Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
J Biol Chem ; 298(1): 101520, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34952005

RESUMO

Glucose-6-phosphatase catalytic subunit 1 (G6PC1) plays a critical role in hepatic glucose production during fasting by mediating the terminal step of the gluconeogenesis and glycogenolysis pathways. In concert with accessory transport proteins, this membrane-integrated enzyme catalyzes glucose production from glucose-6-phosphate (G6P) to support blood glucose homeostasis. Consistent with its metabolic function, dysregulation of G6PC1 gene expression contributes to diabetes, and mutations that impair phosphohydrolase activity form the clinical basis of glycogen storage disease type 1a. Despite its relevance to health and disease, a comprehensive view of G6PC1 structure and mechanism has been limited by the absence of expression and purification strategies that isolate the enzyme in a functional form. In this report, we apply a suite of biophysical and biochemical tools to fingerprint the in vitro attributes of catalytically active G6PC1 solubilized in lauryl maltose neopentyl glycol (LMNG) detergent micelles. When purified from Sf9 insect cell membranes, the glycosylated mouse ortholog (mG6PC1) recapitulated functional properties observed previously in intact hepatic microsomes and displayed the highest specific activity reported to date. Additionally, our results establish a direct correlation between the catalytic and structural stability of mG6PC1, which is underscored by the enhanced thermostability conferred by phosphatidylcholine and the cholesterol analog cholesteryl hemisuccinate. In contrast, the N96A variant, which blocks N-linked glycosylation, reduced thermostability. The methodologies described here overcome long-standing obstacles in the field and lay the necessary groundwork for a detailed analysis of the mechanistic structural biology of G6PC1 and its role in complex metabolic disorders.


Assuntos
Glucose-6-Fosfatase , Doença de Depósito de Glicogênio Tipo I , Animais , Domínio Catalítico , Glucose/metabolismo , Glucose-6-Fosfatase/química , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/enzimologia , Doença de Depósito de Glicogênio Tipo I/metabolismo , Camundongos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo
2.
J Inherit Metab Dis ; 44(1): 118-128, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32474930

RESUMO

Glycogen storage disease type Ia (GSD-Ia) is an inherited metabolic disease caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC) which plays a critical role in blood glucose homeostasis by catalyzing the hydrolysis of glucose-6-phosphate (G6P) to glucose and phosphate in the terminal step of glycogenolysis and gluconeogenesis. Patients with GSD-Ia manifest life-threatening fasting hypoglycemia along with the excessive accumulation of hepatic glycogen and triglycerides which results in hepatomegaly and a risk of long-term complications such as hepatocellular adenoma and carcinoma (HCA/HCC). The etiology of HCA/HCC development in GSD-Ia, however, is unknown. Recent studies have shown that the livers in model animals of GSD-Ia display impairment of autophagy, a cellular recycling process which is critical for energy metabolism and cellular homeostasis. However, molecular mechanisms of autophagy impairment and its involvement in pathogenesis in GSD-Ia are still under investigation. Here, we summarize the latest advances for signaling pathways implicated in hepatic autophagy impairment and the roles of autophagy in hepatic tumorigenesis in GSD-Ia. In addition, recent evidence has illustrated that autophagy plays an important role in hepatic metabolism and liver-directed gene therapy mediated by recombinant adeno-associated virus (rAAV). Therefore, we highlight the possible role of hepatic autophagy in metabolic control and rAAV-mediated gene therapy for GSD-Ia. In this review, we also provide potential therapeutic strategies for GSD-Ia on the basis of molecular mechanisms underlying hepatic autophagy impairment in GSD-Ia.


Assuntos
Autofagia , Carcinoma Hepatocelular/prevenção & controle , Terapia Genética/métodos , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/terapia , Neoplasias Hepáticas/prevenção & controle , Animais , Carcinogênese/patologia , Carcinoma Hepatocelular/enzimologia , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Glucose/metabolismo , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/enzimologia , Homeostase , Humanos , Fígado/enzimologia , Neoplasias Hepáticas/enzimologia , Camundongos , Camundongos Knockout , Transdução de Sinais
3.
Hum Mol Genet ; 29(2): 264-273, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31813960

RESUMO

Glycogen storage disease type 1a (GSD Ia) is an inborn error of metabolism caused by mutations in the G6PC gene, encoding the catalytic subunit of glucose-6-phosphatase. Early symptoms include severe fasting intolerance, failure to thrive and hepatomegaly, biochemically associated with nonketotic hypoglycemia, fasting hyperlactidemia, hyperuricemia and hyperlipidemia. Dietary management is the cornerstone of treatment aiming at maintaining euglycemia, prevention of secondary metabolic perturbations and long-term complications, including liver (hepatocellular adenomas and carcinomas), kidney and bone disease (hypovitaminosis D and osteoporosis). As impaired vitamin A homeostasis also associates with similar symptoms and is coordinated by the liver, we here analysed whether vitamin A metabolism is affected in GSD Ia patients and liver-specific G6pc-/- knock-out mice. Serum levels of retinol and retinol binding protein 4 (RBP4) were significantly increased in both GSD Ia patients and L-G6pc-/- mice. In contrast, hepatic retinol levels were significantly reduced in L-G6pc-/- mice, while hepatic retinyl palmitate (vitamin A storage form) and RBP4 levels were not altered. Transcript and protein analyses indicate an enhanced production of retinol and reduced conversion the retinoic acids (unchanged LRAT, Pnpla2/ATGL and Pnpla3 up, Cyp26a1 down) in L-G6pc-/- mice. Aberrant expression of genes involved in vitamin A metabolism was associated with reduced basal messenger RNA levels of markers of inflammation (Cd68, Tnfα, Nos2, Il-6) and fibrosis (Col1a1, Acta2, Tgfß, Timp1) in livers of L-G6pc-/- mice. In conclusion, GSD Ia is associated with elevated serum retinol and RBP4 levels, which may contribute to disease symptoms, including osteoporosis and hepatic steatosis.


Assuntos
Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/metabolismo , Fígado/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Vitamina A/sangue , Adolescente , Adulto , Animais , Diterpenos/metabolismo , Fígado Gorduroso/metabolismo , Feminino , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/sangue , Doença de Depósito de Glicogênio Tipo I/enzimologia , Doença de Depósito de Glicogênio Tipo I/patologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Osteoporose/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/genética , Ésteres de Retinil , Vitamina A/análogos & derivados , Vitamina A/metabolismo
4.
Hum Mol Genet ; 29(2): 286-294, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31816064

RESUMO

Glycogen storage disease type Ia (GSD Ia) is caused by autosomal mutations in glucose-6-phosphatase α catalytic subunit (G6PC) and can present with severe hypoglycemia, lactic acidosis and hypertriglyceridemia. In both children and adults with GSD Ia, there is over-accumulation of hepatic glycogen and triglycerides that can lead to steatohepatitis and a risk for hepatocellular adenoma or carcinoma. Here, we examined the effects of the commonly used peroxisomal proliferated activated receptor α agonist, fenofibrate, on liver and kidney autophagy and lipid metabolism in 5-day-old G6pc -/- mice serving as a model of neonatal GSD Ia. Five-day administration of fenofibrate decreased the elevated hepatic and renal triglyceride and hepatic glycogen levels found in control G6pc -/- mice. Fenofibrate also induced autophagy and promoted ß-oxidation of fatty acids and stimulated gene expression of acyl-CoA dehydrogenases in the liver. These findings show that fenofibrate can rapidly decrease hepatic glycogen and triglyceride levels and renal triglyceride levels in neonatal G6pc -/- mice. Moreover, since fenofibrate is an FDA-approved drug that has an excellent safety profile, our findings suggest that fenofibrate could be a potential pharmacological therapy for GSD Ia in neonatal and pediatric patients as well as for adults. These findings may also apply to non-alcoholic fatty liver disease, which shares similar pathological and metabolic changes with GSD Ia.


Assuntos
Fenofibrato/farmacologia , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/metabolismo , Glicogênio/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Acil-CoA Desidrogenases/metabolismo , Animais , Animais Recém-Nascidos , Autofagossomos/efeitos dos fármacos , Autofagossomos/patologia , Autofagossomos/ultraestrutura , Autofagia/efeitos dos fármacos , Ácidos Graxos/metabolismo , Fenofibrato/administração & dosagem , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/enzimologia , Doença de Depósito de Glicogênio Tipo I/genética , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/enzimologia , Fígado/patologia , Fígado/ultraestrutura , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , PPAR alfa/genética , PPAR alfa/metabolismo , Triglicerídeos/metabolismo
5.
Hum Gene Ther ; 30(10): 1263-1273, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31319709

RESUMO

Glycogen storage diseases (GSDs) type I (GSDI) and type III (GSDIII), the most frequent hepatic GSDs, are due to defects in glycogen metabolism, mainly in the liver. In addition to hypoglycemia and liver pathology, renal, myeloid, or muscle complications affect GSDI and GSDIII patients. Currently, patient management is based on dietary treatment preventing severe hypoglycemia and increasing the lifespan of patients. However, most of the patients develop long-term pathologies. In the past years, gene therapy for GSDI has generated proof of concept for hepatic GSDs. This resulted in a recent clinical trial of adeno-associated virus (AAV)-based gene replacement for GSDIa. However, the current limitations of AAV-mediated gene transfer still represent a challenge for successful gene therapy in GSDI and GSDIII. Indeed, transgene loss over time was observed in GSDI liver, possibly due to the degeneration of hepatocytes underlying the physiopathology of both GSDI and GSDIII and leading to hepatic tumor development. Moreover, multitissue targeting requires high vector doses to target nonpermissive tissues such as muscle and kidney. Interestingly, recent pharmacological interventions or dietary regimen aiming at the amelioration of the hepatocyte abnormalities before the administration of gene therapy demonstrated improved efficacy in GSDs. In this review, we describe the advances in gene therapy and the limitations to be overcome to achieve efficient and safe gene transfer in GSDs.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo III/terapia , Doença de Depósito de Glicogênio Tipo I/terapia , Hipoglicemia/terapia , Animais , Ensaios Clínicos como Assunto , Dependovirus/metabolismo , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glucose-6-Fosfatase/metabolismo , Glicogênio/biossíntese , Doença de Depósito de Glicogênio Tipo I/enzimologia , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/patologia , Doença de Depósito de Glicogênio Tipo III/enzimologia , Doença de Depósito de Glicogênio Tipo III/genética , Doença de Depósito de Glicogênio Tipo III/patologia , Hepatócitos/enzimologia , Hepatócitos/patologia , Humanos , Hipoglicemia/enzimologia , Hipoglicemia/genética , Hipoglicemia/patologia , Fígado/enzimologia , Fígado/patologia , Transgenes
6.
Dis Model Mech ; 12(4)2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30898969

RESUMO

Hepatocellular adenomas (HCAs) are benign tumors, of which the most serious complications are hemorrhage and malignant transformation to hepatocellular carcinoma (HCC). Among the various subtypes of HCA, the ß-catenin-activated subtype (bHCA) is associated with greatest risk of malignant transformation. Magnetic resonance imaging (MRI) is an important tool to differentiate benign and malignant hepatic lesions, and preclinical experimental approaches may help to develop a method to identify MRI features associated with bHCA. HCAs are associated with various pathologies, including glycogen storage disease 1a (GSD1a). Here, we utilized a mouse model for GSD1a that develops HCA and HCC, and analyzed the mice in order to distinguish low-risk from high-risk tumors. Animals were scanned by MRI using a hepato-specific contrast agent. The mice were sacrificed after MRI and their lesions were classified using immunohistochemistry. We observed that 45% of the animals developed focal lesions, and MRI identified four different patterns after contrast administration: isointense, hyperintense and hypointense lesions, and lesions with peripheral contrast enhancement. After contrast administration, only bHCA and HCC were hypointense in T1-weighted imaging and mildly hyperintense in T2-weighted imaging. Thus, high-risk adenomas display MRI features clearly distinguishable from those exhibited by low-risk adenomas, indicating that MRI is a reliable method for early diagnosis and classification of HCA, necessary for correct patient management.


Assuntos
Adenoma de Células Hepáticas/complicações , Adenoma de Células Hepáticas/diagnóstico por imagem , Doença de Depósito de Glicogênio Tipo I/complicações , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Adenoma de Células Hepáticas/enzimologia , Adenoma de Células Hepáticas/patologia , Animais , Modelos Animais de Doenças , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/enzimologia , Doença de Depósito de Glicogênio Tipo I/patologia , Fígado/patologia , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Especificidade de Órgãos
7.
J Inherit Metab Dis ; 42(3): 470-479, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30714174

RESUMO

Glycogen storage disease type-Ia (GSD-Ia), caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC), is characterized by impaired glucose homeostasis with a hallmark hypoglycemia, following a short fast. We have shown that G6pc-deficient (G6pc-/-) mice treated with recombinant adeno-associated virus (rAAV) vectors expressing either wild-type (WT) (rAAV-hG6PC-WT) or codon-optimized (co) (rAAV-co-hG6PC) human (h) G6Pase-α maintain glucose homeostasis if they restore ≥3% of normal hepatic G6Pase-α activity. The co vector, which has a higher potency, is currently being used in a phase I/II clinical trial for human GSD-Ia (NCT03517085). While routinely used in clinical therapies, co vectors may not always be optimal. Codon-optimization can impact RNA secondary structure, change RNA/DNA protein-binding sites, affect protein conformation and function, and alter posttranscriptional modifications that may reduce potency or efficacy. We therefore sought to develop alternative approaches to increase the potency of the G6PC gene transfer vectors. Using an evolutionary sequence analysis, we identified a Ser-298 to Cys-298 substitution naturally found in canine, mouse, rat, and several primate G6Pase-α isozymes, that when incorporated into the WT hG6Pase-α sequence, markedly enhanced enzymatic activity. Using G6pc-/- mice, we show that the efficacy of the rAAV-hG6PC-S298C vector was 3-fold higher than that of the rAAV-hG6PC-WT vector. The rAAV-hG6PC-S298C vector with increased efficacy, that minimizes the potential problems associated with codon-optimization, offers a valuable vector for clinical translation in human GSD-Ia.


Assuntos
Terapia Genética/métodos , Glucose-6-Fosfatase/genética , Glucose/metabolismo , Doença de Depósito de Glicogênio Tipo I/terapia , Animais , Dependovirus/genética , Modelos Animais de Doenças , Cães , Vetores Genéticos/administração & dosagem , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/enzimologia , Homeostase , Humanos , Fígado/enzimologia , Camundongos , Camundongos Knockout , Ratos
8.
J Inherit Metab Dis ; 42(3): 459-469, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30637773

RESUMO

Hepatocellular adenoma/carcinoma (HCA/HCC) is a long-term complication of glycogen storage disease type-Ia (GSD-Ia), which is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC), a key enzyme in gluconeogenesis. Currently, there is no therapy to address HCA/HCC in GSD-Ia. We have previously shown that a recombinant adeno-associated virus (rAAV) vector-mediated G6PC gene transfer to 2-week-old G6pc-/- mice prevents HCA development. However, it remains unclear whether G6PC gene transfer at the tumor developing stage of GSD-Ia can prevent tumor initiation or abrogate the pre-existing tumors. Using liver-specific G6pc-knockout (L-G6pc-/-) mice that develop HCA/HCC, we now show that treating the mice at the tumor-developing stage with rAAV-G6PC restores hepatic G6Pase-α expression, normalizes glucose homeostasis, and prevents de novo HCA/HCC development. The rAAV-G6PC treatment also normalizes defective hepatic autophagy and corrects metabolic abnormalities in the nontumor liver tissues of both tumor-free and tumor-bearing mice. However, gene therapy cannot restore G6Pase-α expression in the HCA/HCC lesions and fails to abrogate any pre-existing tumors. We show that the expression of 11 ß-hydroxysteroid dehydrogenase type-1 that mediates local glucocorticoid activation is downregulated in HCA/HCC lesions, leading to impairment in glucocorticoid signaling critical for gluconeogenesis activation. This suggests that local glucocorticoid action downregulation in the HCA/HCC lesions may suppress gene therapy mediated G6Pase-α restoration. Collectively, our data show that rAAV-mediated gene therapy can prevent de novo HCA/HCC development in L-G6pc-/- mice at the tumor developing stage, but it cannot reduce any pre-existing tumor burden.


Assuntos
Carcinoma Hepatocelular/prevenção & controle , Terapia Genética/métodos , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/terapia , Neoplasias Hepáticas/prevenção & controle , Animais , Carcinoma Hepatocelular/enzimologia , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Glucose/metabolismo , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/enzimologia , Homeostase , Humanos , Fígado/enzimologia , Neoplasias Hepáticas/enzimologia , Camundongos , Camundongos Knockout
9.
Biochem Biophys Res Commun ; 498(4): 925-931, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29545180

RESUMO

Glycogen storage disease type Ia (GSD-Ia) is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC), a key enzyme in endogenous glucose production. This autosomal recessive disorder is characterized by impaired glucose homeostasis and long-term complications of hepatocellular adenoma/carcinoma (HCA/HCC). We have shown that hepatic G6Pase-α deficiency-mediated steatosis leads to defective autophagy that is frequently associated with carcinogenesis. We now show that hepatic G6Pase-α deficiency also leads to enhancement of hepatic glycolysis and hexose monophosphate shunt (HMS) that can contribute to hepatocarcinogenesis. The enhanced hepatic glycolysis is reflected by increased lactate accumulation, increased expression of many glycolytic enzymes, and elevated expression of c-Myc that stimulates glycolysis. The increased HMS is reflected by increased glucose-6-phosphate dehydrogenase activity and elevated production of NADPH and the reduced glutathione. We have previously shown that restoration of hepatic G6Pase-α expression in G6Pase-α-deficient liver corrects metabolic abnormalities, normalizes autophagy, and prevents HCA/HCC development in GSD-Ia. We now show that restoration of hepatic G6Pase-α expression normalizes both glycolysis and HMS in GSD-Ia. Moreover, the HCA/HCC lesions in L-G6pc-/- mice exhibit elevated levels of hexokinase 2 (HK2) and the M2 isoform of pyruvate kinase (PKM2) which play an important role in aerobic glycolysis and cancer cell proliferation. Taken together, hepatic G6Pase-α deficiency causes metabolic reprogramming, leading to enhanced glycolysis and elevated HMS that along with impaired autophagy can contribute to HCA/HCC development in GSD-Ia.


Assuntos
Doença de Depósito de Glicogênio Tipo I/metabolismo , Fígado/metabolismo , Animais , Autofagia , Carcinoma Hepatocelular/etiologia , Doença de Depósito de Glicogênio Tipo I/enzimologia , Glicólise , Humanos , Fígado/enzimologia , Fígado/patologia , Neoplasias Hepáticas/etiologia , Camundongos , Via de Pentose Fosfato
10.
Clin Chim Acta ; 471: 46-54, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28502559

RESUMO

The frequency of rs2229611, previously reported in Chinese, Caucasians, Japanese and Hispanics, was investigated for the first time in Indian ethnicity. We analyzed its role in the progression of Glycogen Storage Disease type-Ia (GSD-Ia) and breast cancer. Genotype data on rs2229611 revealed that the risk of GSD-Ia was higher (P=0.0195) with CC compared to TT/TC genotypes, whereas no such correlation was observed with breast cancer cases. We observed a strong linkage disequilibrium (LD) among rs2229611 and other disease causing G6PC1 variants (|D'|=1, r2=1). Functional validation performed in HepG2 cells using luciferase constructs showed significant (P<0.05) decrease in expression than wild-type 3'-UTR due to curtailed mRNA stability. Furthermore, AU-rich elements (AREs) mediated regulation of G6PC1 expression characterized using 3'-UTR deletion constructs showed a prominent decrease in mRNA stability. We then examined whether miRNAs are involved in controlling G6PC1 expression using pmirGLO-UTR constructs, with evidence of more distinct inhibition in the reporter function with rs2229611. These data suggests that rs2229611 is a crucial regulatory SNP which in homozygous state leads to a more aggressive disease phenotype in GSD-Ia patients. The implication of this result is significant in predicting disease onset, progression and response to disease modifying treatments in patients with GSD-Ia.


Assuntos
Regiões 3' não Traduzidas/genética , Regulação Enzimológica da Expressão Gênica , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/genética , Polimorfismo de Nucleotídeo Único , Estabilidade de RNA/genética , Supressão Genética/genética , Feminino , Doença de Depósito de Glicogênio Tipo I/enzimologia , Células HeLa , Células Hep G2 , Humanos , Masculino , RNA Mensageiro/química , RNA Mensageiro/genética
11.
Sci Rep ; 7: 44408, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28317891

RESUMO

Glycogen storage disease type Ia (GSDIa, von Gierke disease) is the most common glycogen storage disorder. It is caused by the deficiency of glucose-6-phosphatase, an enzyme which catalyses the final step of gluconeogenesis and glycogenolysis. Clinically, GSDIa is characterized by fasting hypoglycaemia and hepatic glycogen and triglyceride overaccumulation. The latter leads to steatohepatitis, cirrhosis, and the formation of hepatic adenomas and carcinomas. Currently, little is known about the function of various organelles and their impact on metabolism in GSDIa. Accordingly, we investigated mitochondrial function in cell culture and mouse models of GSDIa. We found impairments in oxidative phosphorylation and changes in TCA cycle metabolites, as well as decreased mitochondrial membrane potential and deranged mitochondrial ultra-structure in these model systems. Mitochondrial content also was decreased, likely secondary to decreased mitochondrial biogenesis. These deleterious effects culminated in the activation of the mitochondrial apoptosis pathway. Taken together, our results demonstrate a role for mitochondrial dysfunction in the pathogenesis of GSDIa, and identify a new potential target for the treatment of this disease. They also provide new insight into the role of carbohydrate overload on mitochondrial function in other hepatic diseases, such as non-alcoholic fatty liver disease.


Assuntos
Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/genética , Hepatócitos/enzimologia , Fígado/enzimologia , Mitocôndrias/enzimologia , Animais , Apoptose , Linhagem Celular , Ciclo do Ácido Cítrico/genética , Modelos Animais de Doenças , Expressão Gênica , Glucose-6-Fosfatase/antagonistas & inibidores , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/enzimologia , Doença de Depósito de Glicogênio Tipo I/patologia , Doença de Depósito de Glicogênio Tipo I/fisiopatologia , Hepatócitos/patologia , Humanos , Fígado/patologia , Glicogênio Hepático/biossíntese , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Knockout , Mitocôndrias/patologia , Fosforilação Oxidativa , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Triglicerídeos/metabolismo
12.
Mol Genet Metab ; 120(3): 229-234, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28096054

RESUMO

Glycogen storage disease type Ia (GSD-Ia), characterized by impaired glucose homeostasis and chronic risk of hepatocellular adenoma (HCA) and carcinoma (HCC), is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC). We have previously shown that G6pc-/- mice receiving gene transfer mediated by rAAV-G6PC, a recombinant adeno-associated virus (rAAV) vector expressing G6Pase-α, and expressing 3-63% of normal hepatic G6Pase-α activity maintain glucose homeostasis and do not develop HCA/HCC. However, the threshold of hepatic G6Pase-α activity required to prevent tumor formation remained unknown. In this study, we constructed rAAV-co-G6PC, a rAAV vector expressing a codon-optimized (co) G6Pase-α and showed that rAAV-co-G6PC was more efficacious than rAAV-G6PC in directing hepatic G6Pase-α expression. Over an 88-week study, we showed that both rAAV-G6PC- and rAAV-co-G6PC-treated G6pc-/- mice expressing 3-33% of normal hepatic G6Pase-α activity (AAV mice) maintained glucose homeostasis, lacked HCA/HCC, and were protected against age-related obesity and insulin resistance. Of the eleven rAAV-G6PC/rAAV-co-G6PC-treated G6pc-/- mice harboring 0.9-2.4% of normal hepatic G6Pase-α activity (AAV-low mice), 3 expressing 0.9-1.3% of normal hepatic G6Pase-α activity developed HCA/HCC, while 8 did not (AAV-low-NT). Finally, we showed that the AAV-low-NT mice exhibited a phenotype indistinguishable from that of AAV mice expressing ≥3% of normal hepatic G6Pase-α activity. The results establish the threshold of hepatic G6Pase-α activity required to prevent HCA/HCC and show that GSD-Ia mice harboring <2% of normal hepatic G6Pase-α activity are at risk of tumor development.


Assuntos
Adenoma de Células Hepáticas/prevenção & controle , Carcinoma Hepatocelular/prevenção & controle , Terapia Genética/métodos , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/terapia , Neoplasias Hepáticas/prevenção & controle , Adenoma de Células Hepáticas/enzimologia , Animais , Carcinoma Hepatocelular/enzimologia , Dependovirus/genética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Vetores Genéticos/administração & dosagem , Glucose/metabolismo , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/enzimologia , Homeostase , Humanos , Fígado/enzimologia , Neoplasias Hepáticas/enzimologia , Camundongos
13.
Cell Rep ; 11(6): 884-892, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25937276

RESUMO

The liver maintains glucose and lipid homeostasis by adapting its metabolic activity to the energy needs of the organism. Communication between hepatocytes and extracellular environment via endocytosis is key to such homeostasis. Here, we addressed the question of whether endosomes are required for gluconeogenic gene expression. We took advantage of the loss of endosomes in the mouse liver upon Rab5 silencing. Strikingly, we found hepatomegaly and severe metabolic defects such as hypoglycemia, hypercholesterolemia, hyperlipidemia, and glycogen accumulation that phenocopied those found in von Gierke's disease, a glucose-6-phosphatase (G6Pase) deficiency. G6Pase deficiency alone can account for the reduction in hepatic glucose output and glycogen accumulation as determined by mathematical modeling. Interestingly, we uncovered functional alterations in the transcription factors, which regulate G6Pase expression. Our data highlight a requirement of Rab5 and the endosomal system for the regulation of gluconeogenic gene expression that has important implications for metabolic diseases.


Assuntos
Endossomos/enzimologia , Fígado/enzimologia , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Simulação por Computador , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/patologia , Técnicas de Silenciamento de Genes , Gluconeogênese/genética , Glucose/metabolismo , Glucose-6-Fosfatase/metabolismo , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo I/enzimologia , Doença de Depósito de Glicogênio Tipo I/patologia , Hepatomegalia/enzimologia , Hepatomegalia/patologia , Hiperglicemia/enzimologia , Hiperglicemia/patologia , Hipoglicemia/enzimologia , Hipoglicemia/patologia , Insulina/metabolismo , Metabolismo dos Lipídeos , Camundongos Knockout , Modelos Biológicos , Proteômica , Transdução de Sinais/genética
14.
Hum Mol Genet ; 24(8): 2287-96, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25561689

RESUMO

Glycogen storage disease type 1a (GSD1a) is a rare disease due to the deficiency in the glucose-6-phosphatase (G6Pase) catalytic subunit (encoded by G6pc), which is essential for endogenous glucose production. Despite strict diet control to maintain blood glucose, patients with GSD1a develop hepatomegaly, steatosis and then hepatocellular adenomas (HCA), which can undergo malignant transformation. Recently, gene therapy has attracted attention as a potential treatment for GSD1a. In order to maintain long-term transgene expression, we developed an HIV-based vector, which allowed us to specifically express the human G6PC cDNA in the liver. We analysed the efficiency of this lentiviral vector in the prevention of the development of the hepatic disease in an original GSD1a mouse model, which exhibits G6Pase deficiency exclusively in the liver (L-G6pc(-/-) mice). Recombinant lentivirus were injected in B6.G6pc(ex3lox/ex3lox). SA(creERT2/w) neonates and G6pc deletion was induced by tamoxifen treatment at weaning. Magnetic resonance imaging was then performed to follow up the development of hepatic tumours. Lentiviral gene therapy restored glucose-6 phosphatase activity sufficient to correct fasting hypoglycaemia during 9 months. Moreover, lentivirus-treated L-G6pc(-/-) mice presented normal hepatic triglyceride levels, whereas untreated mice developed steatosis. Glycogen stores were also decreased although liver weight remained high. Interestingly, lentivirus-treated L-G6pc(-/-) mice were protected against the development of hepatic tumours after 9 months of gene therapy while most of untreated L-G6pc(-/-) mice developed millimetric HCA. Thus the treatment of newborns by recombinant lentivirus appears as an attractive approach to protect the liver from the development of steatosis and hepatic tumours associated to GSD1a pathology.


Assuntos
Terapia Genética , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/terapia , Lentivirus/genética , Neoplasias Hepáticas/prevenção & controle , Animais , Modelos Animais de Doenças , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/enzimologia , Humanos , Lentivirus/metabolismo , Fígado/enzimologia , Neoplasias Hepáticas/etiologia , Camundongos , Camundongos Knockout
15.
J Lipid Res ; 54(7): 2010-22, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23596325

RESUMO

The assessment of liver lipid content and composition is needed in preclinical research to investigate steatosis and steatosis-related disorders. The purpose of this study was to quantify in vivo hepatic fatty acid content and composition using a method based on short echo time proton magnetic resonance spectroscopy (MRS) at 7 Tesla. A mouse model of glycogen storage disease type 1a with inducible liver-specific deletion of the glucose-6-phosphatase gene (L-G6pc(-/-)) mice and control mice were fed a standard diet or a high-fat/high-sucrose (HF/HS) diet for 9 months. In control mice, hepatic lipid content was found significantly higher with the HF/HS diet than with the standard diet. As expected, hepatic lipid content was already elevated in L-G6pc(-/-) mice fed a standard diet compared with control mice. L-G6pc(-/-) mice rapidly developed steatosis which was not modified by the HF/HS diet. On the standard diet, estimated amplitudes from olefinic protons were found significantly higher in L-G6pc(-/-) mice compared with that in control mice. L-G6pc(-/-) mice showed no noticeable polyunsaturation from diallylic protons. Total unsaturated fatty acid indexes measured by gas chromatography were in agreement with MRS measurements. These results showed the great potential of high magnetic field MRS to follow the diet impact and lipid alterations in mouse liver.


Assuntos
Modelos Animais de Doenças , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/metabolismo , Lipídeos/análise , Fígado/química , Animais , Feminino , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/enzimologia , Fígado/metabolismo , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Prótons
16.
Biochim Biophys Acta ; 1830(3): 2608-18, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23266497

RESUMO

BACKGROUND: The endoplasmic reticulum enzyme glucose-6-phosphatase catalyzes the hydrolysis of glucose-6-phosphate to glucose and inorganic phosphate. The enzyme is a part of a multicomponent system that includes several integral membrane proteins; the catalytic subunit (G6PC) and transporters for glucose-6-phosphate, inorganic phosphate and glucose. The G6PC gene family presently includes three members, termed as G6PC, G6PC2, and G6PC3. Although the three isoforms show a moderate amino acid sequence homology, their membrane topology and catalytic site are very similar. The isoforms are expressed differently in various tissues. Mutations in all three genes have been reported to be associated with human diseases. SCOPE OF REVIEW: The present review outlines the biochemical features of the G6PC gene family products, the regulation of their expression, their role in the human pathology and the possibilities for pharmacological interventions. MAJOR CONCLUSIONS: G6PCs emerge as integrators of extra- and intracellular glucose homeostasis. Beside the well known key role in blood glucose homeostasis, the members of the G6PC family seem to play a role as sensors of intracellular glucose and of intraluminal glucose/glucose-6-phosphate in the endoplasmic reticulum. GENERAL SIGNIFICANCE: Since mutations in the three G6PC genes can be linked to human pathophysiological conditions, the better understanding of their functioning in connection with genetic alterations, altered expression and tissue distribution has an eminent importance.


Assuntos
Diabetes Mellitus/enzimologia , Retículo Endoplasmático/enzimologia , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/enzimologia , Neutropenia/enzimologia , Animais , Diabetes Mellitus/genética , Diabetes Mellitus/fisiopatologia , Retículo Endoplasmático/patologia , Regulação da Expressão Gênica , Glucose/metabolismo , Glucose-6-Fosfatase/genética , Glucose-6-Fosfato/metabolismo , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/fisiopatologia , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Neutropenia/congênito , Neutropenia/genética , Neutropenia/fisiopatologia , Fosfatos/metabolismo , Transdução de Sinais
17.
Gene ; 511(1): 122-4, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23000067

RESUMO

Mutations in the glucose-6-phosphatase (G6Pase) gene are responsible for glycogen storage disease type Ia (GSD Ia). By genotype analysis of the affected pedigree, we identified a novel type mutation in a Chinese patient with GSD Ia. Mutation analysis was performed for the coding region of G6Pase gene using DNA sequencing and TaqMan gene expression assay was used to further confirm the novel mutation. The proband was compound heterozygous for c.311A>T/c.648G>T. Our report expands the spectrum of G6Pase gene mutation in China.


Assuntos
Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/enzimologia , Doença de Depósito de Glicogênio Tipo I/genética , Substituição de Aminoácidos , Povo Asiático/genética , Sequência de Bases , Análise Mutacional de DNA , Primers do DNA/genética , Glucose-6-Fosfatase/química , Doença de Depósito de Glicogênio Tipo I/patologia , Heterozigoto , Humanos , Hidroxibutiratos , Indóis , Masculino , Mutação de Sentido Incorreto , Sítios de Splice de RNA , Adulto Jovem
18.
Gene ; 509(1): 154-7, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22909800

RESUMO

The manifestations of glycogen storage disease type 1a (GSD 1a) are usually so prominent in childhood that it is readily diagnosed by pediatricians. However, a mild form of the disease may only become apparent during adolescence or adulthood. We observed a brother and sister with subtle manifestations of the disease, which was discovered after the brother's son was diagnosed with typical GSD 1a. The adult siblings never suffered from hypoglycemia, had normal fasting blood glucose and liver transaminases at the time of diagnosis, and were taller than average for Chinese. Their only notable disease manifestations were recurrent gouty arthritis associated with hyperuricemia and hyperlipidemia during adolescence. When diagnosed, the brother had multiple benign and malignant hepatic tumors, and died of fulminant metastatic hepatocellular carcinoma 6 months after liver transplantation. p.M121V/p.R83H and p.M121V/p.M121V genotypic constellations of the G6PC gene were identified in this family. Both siblings were homozygous for the newly identified p.M121V mutation. The infant had compound heterozygous mutations, p.R83H and p.M121V. We recommend that mild GSD should be considered in the adolescents with unexplained hyperuricemia and hyperlipidemia, despite the presence of normal blood glucose levels. This report also reminds us that hepatocellular carcinoma could develop even in very mild GSD 1a patients.


Assuntos
Erros de Diagnóstico , Fígado Gorduroso/diagnóstico , Doença de Depósito de Glicogênio Tipo I/diagnóstico , Doença de Depósito de Glicogênio Tipo I/genética , Adolescente , Adulto , Artrite Gotosa/enzimologia , Artrite Gotosa/genética , Sequência de Bases , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Pré-Escolar , Consanguinidade , DNA Complementar/genética , Feminino , Glucose-6-Fosfatase/química , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/enzimologia , Heterozigoto , Homozigoto , Humanos , Hiperlipidemias/enzimologia , Hiperlipidemias/genética , Hiperuricemia/enzimologia , Hiperuricemia/genética , Testes de Função Hepática , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Masculino , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
Hepatology ; 56(5): 1719-29, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22422504

RESUMO

UNLABELLED: Glycogen storage disease type Ia (GSD-Ia), which is characterized by impaired glucose homeostasis and chronic risk of hepatocellular adenoma (HCA), is caused by deficiencies in the endoplasmic reticulum (ER)-associated glucose-6-phosphatase-α (G6Pase-α or G6PC) that hydrolyzes glucose-6-phosphate (G6P) to glucose. G6Pase-α activity depends on the G6P transporter (G6PT) that translocates G6P from the cytoplasm into the ER lumen. The functional coupling of G6Pase-α and G6PT maintains interprandial glucose homeostasis. We have shown previously that gene therapy mediated by AAV-GPE, an adeno-associated virus (AAV) vector expressing G6Pase-α directed by the human G6PC promoter/enhancer (GPE), completely normalizes hepatic G6Pase-α deficiency in GSD-Ia (G6pc(-/-) ) mice for at least 24 weeks. However, a recent study showed that within 78 weeks of gene deletion, all mice lacking G6Pase-α in the liver develop HCA. We now show that gene therapy mediated by AAV-GPE maintains efficacy for at least 70-90 weeks for mice expressing more than 3% of wild-type hepatic G6Pase-α activity. The treated mice displayed normal hepatic fat storage, had normal blood metabolite and glucose tolerance profiles, had reduced fasting blood insulin levels, maintained normoglycemia over a 24-hour fast, and had no evidence of hepatic abnormalities. After a 24-hour fast, hepatic G6PT messenger RNA levels in G6pc(-/-) mice receiving gene therapy were markedly increased. Because G6PT transport is the rate-limiting step in microsomal G6P metabolism, this may explain why the treated G6pc(-/-) mice could sustain prolonged fasts. The low fasting blood insulin levels and lack of hepatic steatosis may explain the absence of HCA. CONCLUSION: These results confirm that AAV-GPE-mediated gene transfer corrects hepatic G6Pase-α deficiency in murine GSD-Ia and prevents chronic HCA formation.


Assuntos
Adenoma/prevenção & controle , Terapia Genética , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/enzimologia , Doença de Depósito de Glicogênio Tipo I/terapia , Neoplasias Hepáticas/prevenção & controle , Fígado/metabolismo , Animais , Antiporters/genética , Antiporters/metabolismo , Glicemia , Índice de Massa Corporal , Peso Corporal , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Terapia Genética/efeitos adversos , Vetores Genéticos , Teste de Tolerância a Glucose , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/genética , Homeostase , Insulina/sangue , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA