways of stable COPD patients, suggesting that the alteration shown in COPD patients can be also correlated to impaired modulation of autophagic machinery modulating elongation, closure, and maturation of autophagosomes membranes. Statistical analysis was performed by the Kruskal-Wallis test and the Mann-Whitney U test for comparison between groups. A statistically significant increased expression of ATG4A (p = 0.0047), ATG4D (p = 0.018), and ATG5 (p = 0.019) was documented in the bronchiolar epithelium as well in alveolar lining for ATG4A (p = 0.0036), ATG4B (p = 0.0054), ATG4C (p = 0.0064), ATG4D (p = 0.0084), ATG5 (p = 0.0088), and ATG7 (p = 0.018) in patients with stable COPD compared to control groups. The ATG4 isoforms may be considered as additional potential targets for the development of new drugs in COPD.


Assuntos
Proteínas Relacionadas à Autofagia , Autofagia , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Masculino , Feminino , Pessoa de Meia-Idade , Autofagia/genética , Idoso , Pulmão/metabolismo , Pulmão/patologia , Fumar , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA