Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.573
Filtrar
1.
Invest Ophthalmol Vis Sci ; 65(10): 19, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39133471

RESUMO

Purpose: High altitude retinopathy (HAR) is a retinal functional disorder caused by inadequate adaptation after exposure to high altitude. However, the cellular and molecular mechanisms underlying retinal dysfunction remain elusive. Retinal ganglion cell (RGC) injury is the most important pathological basis for most retinal and optic nerve diseases. Studies focusing on RGC injury after high-altitude exposure (HAE) are scanty. Therefore, the present study sought to explore both functional and morphological alterations of RGCs after HAE. Methods: A mouse model of acute hypobaric hypoxia was established by mimicking the conditions of a high altitude of 5000 m. After HAE for 2, 4, 6, 10, 24, and 72 hours, the functional and morphological alterations of RGCs were assessed using retinal hematoxylin and eosin (H&E) sections, retinal whole mounts, transmission electron microscopy (TEM), and the photopic negative response (PhNR) of the electroretinogram. Results: Compared with the control group, the thickness of the ganglion cell layer and retinal nerve fiber layer increased significantly, RGC loss remained significant, and the amplitudes of a-wave, b-wave, and PhNR were significantly reduced after HAE. In addition, RGCs and their axons exhibited an abnormal ultrastructure after HAE, including nuclear membrane abnormalities, uneven distribution of chromatin in the nucleus, decreased cytoplasmic electron density, widening and vacuolization of the gap between axons, loosening and disorder of myelin sheath structure, widening of the gap between myelin sheath and axon membrane, decreased axoplasmic density, unclear microtubule and nerve fiber structure, and abnormal mitochondrial structure (mostly swollen, with widened membrane gaps and reduced cristae and vacuolization). Conclusions: The study findings confirm that the morphology and function of RGCs are damaged after HAE. These findings lay the foundation for further study of the specific molecular mechanisms of HAR and promote the effective prevention.


Assuntos
Modelos Animais de Doenças , Eletrorretinografia , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/ultraestrutura , Camundongos , Masculino , Doença da Altitude/fisiopatologia , Doença da Altitude/patologia , Doenças Retinianas/fisiopatologia , Doenças Retinianas/etiologia , Doenças Retinianas/patologia , Altitude , Doença Aguda
2.
Curr Opin Pulm Med ; 30(5): 459-463, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39036990

RESUMO

PURPOSE OF REVIEW: This review addresses the concern of the health effects associated with high-altitude living and chronic hypoxia with a focus on pulmonary hypertension. With an increasing global population residing at high altitudes, understanding these effects is crucial for public health interventions and clinical management. RECENT FINDINGS: Recent literature on the long-term effects of high-altitude residence and chronic hypoxia is comprehensively summarized. Key themes include the mechanisms of hypoxic pulmonary vasoconstriction, the development of pulmonary hypertension, and challenges in distinguishing altitude-related pulmonary hypertension and classical pulmonary vascular diseases, as found at a low altitude. SUMMARY: The findings emphasize the need for research in high-altitude communities to unravel the risks of pulmonary hypertension and pulmonary vascular diseases. Clinically, early and tailored management for symptomatic individuals residing at high altitudes are crucial, as well as access to advanced therapies as proposed by guidelines for pulmonary vascular disease. Moreover, identifying gaps in knowledge underscores the necessity for continued research to improve understanding and clinical outcomes in high-altitude pulmonary vascular diseases.


Assuntos
Doença da Altitude , Altitude , Hipertensão Pulmonar , Hipóxia , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/terapia , Hipertensão Pulmonar/fisiopatologia , Hipóxia/fisiopatologia , Doença da Altitude/fisiopatologia , Doença da Altitude/terapia , Vasoconstrição/fisiologia
3.
Sci Rep ; 14(1): 17732, 2024 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085313

RESUMO

Permanent residence at high-altitude and chronic mountain sickness (CMS) may alter the cerebrovascular homeostasis and orthostatic responses. Healthy male participants living at sea-level (LL; n = 15), 3800 m (HL3800m; n = 13) and 5100 m (HL5100m; n = 17), respectively, and CMS highlanders living at 5100 m (n = 31) were recruited. Middle cerebral artery mean blood flow velocity (MCAv), cerebral oxygen delivery (CDO2), mean blood pressure (MAP), heart rate variability and spontaneuous cardiac baroreflex sensitivity (cBRS) were assessed while sitting, initial 30 s and after 3 min of standing. Cerebral autoregulation index (ARI) was estimated (ΔMCAv%baseline)/ΔMAP%baseline) in response to the orthostatic challenge. Altitude and CMS were associated with hypoxemia and elevated hemoglobin concentration. While sitting, MCAv and LFpower negatively correlated with altitude but were not affected by CMS. CDO2 remained preserved. BRS was comparable across all altitudes, but lower with CMS. Within initial 30 s of standing, altitude and CMS correlated with a lesser ΔMAP while ARI remained unaffected. After 3 min standing, MCAv, CDO2 and cBRS remained preserved across altitudes. The LF/HF ratio increased in HL5100m compared to LL and HL3800m from sitting to standing. In contrary, CMS showed blunted autonomic nervous activation in responses to standing. Despite altitude- and CMS-associated hypoxemia, erythrocytosis and impaired blood pressure regulation (CMS only), cerebral homeostasis remained overall preserved.


Assuntos
Doença da Altitude , Altitude , Barorreflexo , Pressão Sanguínea , Circulação Cerebrovascular , Frequência Cardíaca , Homeostase , Humanos , Masculino , Doença da Altitude/fisiopatologia , Adulto , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Barorreflexo/fisiologia , Circulação Cerebrovascular/fisiologia , Pessoa de Meia-Idade , Velocidade do Fluxo Sanguíneo , Artéria Cerebral Média/fisiopatologia , Hipóxia/fisiopatologia
4.
Arch Biochem Biophys ; 758: 110078, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944139

RESUMO

About 140 million people worldwide live at an altitude above 2500 m. Studies have showed an increase of the incidence of hyperuricemia among plateau populations, but little is known about the possible mechanisms. This study aims to assess the effects of high altitude on hyperuricemia and explore the corresponding mechanisms at the histological, inflammatory and molecular levels. This study finds that intermittent hypobaric hypoxia (IHH) exposure results in an increase of serum uric acid level and a decrease of uric acid clearance rate. Compared with the control group, the IHH group shows significant increases in hemoglobin concentration (HGB) and red blood cell counts (RBC), indicating that high altitude hyperuricemia is associated with polycythemia. This study also shows that IHH exposure induces oxidative stress, which causes the injury of liver and renal structures and functions. Additionally, altered expressions of organic anion transporter 1 (OAT1) and organic cation transporter 1 (OCT1) of kidney have been detected in the IHH exposed rats. The adenosine deaminase (ADA) expression levels and the xanthione oxidase (XOD) and ADA activity of liver of the IHH exposure group have significantly increased compared with those of the control group. Furthermore, the spleen coefficients, IL-2, IL-1ß and IL-8, have seen significant increases among the IHH exposure group. TLR/MyD88/NF-κB pathway is activated in the process of IHH induced inflammatory response in joints. Importantly, these results jointly show that IHH exposure causes hyperuricemia. IHH induced oxidative stress along with liver and kidney injury, unusual expression of the uric acid synthesis/excretion regulator and inflammatory response, thus suggesting a potential mechanism underlying IHH-induced hyperuricemia.


Assuntos
Hiperuricemia , Hipóxia , Rim , Fígado , Estresse Oxidativo , Hiperuricemia/metabolismo , Animais , Masculino , Ratos , Fígado/metabolismo , Fígado/patologia , Hipóxia/metabolismo , Hipóxia/complicações , Rim/metabolismo , Rim/patologia , Altitude , Ácido Úrico/sangue , Ácido Úrico/metabolismo , Ratos Sprague-Dawley , Xantina Oxidase/metabolismo , Doença da Altitude/metabolismo , Doença da Altitude/complicações , Doença da Altitude/fisiopatologia
5.
6.
Nat Rev Dis Primers ; 10(1): 43, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902312

RESUMO

Millions of people visit high-altitude regions annually and more than 80 million live permanently above 2,500 m. Acute high-altitude exposure can trigger high-altitude illnesses (HAIs), including acute mountain sickness (AMS), high-altitude cerebral oedema (HACE) and high-altitude pulmonary oedema (HAPE). Chronic mountain sickness (CMS) can affect high-altitude resident populations worldwide. The prevalence of acute HAIs varies according to acclimatization status, rate of ascent and individual susceptibility. AMS, characterized by headache, nausea, dizziness and fatigue, is usually benign and self-limiting, and has been linked to hypoxia-induced cerebral blood volume increases, inflammation and related trigeminovascular system activation. Disruption of the blood-brain barrier leads to HACE, characterized by altered mental status and ataxia, and increased pulmonary capillary pressure, and related stress failure induces HAPE, characterized by dyspnoea, cough and exercise intolerance. Both conditions are progressive and life-threatening, requiring immediate medical intervention. Treatment includes supplemental oxygen and descent with appropriate pharmacological therapy. Preventive measures include slow ascent, pre-acclimatization and, in some instances, medications. CMS is characterized by excessive erythrocytosis and related clinical symptoms. In severe CMS, temporary or permanent relocation to low altitude is recommended. Future research should focus on more objective diagnostic tools to enable prompt treatment, improved identification of individual susceptibilities and effective acclimatization and prevention options.


Assuntos
Doença da Altitude , Altitude , Humanos , Doença da Altitude/fisiopatologia , Doença da Altitude/epidemiologia , Doença da Altitude/complicações , Aclimatação/fisiologia , Edema Encefálico/fisiopatologia , Edema Encefálico/etiologia , Edema Encefálico/epidemiologia , Edema Pulmonar/fisiopatologia , Edema Pulmonar/etiologia , Edema Pulmonar/epidemiologia , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/epidemiologia , Hipertensão Pulmonar/etiologia , Hipóxia/fisiopatologia , Hipóxia/complicações , Hipóxia/etiologia
7.
Sci Rep ; 14(1): 10206, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702334

RESUMO

Cardiovascular function and adipose metabolism were markedly influenced under high altitudes. However, the interplay between adipokines and heart under hypoxia remains to be elucidated. We aim to explore alterations of adipokines and underlying mechanisms in regulating cardiac function under high altitudes. We investigated the cardiopulmonary function and five adipokines in Antarctic expeditioners at Kunlun Station (4,087 m) for 20 days and established rats exposed to hypobaric hypoxia (5,000 m), simulating Kunlun Station. Antarctic expeditioners exhibited elevated heart rate, blood pressure, systemic vascular resistance, and decreased cardiac pumping function. Plasma creatine phosphokinase-MB (CK-MB) and platelet-endothelial cell adhesion molecule-1 (sPecam-1) increased, and leptin, resistin, and lipocalin-2 decreased. Plasma leptin significantly correlated with altered cardiac function indicators. Additionally, hypoxic rats manifested impaired left ventricular systolic and diastolic function, elevated plasma CK-MB and sPecam-1, and decreased plasma leptin. Chronic hypoxia for 14 days led to increased myocyte hypertrophy, fibrosis, apoptosis, and mitochondrial dysfunction, coupled with reduced protein levels of leptin signaling pathways in myocardial tissues. Cardiac transcriptome analysis revealed leptin was associated with downregulated genes involved in rhythm, Na+/K+ transport, and cell skeleton. In conclusion, chronic hypoxia significantly reduced leptin signaling pathways in cardiac tissues along with significant pathological changes, thus highlighting the pivotal role of leptin in regulation of cardiac function under high altitudes.


Assuntos
Altitude , Hipóxia , Leptina , Transdução de Sinais , Leptina/metabolismo , Leptina/sangue , Animais , Ratos , Masculino , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Humanos , Doença da Altitude/metabolismo , Doença da Altitude/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Adulto , Coração/fisiopatologia
8.
Exp Physiol ; 109(7): 1080-1098, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38747161

RESUMO

High altitude (HA) ascent imposes systemic hypoxia and associated risk of acute mountain sickness. Acute hypoxia elicits a hypoxic ventilatory response (HVR), which is augmented with chronic HA exposure (i.e., ventilatory acclimatization; VA). However, laboratory-based HVR tests lack portability and feasibility in field studies. As an alternative, we aimed to characterize area under the curve (AUC) calculations on Fenn diagrams, modified by plotting portable measurements of end-tidal carbon dioxide ( P ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) against peripheral oxygen saturation ( S p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) to characterize and quantify VA during incremental ascent to HA (n = 46). Secondarily, these participants were compared with a separate group following the identical ascent profile whilst self-administering a prophylactic oral dose of acetazolamide (Az; 125 mg BID; n = 20) during ascent. First, morning P ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ and S p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ measurements were collected on 46 acetazolamide-free (NAz) lowland participants during an incremental ascent over 10 days to 5160 m in the Nepal Himalaya. AUC was calculated from individually constructed Fenn diagrams, with a trichotomized split on ranked values characterizing the smallest, medium, and largest magnitudes of AUC, representing high (n = 15), moderate (n = 16), and low (n = 15) degrees of acclimatization. After characterizing the range of response magnitudes, we further demonstrated that AUC magnitudes were significantly smaller in the Az group compared to the NAz group (P = 0.0021), suggesting improved VA. These results suggest that calculating AUC on modified Fenn diagrams has utility in assessing VA in large groups of trekkers during incremental ascent to HA, due to the associated portability and congruency with known physiology, although this novel analytical method requires further validation in controlled experiments. HIGHLIGHTS: What is the central question of this study? What are the characteristics of a novel methodological approach to assess ventilatory acclimatization (VA) with incremental ascent to high altitude (HA)? What is the main finding and its importance? Area under the curve (AUC) magnitudes calculated from modified Fenn diagrams were significantly smaller in trekkers taking an oral prophylactic dose of acetazolamide compared to an acetazolamide-free group, suggesting improved VA. During incremental HA ascent, quantifying AUC using modified Fenn diagrams is feasible to assess VA in large groups of trekkers with ascent, although this novel analytical method requires further validation in controlled experiments.


Assuntos
Aclimatação , Acetazolamida , Doença da Altitude , Altitude , Hipóxia , Acetazolamida/farmacologia , Humanos , Aclimatação/fisiologia , Masculino , Adulto , Doença da Altitude/fisiopatologia , Feminino , Hipóxia/fisiopatologia , Inibidores da Anidrase Carbônica/farmacologia , Adulto Jovem , Dióxido de Carbono/metabolismo , Saturação de Oxigênio/fisiologia , Saturação de Oxigênio/efeitos dos fármacos , Ventilação Pulmonar/efeitos dos fármacos , Ventilação Pulmonar/fisiologia
9.
AJNR Am J Neuroradiol ; 45(6): 809-818, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38663991

RESUMO

BACKGROUND AND PURPOSE: Acute mountain sickness is a series of brain-centered symptoms that occur when rapidly ascending to high altitude. Predicting acute mountain sickness before high-altitude exposure is crucial for protecting susceptible individuals. The present study aimed to evaluate the feasibility of predicting acute mountain sickness after high-altitude exposure by using multimodal brain MR imaging features measured at sea level. MATERIALS AND METHODS: We recruited 45 healthy sea-level residents who flew to the Qinghai-Tibet Plateau (3650 m). We conducted T1-weighted structural MR imaging, resting-state fMRI, and arterial spin-labeling perfusion MR imaging both at sea level and high altitude. Acute mountain sickness was diagnosed for 5 days using Lake Louise Scoring. Logistic regression with Least Absolute Shrinkage and Selection Operator logistic regression was performed for predicting acute mountain sickness using sea-level MR imaging features. We also validated the predictors by using MR images obtained at high altitude. RESULTS: The incidence rate of acute mountain sickness was 80.0%. The model achieved an area under the receiver operating characteristic curve of 86.4% (sensitivity = 77.8%, specificity = 100.0%, and P < .001) in predicting acute mountain sickness At sea level, valid predictors included fractional amplitude of low-frequency fluctuations (fALFF) and degree centrality from resting-state fMRI, mainly distributed in the somatomotor network. We further learned that the acute mountain sickness group had lower levels of fALFF in the somatomotor network at high altitude, associated with smaller changes in CSF volume and higher Lake Louise Scoring, specifically relating to fatigue and clinical function. CONCLUSIONS: Our study found that the somatomotor network function detected by sea-level resting-state fMRI was a crucial predictor for acute mountain sickness and further validated its pathophysiologic impact at high altitude. These findings show promise for pre-exposure prediction, particularly for individuals in need of rapid ascent, and they offer insight into the potential mechanism of acute mountain sickness.


Assuntos
Doença da Altitude , Altitude , Imageamento por Ressonância Magnética , Humanos , Doença da Altitude/diagnóstico por imagem , Doença da Altitude/fisiopatologia , Masculino , Imageamento por Ressonância Magnética/métodos , Feminino , Adulto , Doença Aguda , Encéfalo/diagnóstico por imagem , Pessoa de Meia-Idade , Imagem Multimodal/métodos , Adulto Jovem , Valor Preditivo dos Testes , Sensibilidade e Especificidade
11.
BMC Cardiovasc Disord ; 24(1): 223, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658849

RESUMO

BACKGROUND: Long-term exposure to a high altitude environment with low pressure and low oxygen could cause abnormalities in the structure and function of the heart. Myocardial strain is a sensitive indicator for assessing myocardial dysfunction, monitoring myocardial strain is of great significance for the early diagnosis and treatment of high altitude heart-related diseases. This study applies cardiac magnetic resonance tissue tracking technology (CMR-TT) to evaluate the changes in left ventricular myocardial function and structure in rats in high altitude environment. METHODS: 6-week-old male rats were randomized into plateau hypoxia rats (plateau group, n = 21) as the experimental group and plain rats (plain group, n = 10) as the control group. plateau group rats were transported from Chengdu (altitude: 360 m), a city in a plateau located in southwestern China, to the Qinghai-Tibet Plateau (altitude: 3850 m), Yushu, China, and then fed for 12 weeks there, while plain group rats were fed in Chengdu(altitude: 360 m), China. Using 7.0 T cardiac magnetic resonance (CMR) to evaluate the left ventricular ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV) and stroke volume (SV), as well as myocardial strain parameters including the peak global longitudinal (GLS), radial (GRS), and circumferential strain (GCS). The rats were euthanized and a myocardial biopsy was obtained after the magnetic resonance imaging scan. RESULTS: The plateau rats showed more lower left ventricular GLS and GRS (P < 0.05) than the plain rats. However, there was no statistically significant difference in left ventricular EDV, ESV, SV, EF and GCS compared to the plain rats (P > 0.05). CONCLUSIONS: After 12 weeks of exposure to high altitude low-pressure hypoxia environment, the left ventricular global strain was partially decreased and myocardium is damaged, while the whole heart ejection fraction was still preserved, the myocardial strain was more sensitive than the ejection fraction in monitoring cardiac function.


Assuntos
Altitude , Volume Sistólico , Função Ventricular Esquerda , Animais , Masculino , Ratos Sprague-Dawley , Doença da Altitude/fisiopatologia , Doença da Altitude/diagnóstico por imagem , Valor Preditivo dos Testes , Imagem Cinética por Ressonância Magnética , Imageamento por Ressonância Magnética , Fatores de Tempo , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/etiologia , Ratos , Hipóxia/fisiopatologia
12.
High Alt Med Biol ; 25(2): 107-112, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38516987

RESUMO

Gardner, Laurel, Linda E. Keyes, Caleb Phillips, Elan Small, Tejaswi Adhikari, Nathan Barott, Ken Zafren, Rony Maharjan, and James Marvel. Women at altitude: Menstrual-cycle phase, menopause, and exogenous progesterone are not associated with acute mountain sickness. High Alt Med Biol. 00:000-000, 2024. Background: Elevated progesterone levels in women may protect against acute mountain sickness (AMS). The impact of hormonal contraception (HC) on AMS is unknown. We examined the effect of natural and exogenous progesterone on the occurrence of AMS. Methods: We conducted a prospective observational convenience study of female trekkers in Lobuche (4,940 m) and Manang (3,519 m). We collected data on last menstrual period, use of exogenous hormones, and development of AMS. Results: There were 1,161 trekkers who met inclusion criteria, of whom 307 (26%) had AMS. There was no significant difference in occurrence of AMS between women in the follicular (28%) and the luteal (25%) phases of menstruation (p = 0.48). The proportion of premenopausal (25%) versus postmenopausal women (30%) with AMS did not differ (p = 0.33). The use of HC did not influence the occurrence of AMS (HC 23% vs. no HC 26%, p = 0.47), nor did hormonal replacement therapy (HRT) (HRT 11% vs. no HRT 31%, p = 0.13). Conclusion: We found no relationship between menstrual-cycle phase, menopausal status, or use of exogenous progesterone and the occurrence of AMS in trekkers and conclude that hormonal status is not a risk factor for AMS. Furthermore, women should not be excluded from future AMS studies based on hormonal status.


Assuntos
Doença da Altitude , Altitude , Menopausa , Ciclo Menstrual , Progesterona , Humanos , Feminino , Progesterona/sangue , Progesterona/administração & dosagem , Estudos Prospectivos , Adulto , Menopausa/fisiologia , Doença da Altitude/sangue , Doença da Altitude/fisiopatologia , Pessoa de Meia-Idade , Ciclo Menstrual/fisiologia , Montanhismo/fisiologia , Doença Aguda , Adulto Jovem
13.
Exp Physiol ; 109(6): 899-914, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554124

RESUMO

Chronic mountain sickness is a maladaptive syndrome that affects individuals living permanently at high altitude and is characterized primarily by excessive erythrocytosis (EE). Recent results concerning the impact of EE in Andean highlanders on clotting and the possible promotion of hypercoagulability, which can lead to thrombosis, were contradictory. We assessed the coagulation profiles of Andeans highlanders with and without excessive erythrocytosis (EE+ and EE-). Blood samples were collected from 30 EE+ and 15 EE- in La Rinconada (Peru, 5100-5300 m a.s.l.), with special attention given to the sampling pre-analytical variables. Rotational thromboelastometry tests were performed at both native and normalized (40%) haematocrit using autologous platelet-poor plasma. Thrombin generation, dosages of clotting factors and inhibitors were measured in plasma samples. Data were compared between groups and with measurements performed at native haematocrit in 10 lowlanders (LL) at sea level. At native haematocrit, in all rotational thromboelastometry assays, EE+ exhibited hypocoagulable profiles (prolonged clotting time and weaker clot strength) compared with EE- and LL (all P < 0.01). At normalized haematocrit, clotting times were normalized in most individuals. Conversely, maximal clot firmness was normalized only in FIBTEM and not in EXTEM/INTEM assays, suggesting abnormal platelet activity. Thrombin generation, levels of plasma clotting factors and inhibitors, and standard coagulation assays were mostly normal in all groups. No highlanders reported a history of venous thromboembolism based on the dedicated survey. Collectively, these results indicate that EE+ do not present a hypercoagulable profile potentially favouring thrombosis.


Assuntos
Altitude , Coagulação Sanguínea , Policitemia , Tromboelastografia , Trombofilia , Humanos , Policitemia/sangue , Coagulação Sanguínea/fisiologia , Adulto , Trombofilia/sangue , Masculino , Tromboelastografia/métodos , Feminino , Hematócrito/métodos , Peru , Pessoa de Meia-Idade , Doença da Altitude/sangue , Doença da Altitude/fisiopatologia , Trombina/metabolismo
14.
High Alt Med Biol ; 25(2): 149-151, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38335448

RESUMO

Wang, Si-Yang, Jun Liang, and Jing-Hong Zhao. A Case of High-Altitude Renal Syndrome. High Alt Med Biol. 00:000-000, 2024.-Epidemiological studies have confirmed that high-altitude exposure increases the risk of proteinuria. The concept of high-altitude renal syndrome (HARS) was proposed in 2011. HARS is a group of clinical syndromes consisting of high-altitude polycythemia, hyperuricemia, systemic hypertension, and microalbuminuria. At present, no standardized and unified treatment methods of HARS have been proposed. We report a case of HARS without other organ involvement in a young man exposed to high altitude. Decreasing the red blood cell count and hemodynamic changes as soon as possible may be of great importance for reducing proteinuria. In addition, angiotensin receptor blockers are effective in the treatment of HARS.


Assuntos
Doença da Altitude , Altitude , Humanos , Masculino , Doença da Altitude/complicações , Doença da Altitude/fisiopatologia , Policitemia/etiologia , Policitemia/complicações , Policitemia/terapia , Adulto , Proteinúria/etiologia , Hiperuricemia/complicações
15.
Psychophysiology ; 61(6): e14548, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38385977

RESUMO

This study aimed to explore the neural mechanisms underlying high-altitude (HA) adaptation and deadaptation in perceptual processes in lowlanders. Eighteen healthy lowlanders were administered a facial S1-S2 matching task that included incomplete face (S1) and complete face (S2) photographs combined with ERP technology. Participants were tested at four time points: shortly before they departed the HA (Test 1), twenty-five days after entering the HA (Test 2), and one week (Test 3) and one month (Test 4) after returning to the lowlands. Compared with those at sea level (SL), shorter reaction times (RTs), shorter latencies of P1 and N170, and larger amplitudes of complete face N170 were found in HAs. After returning to SL, compared with that of HA, the amplitude of the incomplete face P1 was smaller after one week, and the complete face was smaller after one month. The right hemisphere N170 amplitude was greater after entering HA and one week after returning to SL than at baseline, but it returned to baseline after one month. Taken together, the current findings suggest that HA adaptation increases visual cortex excitation to accelerate perceptual processing. More mental resources are recruited during the configural encoding stage of complete faces after HA exposure. The perceptual processes affected by HA exposure are reversible after returning to SL, but the low-level processing stage differs between incomplete and complete faces due to neural compensation mechanisms. The configural encoding stage in the right hemisphere is affected by HA exposure and requires more than one week but less than one month to recover to baseline.


Assuntos
Adaptação Fisiológica , Altitude , Eletroencefalografia , Reconhecimento Facial , Humanos , Masculino , Adulto , Feminino , Adulto Jovem , Reconhecimento Facial/fisiologia , Estudos Longitudinais , Adaptação Fisiológica/fisiologia , Hipóxia/fisiopatologia , Tempo de Reação/fisiologia , Potenciais Evocados/fisiologia , Córtex Visual/fisiologia , Doença da Altitude/fisiopatologia
16.
Neumol. pediátr. (En línea) ; 18(2): 37-39, 2023. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-1444103

RESUMO

En las alturas, sobre todo a 2500 metros sobre el nivel del mar, la cantidad absoluta de oxígeno va decreciendo y por lo tanto la cantidad disponible para el intercambio gaseoso disminuye, produciéndose una vasoconstricción hipóxica pulmonar (VHP). La VHP asociada a la hipoxia hipobárica de la altura produce un aumento de la presión pulmonar que es mayor en los lactantes y a mayores alturas. No hay valores únicos de saturación de oxígeno (SatO2) en la altura, porque ésta va disminuyendo según el mayor nivel de altura, aumenta con la edad, y la brecha entre la vigilia y sueño es grande (sobre todo en los primeros meses de vida). El 25% de los niños sanos que viven en altura tienen valores de SatO2 significativamente menores que el 75% restante. Los valores normales de los índices de apnea/hipopnea son distintos a los de nivel del mar. El edema pulmonar de las alturas es una patología frecuente, que se produce por un incremento desproporcionado en la VHP reflejando una hiperactividad del lecho vascular pulmonar ante la exposición aguda a la hipoxia hipobárica. Tiene cuatro fenotipos, es infrecuente en menores de 5 años y rara vez es mortal, la sospecha clínica y el manejo oportuno con oxigeno es la clave. Finalmente, en la altura los valores normales de la función pulmonar de la espirometría, oscilometría de impulso y capacidad de difusión son distintos que a nivel del mar.


At high altitude, especially > 2,500 meters above sea level, the absolute amount of oxygen decreases and therefore the amount available for gas exchange decreases, producing hypoxic pulmonary vasoconstriction (VHP). VHP associated with high-altitude hypobaric hypoxia produces an increase in pulmonary pressure that is greater in infants and at higher altitudes. There are no single values of oxygen saturation (SatO2) at altitude, because it decreases with the highest level of altitude, increases with age, and the gap between wakefulness and sleep is large (especially in the first months of life). Around 25% of healthy children living at altitude have SatO2 values significantly lower than the remaining 75%. The normal values of the apnea/hypopnea indices are different from those at sea level. High altitude pulmonary edema is a frequent pathology that is produced by a disproportionate increase in VHP reflecting hyperactivity of the pulmonary vascular bed in the face of acute exposure to hypobaric hypoxia, it has four phenotypes, it is uncommon in children under 5 years of age, and it is rarely fatal, the clinical suspicion and timely management with oxygen is the key. Finally, at high altitude, the normal values of lung function from spirometry, impulse oscillometry, and diffusing capacity are different from those at sea level.


Assuntos
Humanos , Criança , Adolescente , Edema Pulmonar/fisiopatologia , Altitude , Doença da Altitude/fisiopatologia , Testes de Função Respiratória , Saturação de Oxigênio , Hipóxia/fisiopatologia
17.
Front Endocrinol (Lausanne) ; 13: 831369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222286

RESUMO

Exposure to hypobaric hypoxia at high altitude puts mountaineers at risk of acute mountain sickness. The carbonic anhydrase inhibitor acetazolamide is used to accelerate acclimatization, when it is not feasible to make a controlled and slow ascend. Studies in rodents have suggested that exposure to hypobaric hypoxia deteriorates bone integrity and reduces bone strength. The study investigated the effect of treatment with acetazolamide and the bisphosphonate, zoledronate, on the skeletal effects of exposure to hypobaric hypoxia. Eighty 16-week-old female RjOrl : SWISS mice were divided into five groups: 1. Baseline; 2. Normobaric; 3. Hypobaric hypoxia; 4. Hypobaric hypoxia + acetazolamide, and 5. Hypobaric hypoxia + zoledronate. Acetazolamide was administered in the drinking water (62 mg/kg/day) for four weeks, and zoledronate (100 µg/kg) was administered as a single subcutaneous injection at study start. Exposure to hypobaric hypoxia significantly increased lung wet weight and decreased femoral cortical thickness. Trabecular bone was spared from the detrimental effects of hypobaric hypoxia, although a trend towards reduced bone volume fraction was found at the L4 vertebral body. Treatment with acetazolamide did not have any negative skeletal effects, but could not mitigate the altitude-induced bone loss. Zoledronate was able to prevent the altitude-induced reduction in cortical thickness. In conclusion, simulated high altitude affected primarily cortical bone, whereas trabecular bone was spared. Only treatment with zoledronate prevented the altitude-induced cortical bone loss. The study provides preclinical support for future studies of zoledronate as a potential pharmacological countermeasure for altitude-related bone loss.


Assuntos
Acetazolamida/uso terapêutico , Doença da Altitude , Altitude , Osso Esponjoso/efeitos dos fármacos , Osso Cortical/efeitos dos fármacos , Ácido Zoledrônico/uso terapêutico , Absorciometria de Fóton , Doença da Altitude/patologia , Doença da Altitude/fisiopatologia , Animais , Densidade Óssea , Osso Esponjoso/patologia , Osso Cortical/patologia , Feminino , Camundongos , Músculo Quadríceps/patologia
18.
Physiol Rep ; 10(3): e15184, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35146955

RESUMO

Mountain climbing at high altitude implies exposure to low levels of oxygen, low temperature, wind, physical and psychological stress, and nutritional insufficiencies. We examined whether right ventricular (RV) and left ventricular (LV) myocardial masses were reversibly altered by exposure to extreme altitude. Magnetic resonance imaging and echocardiography of the heart, dual x-ray absorptiometry scan of body composition, and blood samples were obtained from ten mountain climbers before departure to Mount Everest or Dhaulagiri (baseline), 13.5 ± 1.5 days after peaking the mountain (post-hypoxia), and six weeks and six months after expeditions exceeding 8000 meters above sea level. RV mass was unaltered after extreme altitude, in contrast to a reduction in LV mass by 11.8 ± 3.4 g post-hypoxia (p = 0.001). The reduction in LV mass correlated with a reduction in skeletal muscle mass. After six weeks, LV myocardial mass was restored to baseline values. Extreme altitude induced a reduction in LV end-diastolic volume (20.8 ± 7.7 ml, p = 0.011) and reduced E', indicating diastolic dysfunction, which were restored after six weeks follow-up. Elevated circulating interleukin-18 after extreme altitude compared to follow-up levels, might have contributed to reduced muscle mass and diastolic dysfunction. In conclusion, the mass of the RV, possibly exposed to elevated afterload, was not changed after extreme altitude, whereas LV mass was reduced. The reduction in LV mass correlated with reduced skeletal muscle mass, indicating a common denominator, and elevated circulating interleukin-18 might be a mechanism for reduced muscle mass after extreme altitude.


Assuntos
Doença da Altitude/fisiopatologia , Ventrículos do Coração/diagnóstico por imagem , Adulto , Diástole , Feminino , Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/metabolismo , Humanos , Interleucina-18/metabolismo , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Função Ventricular
19.
Physiol Rep ; 10(3): e15175, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35133088

RESUMO

The impact of acute mountain sickness (AMS) and sleep disturbances on mood and cognition at two altitudes relevant to the working and tourist population is unknown. Twenty unacclimatized lowlanders were exposed to either 3000 m (n = 10; 526 mmHg) or 4050 m (n = 10; 460 mmHg) for 20 h in a hypobaric chamber. AMS prevalence and severity was assessed using the Environmental Symptoms Questionnaire (ESQ) and an AMS-C score ≥ 0.7 indicated sickness. While sleeping for one night both at sea level (SL) and high altitude (HA), a wrist motion detector was used to measure awakenings (Awak, events/h) and sleep efficiency (Eff, %). If Eff was ≥85%, individuals were considered a good sleeper (Sleep+). Mood and cognition were assessed using the Automated Neuropsychological Assessment Metric and Mood Scale (ANAM-MS). The ESQ and ANAM-MS were administered in the morning both at SL and after 20 h at HA. AMS severity (mean ± SE; 1.82 ± 0.27 vs. 0.20 ± 0.27), AMS prevalence (90% vs. 10%), depression (0.63 ± 0.23 vs. 0.00 ± 0.24) Awak (15.6 ± 1.6 vs. 10.1 ± 1.6 events/h), and DeSHr (38.5 ± 6.3 vs. 13.3 ± 6.3 events/h) were greater (p < 0.05) and Eff was lower (69.9 ± 5.3% vs. 87.0 ± 5.3%) at 4050 m compared to 3000 m, respectively. AMS presence did not impact cognition but fatigue (2.17 ± 0.37 vs. 0.58 ± 0.39), anger (0.65 ± 0.25 vs. 0.02 ± 0.26), depression (0.63 ± 0.23 vs. 0.00 ± 0.24) and sleepiness (4.8 ± 0.4 vs. 2.7 ± 0.5) were greater (p < 0.05) in the AMS+ group. The Sleep- group, compared to the Sleep+ group, had lower (p < 0.05) working memory scores (50 ± 7 vs. 78 ± 9) assessed by the Sternberg 6-letter memory task, and lower reaction time fatigue scores (157 ± 17 vs. 221 ± 22), assessed by the repeated reaction time test. Overall, AMS, depression, DeSHr, and Awak were increased (p < 0.05) at 4050 m compared to 3000 m. In addition, AMS presence impacted mood while poor sleep impacted cognition which may deteriorate teamwork and/or increase errors in judgement at HA.


Assuntos
Afeto , Doença da Altitude/fisiopatologia , Cognição , Transtornos do Sono-Vigília/fisiopatologia , Aclimatação , Doença da Altitude/psicologia , Feminino , Humanos , Masculino , Transtornos do Sono-Vigília/psicologia , Adulto Jovem
20.
Am J Physiol Regul Integr Comp Physiol ; 322(3): R192-R203, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35043679

RESUMO

Gastrointestinal complaints are often reported during ascents to high altitude (>2,500 m), though their etiology is not known. One potential explanation is injury to the intestinal barrier which has been implicated in the pathophysiology of several diseases. High-altitude exposures can reduce splanchnic perfusion and blood oxygen levels causing hypoxic and oxidative stress. These stressors might injure the intestinal barrier leading to consequences such as bacterial translocation and local/systemic inflammatory responses. The purpose of this mini-review is to 1) discuss the impact of high-altitude exposures on intestinal barrier dysfunction and 2) present medications and dietary supplements which may have relevant impacts on the intestinal barrier during high-altitude exposures. There is a small but growing body of evidence which shows that acute exposures to high altitudes can damage the intestinal barrier. Initial data also suggest that prolonged hypoxic exposures can compromise the intestinal barrier through alterations in immunological function, microbiota, or mucosal layers. Exertion may worsen high-altitude-related intestinal injury via additional reductions in splanchnic circulation and greater hypoxemia. Collectively these responses can result in increased intestinal permeability and bacterial translocation causing local and systemic inflammation. More research is needed to determine the impact of various medications and dietary supplements on the intestinal barrier during high-altitude exposures.


Assuntos
Doença da Altitude/fisiopatologia , Altitude , Hipóxia/fisiopatologia , Intestinos/fisiopatologia , Humanos , Estresse Oxidativo/fisiologia , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA