Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.756
Filtrar
1.
PLoS One ; 19(8): e0308088, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39088513

RESUMO

In the absence of effective drugs, vaccines constitute the cornerstone for the prevention of Newcastle disease (ND). Different strategies have been implemented to increase vaccination, but uptake remains low, underscoring the need for novel vaccine delivery methods. We designed and assessed the effectiveness of a community-centered ND vaccine delivery model in southeastern Kenya. Under the model, we sensitized smallholder chicken farmers (SCFs) through structured training on chicken husbandry, biosecurity, ND, and its vaccination, among other aspects. We subsequently engaged trained community vaccinators (CVs) to deliver vaccines and/or provide vaccination services to SCFs at a cost on one hand and, at no cost on the other, in selected sites to address challenges of inadequate service providers, vaccine unavailability, and inaccessibility. We tested this model under paid and free vaccination frameworks over one year and assessed the model's effect on vaccine uptake, ND-related deaths, and vaccine accessibility, among other aspects. Overall, we vaccinated more chickens at free sites compared to paid sites. However, we vaccinated a significantly higher mean number of chickens per household at paid (49.4±38.5) compared to free (28.4±25.9) sites (t = 8.4, p<0.0001). We recorded a significant increase in the proportion of SCFs who vaccinated their chickens from 31.3% to 68.4% (χ2(1, N = 399) = 58.3, p<0.0001) in paid and from 19.9% to 74.9% (χ2(1, N = 403) = 115.7, p<0.0001) in free sites pre- and post-intervention, respectively. The mean number of ND-related deaths reported per household decreased from 18.1±31.6 pre-intervention to 7.5±22.3 post-intervention (t = 5.4, p = 0.000), with higher reductions recorded in paid sites (20.9±37.7 to 4.5±11.2) compared to free sites (15.0±22.6 to 10.7±29.7) pre- and post-intervention, respectively. Farmers with access to vaccines increased significantly from 61.1% to 85.4% (χ2(1, N = 399) = 31.7, p<0.0001) in paid and 43.6% to 74.9% (χ2(1, N = 403) = 38.4, p = 0.0001) in free sites pre- and post-intervention, respectively. We established that type of intervention framework, gender of household head, if the household head attended training on chicken production in the last 12 months, access to information on ND vaccination, and the number of chickens lost to the previous ND outbreak were significant predictors of ND vaccine uptake. Our findings indicate the model has a broader reach and benefits for SCFs. However, policies should be enacted to regulate the integration of CVs into the formal animal health sector.


Assuntos
Galinhas , Doença de Newcastle , Vacinação , Quênia , Animais , Doença de Newcastle/prevenção & controle , Vacinas Virais/administração & dosagem , Vacinas Virais/economia , Vacinas Virais/imunologia , Vírus da Doença de Newcastle/imunologia , Doenças das Aves Domésticas/prevenção & controle , Humanos , Criação de Animais Domésticos/métodos , Fazendeiros
2.
Arch Virol ; 169(9): 175, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117748

RESUMO

Newcastle disease virus (NDV), an avian paramyxovirus, causes major economic losses in the poultry industry worldwide. NDV strains are classified as avirulent, moderately virulent, or virulent according to the severity of the disease they cause. In order to gain a deeper understanding of the molecular mechanisms of virus-host interactions, we conducted Illumina HiSeq-based RNA-Seq analysis on chicken embryo fibroblast (DF1) cells during the first 24 hours of infection with NDV strain Komarov. Comparative analysis of uninfected DF1 cells versus NDV-infected DF1 cells at 6, 12, and 24 h postinfection identified 462, 459, and 410 differentially expressed genes, respectively. The findings revealed an increase in the expression of genes linked to the MAPK signalling pathway in the initial stages of NDV infection. This overexpression potentially aids viral multiplication while hindering pathogen detection and subsequent immune responses from the host. Our findings provide initial insights into the early responses of DF1 cells to NDV infection.


Assuntos
Galinhas , Fibroblastos , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Doença de Newcastle , Vírus da Doença de Newcastle , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/patogenicidade , Vírus da Doença de Newcastle/fisiologia , Animais , Doença de Newcastle/virologia , Doença de Newcastle/imunologia , Galinhas/virologia , Fibroblastos/virologia , Interações Hospedeiro-Patógeno/genética , Embrião de Galinha , Linhagem Celular , Transcriptoma , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/genética , Replicação Viral/genética
3.
Sci Rep ; 14(1): 18047, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103419

RESUMO

Newcastle disease (ND), an economically important disease in poultry, is caused by virulent strains of the genetically diverse Orthoavulavirus javaense (OAVJ). Laboratories rely on quantitative real-time reverse transcription PCR (qRT-PCR) to detect OAVJ and differentiate between OAVJ pathotypes. This study demonstrates that a fusion cleavage site based molecular beacon with reverse transcription loop mediated isothermal amplification (MB-RT-LAMP) assay can detect and differentiate OAVJ pathotypes in a single assay. Data show that the assay can rapidly identify diverse OAVJ genotypes with sensitivity only one log-fold lower than the current fusion qRT-PCR assay (104 copies), exhibits a high degree of specificity for OAVJ, and the molecular beacon can differentiate mesogenic/velogenic sequences from lentogenic sequences. Further, data show that a two-minute rapid lysis protocol preceding MB-RT-LAMP can detect and differentiate OAVJ RNA from both spiked samples and oropharyngeal swabs without the need for RNA isolation. As the MB-RT-LAMP assay can rapidly detect and discriminate between lentogenic and mesogenic/velogenic sequences of OAVJ within one assay, without the need for RNA isolation, and is adaptable to existing veterinary diagnostic laboratory workflow without additional equipment, this assay could be a rapid primary screening tool before qRT-PCR based validation in resource limited settings.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Animais , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade , Virulência/genética , RNA Viral/genética , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Doença de Newcastle/virologia , Doença de Newcastle/diagnóstico , Genótipo
4.
Vet Med Sci ; 10(5): e1571, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39110068

RESUMO

BACKGROUND: Newcastle disease (ND) poses significant challenges within the poultry industry, leading to increased mortality rates, compromised growth, weakened immunity and elevated levels of inflammation. OBJECTIVE: This study explores the potential of dietary arginine supplementation to ameliorate these adverse effects of ND, leveraging arginine's well-documented benefits in enhancing growth and immune responses. METHODS: A total of 480 one-day-old male broiler chicks were meticulously categorised into eight groups, encompassing both infected and noninfected cohorts. These chicks received diets with arginine levels at 85%, 100%, 125% and 150% of recommended standards. The study entailed a comprehensive examination of clinical manifestations, growth performance metrics, haemagglutination inhibition (HI) test results, and serum concentrations of proinflammatory cytokines, adrenocorticotropic hormone (ACTH), and cortisol (CORT). RESULTS: The infection significantly curtailed feed consumption (p = 0.0001) and weight gain (p = 0.0001) while concurrently depressing HI titres. Additionally, infected chicks experienced an exacerbated feed conversion ratio (p = 0.0001), escalated mortality rates (p = 0.0001), and elevated serum concentrations of proinflammatory cytokines (p = 0.0001), ACTH (p = 0.0001), and CORT (p = 0.0001). Remarkably, dietary arginine supplementation effectively mitigated the adverse impacts of ND infection on growth, immune responses and proinflammatory cytokine levels. In the context of ND infection, mortality rates and inflammation surge, while growth and immunity are significantly compromised. CONCLUSIONS: The strategic inclusion of arginine in the diet emerges as a potent strategy to counteract the deleterious effects of ND. Supplementation with arginine at levels exceeding the conventional dietary recommendations is recommended to alleviate the detrimental consequences of ND effectively.


Assuntos
Ração Animal , Arginina , Galinhas , Dieta , Suplementos Nutricionais , Doença de Newcastle , Vírus da Doença de Newcastle , Doenças das Aves Domésticas , Animais , Arginina/administração & dosagem , Suplementos Nutricionais/análise , Doença de Newcastle/prevenção & controle , Dieta/veterinária , Masculino , Ração Animal/análise , Vírus da Doença de Newcastle/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia
5.
Virulence ; 15(1): 2387181, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39101682

RESUMO

Infectious bursal disease (IBD) is a widespread problem in the poultry industry, and vaccination is the primary preventive method. However, moderately virulent vaccines may damage the bursa, necessitating the development of a safe and effective vaccine. The Newcastle disease virus (NDV) has been explored as a vector for vaccine development. In this study, reverse genetic technology was used to obtain three recombinant viruses, namely, rClone30-VP2L (P/M)-chGM-CSF (NP), rClone30-chGM-CSF (P/M)-VP2L (NP), and rClone30-VP2L-chGM-CSF (P/M). Animal experiments showed that the three biological adjuvant bivalent vaccines effectively increased anti-NDV and anti-infectious bursal disease virus (IBDV) titres, enhancing both humoral and cellular immune responses in chickens without leading to any harm. Amongst the three biological adjuvant bivalent vaccines, the rClone30-chGM-CSF (P/M)-VP2L (NP) group had higher levels of anti-NDV antibodies at 14 days after the first immunization and stimulated a greater humoral immune response in 7-10 days. While, the rClone30-VP2L (P/M)-chGM-CSF (NP) group was the most effective in producing a higher level of IBDV antibody response. In conclusion, these three vaccines can induce immune responses more rapidly and effectively, streamline production processes, be cost-effective, and provide a new avenue for the development of Newcastle disease (ND) and IBD bivalent vaccines.


Assuntos
Anticorpos Antivirais , Infecções por Birnaviridae , Galinhas , Vírus da Doença Infecciosa da Bursa , Doença de Newcastle , Vírus da Doença de Newcastle , Doenças das Aves Domésticas , Vacinas Virais , Animais , Vacinas Virais/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Infecções por Birnaviridae/prevenção & controle , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/veterinária , Vírus da Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/genética , Vírus da Doença Infecciosa da Bursa/imunologia , Vírus da Doença Infecciosa da Bursa/genética , Doença de Newcastle/prevenção & controle , Doença de Newcastle/imunologia , Anticorpos Antivirais/sangue , Imunidade Humoral , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes de Vacinas , Imunidade Celular , Vacinação
6.
Vet Med Sci ; 10(4): e1491, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39031626

RESUMO

BACKGROUND: Haemagglutinin-neuraminidase (HN) is one of the membrane proteins of Newcastle disease virus (NDV) that plays a significant role during host viral infection. Therefore, antibodies against HN are vital for the host's ability to protect itself against NDV infection due to their critical functions in viral infection. As a result, HN has been a candidate protein in vaccine development against the Newcastle disease virus. METHODS: This report used the full-length sequence of the HN protein of NDV isolated in Iran (VIId subgenotype). We characterize and identify amino acid substitutions in comparison to other more prevalent NDV genotypes, VII subgenotypes and vaccine strains. Furthermore, bioinformatics tools were applied to determine the three-dimensional structure, molecular dynamics simulation and prediction of B-cell antigenic epitopes. RESULTS: The results showed that the antigenic regions of our isolate are quite comparable to the other VII subgenotypes of NDV isolated from different geographical places. Moreover, by employing the final 3D structure of our HN protein, the amino acid residues are proposed as a B-cell epitope by epitope prediction servers, which leads to the introduction of linear and conformational antigenic sites. CONCLUSIONS: Immunoinformatic vaccine design principles currently exhibit tremendous potential for developing a new generation of candidate vaccines quickly and economically to eradicate infectious viruses, including the NDV. In order to accomplish this, focus is directed on residues that might be considered antigenic.


Assuntos
Genótipo , Proteína HN , Vírus da Doença de Newcastle , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Proteína HN/genética , Proteína HN/química , Sequência de Aminoácidos , Animais , Irã (Geográfico) , Sequência de Bases , Galinhas , Doenças das Aves Domésticas/virologia , Doença de Newcastle/virologia
7.
Sci Rep ; 14(1): 16021, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992055

RESUMO

Environmental conditions profoundly impact the health, welfare, and productivity of laying hens in commercial poultry farming. We investigated the association between microclimate variations, production indices, and histopathological responses to accidental Newcastle disease virus (NDV) infection within a controlled closed-house system. The study was conducted over seven months in a laying hen facility in Cairo, Egypt. Microclimate measurements included temperature, relative humidity (RH%), air velocity (AV), and the temperature humidity index (THI) that were obtained from specific locations on the front and back sides of the facility. Productivity indices, including the egg production percentage (EPP), egg weight (EW), average daily feed intake, and feed conversion ratio, were assessed monthly. During an NDV outbreak, humoral immune responses, gross pathology, and histopathological changes were evaluated. The results demonstrated significant (p < 0.05) variations in EPP and EW between the front and back sides except in April and May. AV had a significant (p = 0.006) positive effect (Beta = 0.346) on EW on the front side. On the back side, AV had a significant (p = 0.001) positive effect (Beta = 0.474) on EW, while it negatively influenced (p = 0.027) EPP (Beta = - 0.281). However, temperature, RH%, and THI had no impact and could not serve as predictors for EPP or EW on either farm side. The humoral immune response to NDV was consistent across microclimates, highlighting the resilience of hens. Histopathological examination revealed characteristic NDV-associated lesions, with no significant differences between the microclimates. This study underscores the significance of optimizing microclimate conditions to enhance laying performance by providing tailored environmental management strategies based on seasonal variations, ensuring consistent airflow, particularly near cooling pads and exhaust fans, and reinforcing the importance of biosecurity measures under field challenges with continuous monitoring and adjustment.


Assuntos
Galinhas , Doença de Newcastle , Vírus da Doença de Newcastle , Doenças das Aves Domésticas , Animais , Doença de Newcastle/virologia , Galinhas/virologia , Feminino , Vírus da Doença de Newcastle/fisiologia , Doenças das Aves Domésticas/virologia , Egito , Microclima , Temperatura
8.
Viruses ; 16(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38932177

RESUMO

Newcastle disease virus (NDV) is an avian pathogen with an unsegmented negative-strand RNA genome that belongs to the Paramyxoviridae family. While primarily pathogenic in birds, NDV presents no threat to human health, rendering it a safe candidate for various biomedical applications. Extensive research has highlighted the potential of NDV as a vector for vaccine development and gene therapy, owing to its transcriptional modularity, low recombination rate, and lack of a DNA phase during replication. Furthermore, NDV exhibits oncolytic capabilities, efficiently eliciting antitumor immune responses, thereby positioning it as a promising therapeutic agent for cancer treatment. This article comprehensively reviews the biological characteristics of NDV, elucidates the molecular mechanisms underlying its oncolytic properties, and discusses its applications in the fields of vaccine vector development and tumor therapy.


Assuntos
Vetores Genéticos , Neoplasias , Vírus da Doença de Newcastle , Terapia Viral Oncolítica , Vírus Oncolíticos , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Animais , Humanos , Vetores Genéticos/genética , Neoplasias/terapia , Neoplasias/imunologia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Terapia Genética/métodos , Vacinas Virais/imunologia , Vacinas Virais/genética , Doença de Newcastle/prevenção & controle , Doença de Newcastle/terapia , Doença de Newcastle/virologia , Doença de Newcastle/imunologia , Desenvolvimento de Vacinas/métodos
9.
Vet Microbiol ; 295: 110126, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896939

RESUMO

The co-infection of Newcastle disease virus (NDV) and Mycoplasma gallisepticum (MG) has a detrimental effect on chicken production performance, exerts a deleterious impact on poultry production performance, resulting in substantial economic losses. However, the exact impact and underlying mechanisms remain ambiguous. In this study, co-infection models were established both in vivo and in vitro. Through these models, it was found that the co-infection facilitated the replication of MG and NDV, as well as MG induced pathogenesis. The administration of lentogenic NDV resulted in the suppression of the innate immune response in vivo. At cellular level, co-infection promoted MG induced apoptosis through caspase-dependent mitochondrial endogenous pathway and suppressed the inflammatory secretion. This research contributes novel insights in co-infection.


Assuntos
Galinhas , Coinfecção , Infecções por Mycoplasma , Mycoplasma gallisepticum , Doença de Newcastle , Vírus da Doença de Newcastle , Doenças das Aves Domésticas , Mycoplasma gallisepticum/patogenicidade , Animais , Vírus da Doença de Newcastle/patogenicidade , Vírus da Doença de Newcastle/fisiologia , Coinfecção/microbiologia , Coinfecção/veterinária , Coinfecção/virologia , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/microbiologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/virologia , Doença de Newcastle/virologia , Apoptose , Imunidade Inata , Replicação Viral
10.
Appl Microbiol Biotechnol ; 108(1): 359, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836885

RESUMO

Vacuum foam drying (VFD) has been shown to improve the thermostability and long-term shelf life of Newcastle Disease Virus (NDV). This study optimized the VFD process to improve the shelf life of NDV at laboratory-scale and then tested the optimized conditions at pilot-scale. The optimal NDV to T5 formulation ratio was determined to be 1:1 or 3:2. Using the 1:1 virus to formulation ratio, the optimal filling volumes were determined to be 13-17% of the vial capacity. The optimized VFD process conditions were determined to be at a shelf temperature of 25℃ with a minimum overall drying time of 44 h. The vaccine samples prepared using these optimized conditions at laboratory-scale exhibited virus titer losses of ≤ 1.0 log10 with residual moisture content (RMC) below 3%. Furthermore, these samples were transported for 97 days around China at ambient temperature without significant titer loss, thus demonstrating the thermostability of the NDV-VFD vaccine. Pilot-scale testing of the NDV-VFD vaccine at optimized conditions showed promising results for up-scaling the process as the RMC was below 3%. However, the virus titer loss was slightly above 1.0 log10 (approximately 1.1 log10). Therefore, the NDV-VFD process requires further optimization at pilot scale to obtain a titer loss of ≤ 1.0 log10. Results from this study provide important guidance for possible industrialization of NDV-VFD vaccine in the future. KEY POINTS: • The process optimization and scale-up test of thermostable NDV vaccine prepared through VFD is reported for the first time in this study. • The live attenuated NDV-VFD vaccine maintained thermostability for 97 days during long distance transportation in summer without cold chain conditions. • The optimized NDV-VFD vaccine preparations evaluated at pilot-scale maintained acceptable levels of infectivity after preservation at 37℃ for 90 days, which demonstrated the feasibility of the vaccine for industrialization.


Assuntos
Doença de Newcastle , Vírus da Doença de Newcastle , Temperatura , Vacinas Virais , Vírus da Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/química , Projetos Piloto , Doença de Newcastle/prevenção & controle , Doença de Newcastle/virologia , Vacinas Virais/química , Vacinas Virais/imunologia , Vácuo , Animais , Galinhas , Dessecação , China , Estabilidade de Medicamentos , Carga Viral
11.
J Wildl Dis ; 60(3): 774-778, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38717893

RESUMO

Ornithologic study skins are specimens of avian skins that have been preserved by drying after removing the viscera and muscle. Because of the high value of study skins for scientific studies, specimens are shared among researchers. There is concern that study skins might be contaminated with high-consequence diseases such as highly pathogenic avian influenza virus (HPAIV) or Newcastle disease virus (NDV). To mitigate risk, thermal or chemical treatment of study skins may be required before transfer; however, such treatments might damage the specimens. Therefore, a study was conducted to evaluate the duration of infectivity of HPAIV and NDV in study skins prepared from infected chickens (Gallus gallus). Study skins were prepared from 10 chickens infected with each virus. Skin and feather pulp samples were taken at the time of study skin preparation to establish starting titers. Mean starting titers in the skin was 4.2 log10 and 5.1 log10 50% egg infectious doses (EID50) for HPAIV and NDV groups respectively, and were 6.7 log10 EID50 for HPAIV, and 6.4 log10 EID50 for NDV in feather pulp. Samples were collected at 2 and 4 wk of drying to quantify viable virus. At 2 wk, fewer samples had detectable virus and mean titers were 1.8 log10 (skin) and 2.1 log10 (feathers) EID50 for HPAIV, and 1.7 log10 (skin) and 3.5 log10 (feathers) EID50 for NDV. At 4 wk viable virus could not be detected in either tissue type.


Assuntos
Galinhas , Vírus da Influenza A , Influenza Aviária , Doença de Newcastle , Vírus da Doença de Newcastle , Pele , Animais , Vírus da Doença de Newcastle/patogenicidade , Influenza Aviária/virologia , Doença de Newcastle/virologia , Galinhas/virologia , Pele/virologia , Vírus da Influenza A/patogenicidade , Manejo de Espécimes/veterinária , Fatores de Tempo
12.
Virus Genes ; 60(4): 385-392, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38739246

RESUMO

The Newcastle disease virus (NDV) affects wild and domesticated bird species, including commercial poultry. Although the diversity of NDV in domestic chickens is well documented, limited information is available about Newcastle disease (ND) outbreaks in other bird species. We report an annotated sequence of NDV/Vulture/Borjuri/01/22, an avirulent strain of NDV reported from Borjuri, Northeast India, in Himalayan Griffon vulture. The complete genome is 15,186 bases long with a fusion protein (F) cleavage site 112GRQGR↓L117. The phylogenetic analysis based on the F protein gene and the whole genome sequence revealed that the isolate from the vulture belongs to genotype II, sharing significant homology with vaccine strain LaSota. The study highlights the possible spillover of the virus from domestic to wild species through the food chain.


Assuntos
Genoma Viral , Doença de Newcastle , Vírus da Doença de Newcastle , Filogenia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/isolamento & purificação , Vírus da Doença de Newcastle/classificação , Animais , Doença de Newcastle/virologia , Doença de Newcastle/transmissão , Genoma Viral/genética , Índia , Genótipo , Sequenciamento Completo do Genoma , Proteínas Virais de Fusão/genética
13.
Vaccine ; 42(18): 3756-3767, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38724417

RESUMO

A Newcastle disease virus (NDV)-vectored vaccine expressing clade 2.3.4.4b H5 Hemagglutinin was developed and assessed for efficacy against H5N1 highly pathogenic avian influenza (HPAI) in specific pathogen-free (SPF) chickens, broilers, and domestic ducks. In SPF chickens, the live recombinant NDV-vectored vaccine, rK148/22-H5, achieved complete survival against HPAI and NDV challenges and significantly reduced viral shedding. Notably, the live rK148/22-H5 vaccine conferred good clinical protection in broilers despite the presence of maternally derived antibodies. Good clinical protection was observed in domestic ducks, with decreased viral shedding. It demonstrated complete survival and reduced cloacal viral shedding when used as an inactivated vaccine from SPF chickens. The rK148/22-H5 vaccine is potentially a viable and supportive option for biosecurity measure, effectively protecting in chickens against the deadly clade 2.3.4.4b H5 HPAI and NDV infections. Furthermore, it aligns with the strategy of Differentiating Infected from Vaccinated Animals (DIVA).


Assuntos
Anticorpos Antivirais , Galinhas , Patos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Vírus da Doença de Newcastle , Vacinas de Produtos Inativados , Vacinas Sintéticas , Eliminação de Partículas Virais , Animais , Galinhas/imunologia , Influenza Aviária/prevenção & controle , Influenza Aviária/imunologia , Vírus da Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/genética , Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Patos/virologia , Patos/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Organismos Livres de Patógenos Específicos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Doença de Newcastle/prevenção & controle , Doença de Newcastle/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
14.
Onderstepoort J Vet Res ; 91(1): e1-e7, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38708767

RESUMO

Newcastle disease (ND) is endemic in Angola. Several outbreaks of ND occurred in small backyard flocks and village chickens with high mortality in the southern provinces of the country, Cunene, Namibe and Huíla, in 2016 and 2018. In those years, 15 virulent ND virus (NDV) strains were isolated and grouped within subgenotype 2 of genotype VII (subgenotype VII.2). We now present a study on the thermostability of the isolates, aiming at the selection of the most thermostable strains that, after being genetically modified to reduce their virulence, can be adapted to the production of vaccines less dependent on cold chain and more adequate to protect native chickens against ND. Heat-inactivation kinetics of haemagglutinin (Ha) activity and infectivity (I) of the isolates were determined by incubating aliquots of virus at 56 °C for different time intervals. The two isolates from Namibe province showed a decrease in infectivity of 2 log10 in ≤ 10 min, therefore belonging to the I-phenotype, but while the NB1 isolate from 2016 maintained the Ha activity up to 30 min and was classified as thermostable virus (I-Ha+), the Ha activity of the 2018 NB2 isolate decreased by 2 log2 in 30 min, being classified as a thermolabile virus (I-Ha-). Of the 13 NDV isolates from Huíla province, 10 isolates were classified as thermostable, eight with phenotype I+Ha+ and 2 with phenotype I-Ha+. The other three isolates from this province were classified as thermolabile viruses (I-Ha-).Contribution: This study will contribute to the control and/or eradication of Newcastle disease virus in Angola. The thermostable viral strains isolated from chickens in the country can be genetically manipulated by reverse genetic technology in order to reduce their virulence and use them as a vaccine in the remote areas of Angola.


Assuntos
Galinhas , Doença de Newcastle , Vírus da Doença de Newcastle , Doenças das Aves Domésticas , Vírus da Doença de Newcastle/patogenicidade , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/classificação , Animais , Doença de Newcastle/virologia , Doença de Newcastle/epidemiologia , Angola/epidemiologia , Virulência , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Temperatura Alta
15.
Viruses ; 16(5)2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38793675

RESUMO

The emergence of new virulent genotypes and the continued genetic drift of Newcastle disease virus (NDV) implies that distinct genotypes of NDV are simultaneously evolving in different geographic locations across the globe, including throughout Africa, where NDV is an important veterinary pathogen. Expanding the genomic diversity of NDV increases the possibility of diagnostic and vaccine failures. In this review, we systematically analyzed the genetic diversity of NDV genotypes in Africa using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Information published between 1999 and 2022 were used to obtain the genetic background of different genotypes of NDV and their geographic distributions in Africa. The following genotypes were reported in Africa: I, II, III, IV, V, VI, VII, VIII, XI, XIII, XIV, XVII, XVIII, XX, and XXI. A new putative genotype has been detected in the Democratic Republic of the Congo. However, of 54 African countries, only 26 countries regularly report information on NDV outbreaks, suggesting that this number may be vastly underestimated. With eight different genotypes, Nigeria is the country with the greatest genotypic diversity of NDV among African countries. Genotype VII is the most prevalent group of NDV in Africa, which was reported in 15 countries. A phylogeographic analysis of NDV sequences revealed transboundary transmission of the virus in Eastern Africa, Western and Central Africa, and in Southern Africa. A regional and continental collaboration is recommended for improved NDV risk management in Africa.


Assuntos
Variação Genética , Genótipo , Doença de Newcastle , Vírus da Doença de Newcastle , Filogenia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/isolamento & purificação , Doença de Newcastle/virologia , Doença de Newcastle/epidemiologia , África/epidemiologia , Animais , Genoma Viral , Vacinação/veterinária , Galinhas/virologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Filogeografia
16.
Vet Res ; 55(1): 58, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715081

RESUMO

The haemagglutinin-neuraminidase (HN) protein, a vital membrane glycoprotein, plays a pivotal role in the pathogenesis of Newcastle disease virus (NDV). Previously, we demonstrated that a mutation in the HN protein is essential for the enhanced virulence of JS/7/05/Ch, a velogenic variant NDV strain originating from the mesogenic vaccine strain Mukteswar. Here, we explored the effects of the HN protein during viral infection in vitro using three viruses: JS/7/05/Ch, Mukteswar, and an HN-replacement chimeric NDV, JS/MukHN. Through microscopic observation, CCK-8, and LDH release assays, we demonstrated that compared with Mukteswar and JS/MukHN, JS/7/05/Ch intensified the cellular damage and mortality attributed to the mutant HN protein. Furthermore, JS/7/05/Ch induced greater levels of apoptosis, as evidenced by the activation of caspase-3/8/9. Moreover, JS/7/05/Ch promoted autophagy, leading to increased autophagosome formation and autophagic flux. Subsequent pharmacological experiments revealed that inhibition of apoptosis and autophagy significantly impacted virus replication and cell viability in the JS/7/05/Ch-infected group, whereas less significant effects were observed in the other two infected groups. Notably, the mutant HN protein enhanced JS/7/05/Ch-induced apoptosis and autophagy by suppressing NF-κB activation, while it mitigated the effects of NF-κB on NDV infection. Overall, our study offers novel insights into the mechanisms underlying the increased virulence of NDV and serves as a reference for the development of vaccines.


Assuntos
Apoptose , Proteína HN , NF-kappa B , Doença de Newcastle , Vírus da Doença de Newcastle , Vírus da Doença de Newcastle/fisiologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/patogenicidade , Animais , Proteína HN/genética , Proteína HN/metabolismo , Doença de Newcastle/virologia , NF-kappa B/metabolismo , Doenças das Aves Domésticas/virologia , Galinhas , Embrião de Galinha
17.
Sci Rep ; 14(1): 10741, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730036

RESUMO

The majority of pigeon paramyxovirus type 1 (PPMV-1) strains are generally non-pathogenic to chickens; however, they can induce severe illness and high mortality rates in pigeons, leading to substantial economic repercussions. The genomes of 11 PPMV-1 isolates from deceased pigeons on meat pigeon farms during passive monitoring from 2009 to 2012 were sequenced and analyzed using polymerase chain reaction and phylogenetic analysis. The complete genome lengths of 11 isolates were approximately 15,192 nucleotides, displaying a consistent gene order of 3'-NP-P-M-F-HN-L-5'. ALL isolates exhibited the characteristic motif of 112RRQKRF117 at the fusion protein cleavage site, which is characteristic of velogenic Newcastle disease virus. Moreover, multiple mutations have been identified within the functional domains of the F and HN proteins, encompassing the fusion peptide, heptad repeat region, transmembrane domains, and neutralizing epitopes. Phylogenetic analysis based on sequences of the F gene unveiled that all isolates clustered within genotype VI in class II. Further classification identified at least two distinct sub-genotypes, with seven isolates classified as sub-genotype VI.2.1.1.2.2, whereas the others were classified as sub-genotype VI.2.1.1.2.1. This study suggests that both sub-genotypes were implicated in severe disease manifestation among meat pigeons, with sub-genotype VI.2.1.1.2.2 displaying an increasing prevalence among Shanghai's meat pigeon population since 2011. These results emphasize the value of developing pigeon-specific vaccines and molecular diagnostic tools for monitoring and proactively managing potential PPMV-1 outbreaks.


Assuntos
Columbidae , Genoma Viral , Doença de Newcastle , Vírus da Doença de Newcastle , Filogenia , Animais , Columbidae/virologia , China/epidemiologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/isolamento & purificação , Vírus da Doença de Newcastle/classificação , Doença de Newcastle/virologia , Doença de Newcastle/epidemiologia , Genótipo , Fazendas , Carne/virologia
18.
Vet Res Commun ; 48(4): 2805-2811, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795252

RESUMO

Multiplex analysis as an immunochip-in-a well format for simultaneous detection of post-vaccinal antibodies to three poultry infections (Newcastle disease, infectious bronchitis and bursal disease) in one chicken sera was developed. The immunochip had a microarray format printed on the bottom of a standard microtiter plate well and consisted of 36 microspots (d = 400 µm each) with three lines of viral antigens absorbed in a gradient of five decreasing concentrations. Optimization of assay conditions revealed the necessity of careful choice of the reaction buffer due to the high tendency of chicken IgY to exhibit unspecific binding. The best results were obtained for PBS buffer (pH 6.0) supplied with 0.1% Tween 20. Assay results were visualized by a number of coloured microspots that were correlated with the specific antibody titre in the analysed serum. High (> 8000), medium (3000-8000) or low (1000-3000) antibody titre level for each of three infections could be quickly assessed in one probe visually or with the help of smartphone. ELISA results (antibody titres) and visual gradient immunochip results interpretation (high, medium, low antibody level/titre) for 63 chicken sera with multiple levels of post-vaccinal antibodies against Newcastle disease, infectious bronchitis and bursal disease were in good correlation.


Assuntos
Anticorpos Antivirais , Infecções por Birnaviridae , Galinhas , Doença de Newcastle , Doenças das Aves Domésticas , Vacinas Virais , Animais , Galinhas/imunologia , Anticorpos Antivirais/sangue , Doença de Newcastle/diagnóstico , Doença de Newcastle/imunologia , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/diagnóstico , Infecções por Birnaviridae/virologia , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Vacinas Virais/imunologia , Vírus da Bronquite Infecciosa/imunologia , Vírus da Doença Infecciosa da Bursa/imunologia , Vírus da Doença de Newcastle/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Ensaio de Imunoadsorção Enzimática/veterinária , Ensaio de Imunoadsorção Enzimática/métodos
19.
Open Vet J ; 14(1): 398-406, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633149

RESUMO

Background: The use of traditional medicine against viral diseases in animal production has been practiced worldwide. Herbal extracts possess organic substances that would improve chicken body performance. Aim: The current study was designed to evaluate the effect of either thyme or ginseng oil in regard to their immune-modulatory, antiviral, and growth promoter properties. Methods: Two hundred and forty-one-day-old broiler chicks were allocated into eight equal groups as the following: group 1; nonvaccinated and nontreated and group 2; Newcastle disease virus (NDV) vaccinated and nontreated. Birds of groups 3 and 4 were treated with thyme oil (200 mg/l of drinking water for 12 hours/day) without or with NDV vaccination. Birds of groups 5 and 6 were treated with ginseng oil (200 mg/l of drinking water for 12 hours/day) without or with NDV vaccination. Birds of groups 7 and 8 were treated with a combination of ginseng oil (100 mg/l of drinking water) and thyme oil (100 mg/l of drinking water) for 12 hours/day. On the 35th day of life, birds in all the experimental groups were given 0.1 ml of a virulent genotype VIId NDV strain suspension containing 106.3 EID50/ml intramuscularly. Results: Administration of ginseng and thyme oils each alone or simultaneously to birds either vaccinated or nonvaccinated elicited a significant improvement in body performance parameters. Administration of thyme and ginseng each alone or concurrently to vaccinated birds (Gp 4, 6, and 8) induced a higher hemagglutination inhibition (HI) titer of 6, 7.3, and 6.3 log2 at 21 days of age, 6.7, 7.6, and 7 log2, at 28 days of age and 7, 8, and 6.8 log2 at 35 days of age, respectively. Challenge with vNDV genotype VII led to an increase in the NDV-specific HI-Ab titers 10 days post challenge in all the experimental groups. In addition, thyme, ginseng oils, or a combination of them improved the protection from mortality in vaccinated birds; by 100%, 100%, and 90%, respectively, compared with 80% protection from mortality in vaccinated-only birds post-NDV challenge. Moreover, NDV-vaccinated birds treated either with thyme; ginseng or their combination showed negative detection of the virus in both tracheal and cloacal swabs and nonvaccinated groups that received oils showed improvement in vNDV shedding in tracheal and cloacal swabs. Conclusion: It could be concluded that the administration of thyme and ginseng essential oils to broilers can improve productive performance parameters, stimulate humoral immunity against, and protect from vNDV infection.


Assuntos
Água Potável , Doença de Newcastle , Panax , Óleos de Plantas , Timol , Thymus (Planta) , Animais , Vírus da Doença de Newcastle/genética , Galinhas , Anticorpos Antivirais , Óleos
20.
Open Vet J ; 14(1): 12-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633151

RESUMO

Newcastle disease (ND) is a tremendously contagious avian infection with extensive monetary ramifications for the chicken zone. To reduce the effect of ND on the Saudi rooster enterprise, our analysis emphasizes the necessity of genotype-particular vaccinations, elevated surveillance, public recognition campaigns, and stepped-forward biosecurity. Data show that one-of-a-kind bird species, outdoor flocks, and nearby differences in susceptibility are all vulnerable. The pathogenesis consists of tropism in the respiratory and gastrointestinal structures and some genotypes boom virulence. Laboratory diagnostics use reverse transcription-polymerase chain reaction, sequencing, and serotyping among different strategies. Vital records are supplied through immune responses and serological trying out. Vaccination campaigns, biosecurity protocols, and emergency preparedness are all covered in prevention and manipulation techniques. Notably, co-circulating genotypes and disparities in immunization regulations worry Saudi Arabia. The effect of ND in Saudi Arabia is tested in this paper, with precise attention paid to immunological reaction, pathogenesis, susceptibility elements, laboratory analysis, and preventative and manipulation measures. Saudi Arabia can shield its bird region and beef up its defences against Newcastle's ailment, enforcing those hints into its policies.


Assuntos
Doenças dos Bovinos , Doença de Newcastle , Doenças das Aves Domésticas , Bovinos , Animais , Masculino , Aves Domésticas , Galinhas , Arábia Saudita , Vírus da Doença de Newcastle/genética , Doenças das Aves Domésticas/epidemiologia , Doença de Newcastle/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA