Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18047, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103419

RESUMO

Newcastle disease (ND), an economically important disease in poultry, is caused by virulent strains of the genetically diverse Orthoavulavirus javaense (OAVJ). Laboratories rely on quantitative real-time reverse transcription PCR (qRT-PCR) to detect OAVJ and differentiate between OAVJ pathotypes. This study demonstrates that a fusion cleavage site based molecular beacon with reverse transcription loop mediated isothermal amplification (MB-RT-LAMP) assay can detect and differentiate OAVJ pathotypes in a single assay. Data show that the assay can rapidly identify diverse OAVJ genotypes with sensitivity only one log-fold lower than the current fusion qRT-PCR assay (104 copies), exhibits a high degree of specificity for OAVJ, and the molecular beacon can differentiate mesogenic/velogenic sequences from lentogenic sequences. Further, data show that a two-minute rapid lysis protocol preceding MB-RT-LAMP can detect and differentiate OAVJ RNA from both spiked samples and oropharyngeal swabs without the need for RNA isolation. As the MB-RT-LAMP assay can rapidly detect and discriminate between lentogenic and mesogenic/velogenic sequences of OAVJ within one assay, without the need for RNA isolation, and is adaptable to existing veterinary diagnostic laboratory workflow without additional equipment, this assay could be a rapid primary screening tool before qRT-PCR based validation in resource limited settings.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Animais , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade , Virulência/genética , RNA Viral/genética , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Doença de Newcastle/virologia , Doença de Newcastle/diagnóstico , Genótipo
2.
Arch Virol ; 169(9): 175, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117748

RESUMO

Newcastle disease virus (NDV), an avian paramyxovirus, causes major economic losses in the poultry industry worldwide. NDV strains are classified as avirulent, moderately virulent, or virulent according to the severity of the disease they cause. In order to gain a deeper understanding of the molecular mechanisms of virus-host interactions, we conducted Illumina HiSeq-based RNA-Seq analysis on chicken embryo fibroblast (DF1) cells during the first 24 hours of infection with NDV strain Komarov. Comparative analysis of uninfected DF1 cells versus NDV-infected DF1 cells at 6, 12, and 24 h postinfection identified 462, 459, and 410 differentially expressed genes, respectively. The findings revealed an increase in the expression of genes linked to the MAPK signalling pathway in the initial stages of NDV infection. This overexpression potentially aids viral multiplication while hindering pathogen detection and subsequent immune responses from the host. Our findings provide initial insights into the early responses of DF1 cells to NDV infection.


Assuntos
Galinhas , Fibroblastos , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Doença de Newcastle , Vírus da Doença de Newcastle , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/patogenicidade , Vírus da Doença de Newcastle/fisiologia , Animais , Doença de Newcastle/virologia , Doença de Newcastle/imunologia , Galinhas/virologia , Fibroblastos/virologia , Interações Hospedeiro-Patógeno/genética , Embrião de Galinha , Linhagem Celular , Transcriptoma , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/genética , Replicação Viral/genética
3.
Vet Med Sci ; 10(4): e1491, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39031626

RESUMO

BACKGROUND: Haemagglutinin-neuraminidase (HN) is one of the membrane proteins of Newcastle disease virus (NDV) that plays a significant role during host viral infection. Therefore, antibodies against HN are vital for the host's ability to protect itself against NDV infection due to their critical functions in viral infection. As a result, HN has been a candidate protein in vaccine development against the Newcastle disease virus. METHODS: This report used the full-length sequence of the HN protein of NDV isolated in Iran (VIId subgenotype). We characterize and identify amino acid substitutions in comparison to other more prevalent NDV genotypes, VII subgenotypes and vaccine strains. Furthermore, bioinformatics tools were applied to determine the three-dimensional structure, molecular dynamics simulation and prediction of B-cell antigenic epitopes. RESULTS: The results showed that the antigenic regions of our isolate are quite comparable to the other VII subgenotypes of NDV isolated from different geographical places. Moreover, by employing the final 3D structure of our HN protein, the amino acid residues are proposed as a B-cell epitope by epitope prediction servers, which leads to the introduction of linear and conformational antigenic sites. CONCLUSIONS: Immunoinformatic vaccine design principles currently exhibit tremendous potential for developing a new generation of candidate vaccines quickly and economically to eradicate infectious viruses, including the NDV. In order to accomplish this, focus is directed on residues that might be considered antigenic.


Assuntos
Genótipo , Proteína HN , Vírus da Doença de Newcastle , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Proteína HN/genética , Proteína HN/química , Sequência de Aminoácidos , Animais , Irã (Geográfico) , Sequência de Bases , Galinhas , Doenças das Aves Domésticas/virologia , Doença de Newcastle/virologia
4.
Sci Rep ; 14(1): 16021, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992055

RESUMO

Environmental conditions profoundly impact the health, welfare, and productivity of laying hens in commercial poultry farming. We investigated the association between microclimate variations, production indices, and histopathological responses to accidental Newcastle disease virus (NDV) infection within a controlled closed-house system. The study was conducted over seven months in a laying hen facility in Cairo, Egypt. Microclimate measurements included temperature, relative humidity (RH%), air velocity (AV), and the temperature humidity index (THI) that were obtained from specific locations on the front and back sides of the facility. Productivity indices, including the egg production percentage (EPP), egg weight (EW), average daily feed intake, and feed conversion ratio, were assessed monthly. During an NDV outbreak, humoral immune responses, gross pathology, and histopathological changes were evaluated. The results demonstrated significant (p < 0.05) variations in EPP and EW between the front and back sides except in April and May. AV had a significant (p = 0.006) positive effect (Beta = 0.346) on EW on the front side. On the back side, AV had a significant (p = 0.001) positive effect (Beta = 0.474) on EW, while it negatively influenced (p = 0.027) EPP (Beta = - 0.281). However, temperature, RH%, and THI had no impact and could not serve as predictors for EPP or EW on either farm side. The humoral immune response to NDV was consistent across microclimates, highlighting the resilience of hens. Histopathological examination revealed characteristic NDV-associated lesions, with no significant differences between the microclimates. This study underscores the significance of optimizing microclimate conditions to enhance laying performance by providing tailored environmental management strategies based on seasonal variations, ensuring consistent airflow, particularly near cooling pads and exhaust fans, and reinforcing the importance of biosecurity measures under field challenges with continuous monitoring and adjustment.


Assuntos
Galinhas , Doença de Newcastle , Vírus da Doença de Newcastle , Doenças das Aves Domésticas , Animais , Doença de Newcastle/virologia , Galinhas/virologia , Feminino , Vírus da Doença de Newcastle/fisiologia , Doenças das Aves Domésticas/virologia , Egito , Microclima , Temperatura
5.
Appl Microbiol Biotechnol ; 108(1): 359, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836885

RESUMO

Vacuum foam drying (VFD) has been shown to improve the thermostability and long-term shelf life of Newcastle Disease Virus (NDV). This study optimized the VFD process to improve the shelf life of NDV at laboratory-scale and then tested the optimized conditions at pilot-scale. The optimal NDV to T5 formulation ratio was determined to be 1:1 or 3:2. Using the 1:1 virus to formulation ratio, the optimal filling volumes were determined to be 13-17% of the vial capacity. The optimized VFD process conditions were determined to be at a shelf temperature of 25℃ with a minimum overall drying time of 44 h. The vaccine samples prepared using these optimized conditions at laboratory-scale exhibited virus titer losses of ≤ 1.0 log10 with residual moisture content (RMC) below 3%. Furthermore, these samples were transported for 97 days around China at ambient temperature without significant titer loss, thus demonstrating the thermostability of the NDV-VFD vaccine. Pilot-scale testing of the NDV-VFD vaccine at optimized conditions showed promising results for up-scaling the process as the RMC was below 3%. However, the virus titer loss was slightly above 1.0 log10 (approximately 1.1 log10). Therefore, the NDV-VFD process requires further optimization at pilot scale to obtain a titer loss of ≤ 1.0 log10. Results from this study provide important guidance for possible industrialization of NDV-VFD vaccine in the future. KEY POINTS: • The process optimization and scale-up test of thermostable NDV vaccine prepared through VFD is reported for the first time in this study. • The live attenuated NDV-VFD vaccine maintained thermostability for 97 days during long distance transportation in summer without cold chain conditions. • The optimized NDV-VFD vaccine preparations evaluated at pilot-scale maintained acceptable levels of infectivity after preservation at 37℃ for 90 days, which demonstrated the feasibility of the vaccine for industrialization.


Assuntos
Doença de Newcastle , Vírus da Doença de Newcastle , Temperatura , Vacinas Virais , Vírus da Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/química , Projetos Piloto , Doença de Newcastle/prevenção & controle , Doença de Newcastle/virologia , Vacinas Virais/química , Vacinas Virais/imunologia , Vácuo , Animais , Galinhas , Dessecação , China , Estabilidade de Medicamentos , Carga Viral
6.
Viruses ; 16(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38932177

RESUMO

Newcastle disease virus (NDV) is an avian pathogen with an unsegmented negative-strand RNA genome that belongs to the Paramyxoviridae family. While primarily pathogenic in birds, NDV presents no threat to human health, rendering it a safe candidate for various biomedical applications. Extensive research has highlighted the potential of NDV as a vector for vaccine development and gene therapy, owing to its transcriptional modularity, low recombination rate, and lack of a DNA phase during replication. Furthermore, NDV exhibits oncolytic capabilities, efficiently eliciting antitumor immune responses, thereby positioning it as a promising therapeutic agent for cancer treatment. This article comprehensively reviews the biological characteristics of NDV, elucidates the molecular mechanisms underlying its oncolytic properties, and discusses its applications in the fields of vaccine vector development and tumor therapy.


Assuntos
Vetores Genéticos , Neoplasias , Vírus da Doença de Newcastle , Terapia Viral Oncolítica , Vírus Oncolíticos , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Animais , Humanos , Vetores Genéticos/genética , Neoplasias/terapia , Neoplasias/imunologia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Terapia Genética/métodos , Vacinas Virais/imunologia , Vacinas Virais/genética , Doença de Newcastle/prevenção & controle , Doença de Newcastle/terapia , Doença de Newcastle/virologia , Doença de Newcastle/imunologia , Desenvolvimento de Vacinas/métodos
7.
Vet Microbiol ; 295: 110126, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896939

RESUMO

The co-infection of Newcastle disease virus (NDV) and Mycoplasma gallisepticum (MG) has a detrimental effect on chicken production performance, exerts a deleterious impact on poultry production performance, resulting in substantial economic losses. However, the exact impact and underlying mechanisms remain ambiguous. In this study, co-infection models were established both in vivo and in vitro. Through these models, it was found that the co-infection facilitated the replication of MG and NDV, as well as MG induced pathogenesis. The administration of lentogenic NDV resulted in the suppression of the innate immune response in vivo. At cellular level, co-infection promoted MG induced apoptosis through caspase-dependent mitochondrial endogenous pathway and suppressed the inflammatory secretion. This research contributes novel insights in co-infection.


Assuntos
Galinhas , Coinfecção , Infecções por Mycoplasma , Mycoplasma gallisepticum , Doença de Newcastle , Vírus da Doença de Newcastle , Doenças das Aves Domésticas , Mycoplasma gallisepticum/patogenicidade , Animais , Vírus da Doença de Newcastle/patogenicidade , Vírus da Doença de Newcastle/fisiologia , Coinfecção/microbiologia , Coinfecção/veterinária , Coinfecção/virologia , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/microbiologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/virologia , Doença de Newcastle/virologia , Apoptose , Imunidade Inata , Replicação Viral
8.
Virus Genes ; 60(4): 385-392, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38739246

RESUMO

The Newcastle disease virus (NDV) affects wild and domesticated bird species, including commercial poultry. Although the diversity of NDV in domestic chickens is well documented, limited information is available about Newcastle disease (ND) outbreaks in other bird species. We report an annotated sequence of NDV/Vulture/Borjuri/01/22, an avirulent strain of NDV reported from Borjuri, Northeast India, in Himalayan Griffon vulture. The complete genome is 15,186 bases long with a fusion protein (F) cleavage site 112GRQGR↓L117. The phylogenetic analysis based on the F protein gene and the whole genome sequence revealed that the isolate from the vulture belongs to genotype II, sharing significant homology with vaccine strain LaSota. The study highlights the possible spillover of the virus from domestic to wild species through the food chain.


Assuntos
Genoma Viral , Doença de Newcastle , Vírus da Doença de Newcastle , Filogenia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/isolamento & purificação , Vírus da Doença de Newcastle/classificação , Animais , Doença de Newcastle/virologia , Doença de Newcastle/transmissão , Genoma Viral/genética , Índia , Genótipo , Sequenciamento Completo do Genoma , Proteínas Virais de Fusão/genética
9.
Viruses ; 16(5)2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38793675

RESUMO

The emergence of new virulent genotypes and the continued genetic drift of Newcastle disease virus (NDV) implies that distinct genotypes of NDV are simultaneously evolving in different geographic locations across the globe, including throughout Africa, where NDV is an important veterinary pathogen. Expanding the genomic diversity of NDV increases the possibility of diagnostic and vaccine failures. In this review, we systematically analyzed the genetic diversity of NDV genotypes in Africa using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Information published between 1999 and 2022 were used to obtain the genetic background of different genotypes of NDV and their geographic distributions in Africa. The following genotypes were reported in Africa: I, II, III, IV, V, VI, VII, VIII, XI, XIII, XIV, XVII, XVIII, XX, and XXI. A new putative genotype has been detected in the Democratic Republic of the Congo. However, of 54 African countries, only 26 countries regularly report information on NDV outbreaks, suggesting that this number may be vastly underestimated. With eight different genotypes, Nigeria is the country with the greatest genotypic diversity of NDV among African countries. Genotype VII is the most prevalent group of NDV in Africa, which was reported in 15 countries. A phylogeographic analysis of NDV sequences revealed transboundary transmission of the virus in Eastern Africa, Western and Central Africa, and in Southern Africa. A regional and continental collaboration is recommended for improved NDV risk management in Africa.


Assuntos
Variação Genética , Genótipo , Doença de Newcastle , Vírus da Doença de Newcastle , Filogenia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/isolamento & purificação , Doença de Newcastle/virologia , Doença de Newcastle/epidemiologia , África/epidemiologia , Animais , Genoma Viral , Vacinação/veterinária , Galinhas/virologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Filogeografia
10.
Onderstepoort J Vet Res ; 91(1): e1-e7, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38708767

RESUMO

Newcastle disease (ND) is endemic in Angola. Several outbreaks of ND occurred in small backyard flocks and village chickens with high mortality in the southern provinces of the country, Cunene, Namibe and Huíla, in 2016 and 2018. In those years, 15 virulent ND virus (NDV) strains were isolated and grouped within subgenotype 2 of genotype VII (subgenotype VII.2). We now present a study on the thermostability of the isolates, aiming at the selection of the most thermostable strains that, after being genetically modified to reduce their virulence, can be adapted to the production of vaccines less dependent on cold chain and more adequate to protect native chickens against ND. Heat-inactivation kinetics of haemagglutinin (Ha) activity and infectivity (I) of the isolates were determined by incubating aliquots of virus at 56 °C for different time intervals. The two isolates from Namibe province showed a decrease in infectivity of 2 log10 in ≤ 10 min, therefore belonging to the I-phenotype, but while the NB1 isolate from 2016 maintained the Ha activity up to 30 min and was classified as thermostable virus (I-Ha+), the Ha activity of the 2018 NB2 isolate decreased by 2 log2 in 30 min, being classified as a thermolabile virus (I-Ha-). Of the 13 NDV isolates from Huíla province, 10 isolates were classified as thermostable, eight with phenotype I+Ha+ and 2 with phenotype I-Ha+. The other three isolates from this province were classified as thermolabile viruses (I-Ha-).Contribution: This study will contribute to the control and/or eradication of Newcastle disease virus in Angola. The thermostable viral strains isolated from chickens in the country can be genetically manipulated by reverse genetic technology in order to reduce their virulence and use them as a vaccine in the remote areas of Angola.


Assuntos
Galinhas , Doença de Newcastle , Vírus da Doença de Newcastle , Doenças das Aves Domésticas , Vírus da Doença de Newcastle/patogenicidade , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/classificação , Animais , Doença de Newcastle/virologia , Doença de Newcastle/epidemiologia , Angola/epidemiologia , Virulência , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Temperatura Alta
11.
Sci Rep ; 14(1): 10741, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730036

RESUMO

The majority of pigeon paramyxovirus type 1 (PPMV-1) strains are generally non-pathogenic to chickens; however, they can induce severe illness and high mortality rates in pigeons, leading to substantial economic repercussions. The genomes of 11 PPMV-1 isolates from deceased pigeons on meat pigeon farms during passive monitoring from 2009 to 2012 were sequenced and analyzed using polymerase chain reaction and phylogenetic analysis. The complete genome lengths of 11 isolates were approximately 15,192 nucleotides, displaying a consistent gene order of 3'-NP-P-M-F-HN-L-5'. ALL isolates exhibited the characteristic motif of 112RRQKRF117 at the fusion protein cleavage site, which is characteristic of velogenic Newcastle disease virus. Moreover, multiple mutations have been identified within the functional domains of the F and HN proteins, encompassing the fusion peptide, heptad repeat region, transmembrane domains, and neutralizing epitopes. Phylogenetic analysis based on sequences of the F gene unveiled that all isolates clustered within genotype VI in class II. Further classification identified at least two distinct sub-genotypes, with seven isolates classified as sub-genotype VI.2.1.1.2.2, whereas the others were classified as sub-genotype VI.2.1.1.2.1. This study suggests that both sub-genotypes were implicated in severe disease manifestation among meat pigeons, with sub-genotype VI.2.1.1.2.2 displaying an increasing prevalence among Shanghai's meat pigeon population since 2011. These results emphasize the value of developing pigeon-specific vaccines and molecular diagnostic tools for monitoring and proactively managing potential PPMV-1 outbreaks.


Assuntos
Columbidae , Genoma Viral , Doença de Newcastle , Vírus da Doença de Newcastle , Filogenia , Animais , Columbidae/virologia , China/epidemiologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/isolamento & purificação , Vírus da Doença de Newcastle/classificação , Doença de Newcastle/virologia , Doença de Newcastle/epidemiologia , Genótipo , Fazendas , Carne/virologia
12.
Vet Res ; 55(1): 58, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715081

RESUMO

The haemagglutinin-neuraminidase (HN) protein, a vital membrane glycoprotein, plays a pivotal role in the pathogenesis of Newcastle disease virus (NDV). Previously, we demonstrated that a mutation in the HN protein is essential for the enhanced virulence of JS/7/05/Ch, a velogenic variant NDV strain originating from the mesogenic vaccine strain Mukteswar. Here, we explored the effects of the HN protein during viral infection in vitro using three viruses: JS/7/05/Ch, Mukteswar, and an HN-replacement chimeric NDV, JS/MukHN. Through microscopic observation, CCK-8, and LDH release assays, we demonstrated that compared with Mukteswar and JS/MukHN, JS/7/05/Ch intensified the cellular damage and mortality attributed to the mutant HN protein. Furthermore, JS/7/05/Ch induced greater levels of apoptosis, as evidenced by the activation of caspase-3/8/9. Moreover, JS/7/05/Ch promoted autophagy, leading to increased autophagosome formation and autophagic flux. Subsequent pharmacological experiments revealed that inhibition of apoptosis and autophagy significantly impacted virus replication and cell viability in the JS/7/05/Ch-infected group, whereas less significant effects were observed in the other two infected groups. Notably, the mutant HN protein enhanced JS/7/05/Ch-induced apoptosis and autophagy by suppressing NF-κB activation, while it mitigated the effects of NF-κB on NDV infection. Overall, our study offers novel insights into the mechanisms underlying the increased virulence of NDV and serves as a reference for the development of vaccines.


Assuntos
Apoptose , Proteína HN , NF-kappa B , Doença de Newcastle , Vírus da Doença de Newcastle , Vírus da Doença de Newcastle/fisiologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/patogenicidade , Animais , Proteína HN/genética , Proteína HN/metabolismo , Doença de Newcastle/virologia , NF-kappa B/metabolismo , Doenças das Aves Domésticas/virologia , Galinhas , Embrião de Galinha
13.
J Wildl Dis ; 60(3): 774-778, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38717893

RESUMO

Ornithologic study skins are specimens of avian skins that have been preserved by drying after removing the viscera and muscle. Because of the high value of study skins for scientific studies, specimens are shared among researchers. There is concern that study skins might be contaminated with high-consequence diseases such as highly pathogenic avian influenza virus (HPAIV) or Newcastle disease virus (NDV). To mitigate risk, thermal or chemical treatment of study skins may be required before transfer; however, such treatments might damage the specimens. Therefore, a study was conducted to evaluate the duration of infectivity of HPAIV and NDV in study skins prepared from infected chickens (Gallus gallus). Study skins were prepared from 10 chickens infected with each virus. Skin and feather pulp samples were taken at the time of study skin preparation to establish starting titers. Mean starting titers in the skin was 4.2 log10 and 5.1 log10 50% egg infectious doses (EID50) for HPAIV and NDV groups respectively, and were 6.7 log10 EID50 for HPAIV, and 6.4 log10 EID50 for NDV in feather pulp. Samples were collected at 2 and 4 wk of drying to quantify viable virus. At 2 wk, fewer samples had detectable virus and mean titers were 1.8 log10 (skin) and 2.1 log10 (feathers) EID50 for HPAIV, and 1.7 log10 (skin) and 3.5 log10 (feathers) EID50 for NDV. At 4 wk viable virus could not be detected in either tissue type.


Assuntos
Galinhas , Vírus da Influenza A , Influenza Aviária , Doença de Newcastle , Vírus da Doença de Newcastle , Pele , Animais , Vírus da Doença de Newcastle/patogenicidade , Influenza Aviária/virologia , Doença de Newcastle/virologia , Galinhas/virologia , Pele/virologia , Vírus da Influenza A/patogenicidade , Manejo de Espécimes/veterinária , Fatores de Tempo
14.
Viruses ; 16(4)2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675926

RESUMO

The transcription and replication of the Newcastle disease virus (NDV) strictly rely on the viral ribonucleoprotein (RNP) complex, which is composed of viral NP, P, L and RNA. However, it is not known whether other viral non-RNP proteins participate in this process for viral self-regulation. In this study, we used a minigenome (MG) system to identify the regulatory role of the viral non-RNP proteins V, M, W, F and HN. Among them, V significantly reduced MG-encoded reporter activity compared with the other proteins and inhibited the synthesis of viral mRNA and cRNA. Further, V interacted with NP. A mutation in residue W195 of V diminished V-NP interaction and inhibited inclusion body (IB) formation in NP-P-L-cotransfected cells. Furthermore, a reverse-genetics system for the highly virulent strain F48E9 was established. The mutant rF48E9-VW195R increased viral replication and apparently enhanced IB formation. In vivo experiments demonstrated that rF48E9-VW195R decreased virulence and retarded time of death. Overall, the results indicate that the V-NP interaction of the W195 mutant V decreased, which regulated viral RNA synthesis, IB formation, viral replication and pathogenicity. This study provides insight into the self-regulation of non-RNP proteins in paramyxoviruses.


Assuntos
Vírus da Doença de Newcastle , Proteínas Virais , Replicação Viral , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/fisiologia , Vírus da Doença de Newcastle/metabolismo , Animais , Proteínas Virais/metabolismo , Proteínas Virais/genética , Nucleoproteínas/metabolismo , Nucleoproteínas/genética , Doença de Newcastle/virologia , Doença de Newcastle/metabolismo , Linhagem Celular , Regulação Viral da Expressão Gênica , RNA Viral/genética , RNA Viral/metabolismo , Galinhas , Virulência , Ligação Proteica , Mutação
15.
J Virol ; 98(5): e0001624, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38563732

RESUMO

Tumor necrosis factor receptor-associated factor family member-associated NF-κB activator-binding kinase 1 (TBK1) plays a key role in the induction of the type 1 interferon (IFN-I) response, which is an important component of innate antiviral defense. Viruses target calcium (Ca2+) signaling networks, which participate in the regulation of the viral life cycle, as well as mediate the host antiviral response. Although many studies have focused on the role of Ca2+ signaling in the regulation of IFN-I, the relationship between Ca2+ and TBK1 in different infection models requires further elucidation. Here, we examined the effects of the Newcastle disease virus (NDV)-induced increase in intracellular Ca2+ levels on the suppression of host antiviral responses. We demonstrated that intracellular Ca2+ increased significantly during NDV infection, leading to impaired IFN-I production and antiviral immunity through the activation of calcineurin (CaN). Depletion of Ca²+ was found to lead to a significant increase in virus-induced IFN-I production resulting in the inhibition of viral replication. Mechanistically, the accumulation of Ca2+ in response to viral infection increases the phosphatase activity of CaN, which in turn dephosphorylates and inactivates TBK1 in a Ca2+-dependent manner. Furthermore, the inhibition of CaN on viral replication was counteracted in TBK1 knockout cells. Together, our data demonstrate that NDV hijacks Ca2+ signaling networks to negatively regulate innate immunity via the CaN-TBK1 signaling axis. Thus, our findings not only identify the mechanism by which viruses exploit Ca2+ signaling to evade the host antiviral response but also, more importantly, highlight the potential role of Ca2+ homeostasis in the viral innate immune response.IMPORTANCEViral infections disrupt intracellular Ca2+ homeostasis, which affects the regulation of various host processes to create conditions that are conducive for their own proliferation, including the host immune response. The mechanism by which viruses trigger TBK1 activation and IFN-I induction through viral pathogen-associated molecular patterns has been well defined. However, the effects of virus-mediated Ca2+ imbalance on the IFN-I pathway requires further elucidation, especially with respect to TBK1 activation. Herein, we report that NDV infection causes an increase in intracellular free Ca2+ that leads to activation of the serine/threonine phosphatase CaN, which subsequently dephosphorylates TBK1 and negatively regulates IFN-I production. Furthermore, depletion of Ca2+ or inhibition of CaN activity exerts antiviral effects by promoting the production of IFN-I and inhibiting viral replication. Thus, our results reveal the potential role of Ca2+ in the innate immune response to viruses and provide a theoretical reference for the treatment of viral infectious diseases.


Assuntos
Calcineurina , Cálcio , Imunidade Inata , Vírus da Doença de Newcastle , Proteínas Serina-Treonina Quinases , Replicação Viral , Animais , Humanos , Calcineurina/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular , Células HEK293 , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Doença de Newcastle/imunologia , Doença de Newcastle/virologia , Doença de Newcastle/metabolismo , Vírus da Doença de Newcastle/imunologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética
16.
J Virol ; 98(3): e0191523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38334327

RESUMO

As an intrinsic cellular mechanism responsible for the internalization of extracellular ligands and membrane components, caveolae-mediated endocytosis (CavME) is also exploited by certain pathogens for endocytic entry [e.g., Newcastle disease virus (NDV) of paramyxovirus]. However, the molecular mechanisms of NDV-induced CavME remain poorly understood. Herein, we demonstrate that sialic acid-containing gangliosides, rather than glycoproteins, were utilized by NDV as receptors to initiate the endocytic entry of NDV into HD11 cells. The binding of NDV to gangliosides induced the activation of a non-receptor tyrosine kinase, Src, leading to the phosphorylation of caveolin-1 (Cav1) and dynamin-2 (Dyn2), which contributed to the endocytic entry of NDV. Moreover, an inoculation of cells with NDV-induced actin cytoskeletal rearrangement through Src to facilitate NDV entry via endocytosis and direct fusion with the plasma membrane. Subsequently, unique members of the Rho GTPases family, RhoA and Cdc42, were activated by NDV in a Src-dependent manner. Further analyses revealed that RhoA and Cdc42 regulated the activities of specific effectors, cofilin and myosin regulatory light chain 2, responsible for actin cytoskeleton rearrangement, through diverse intracellular signaling cascades. Taken together, our results suggest that an inoculation of NDV-induced Src-mediated cellular activation by binding to ganglioside receptors. This process orchestrated NDV endocytic entry by modulating the activities of caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPases and downstream effectors. IMPORTANCE: In general, it is known that the paramyxovirus gains access to host cells through direct penetration at the plasma membrane; however, emerging evidence suggests more complex entry mechanisms for paramyxoviruses. The endocytic entry of Newcastle disease virus (NDV), a representative member of the paramyxovirus family, into multiple types of cells has been recently reported. Herein, we demonstrate the binding of NDV to induce ganglioside-activated Src signaling, which is responsible for the endocytic entry of NDV through caveolae-mediated endocytosis. This process involved Src-dependent activation of the caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPase and downstream effectors, thereby orchestrating the endocytic entry process of NDV. Our findings uncover a novel molecular mechanism of endocytic entry of NDV into host cells and provide novel insight into paramyxovirus mechanisms of entry.


Assuntos
Macrófagos , Doença de Newcastle , Vírus da Doença de Newcastle , Transdução de Sinais , Internalização do Vírus , Animais , Endocitose , Gangliosídeos/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo
17.
Arch Razi Inst ; 78(6): 1861-1867, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38828165

RESUMO

The Newcastle disease virus (NDV) is a member of the paramyxoviridea family and has great significance in the poultry production industry, which spends a huge amount of money every year on prevention and economic loss caused by this disease. A wide range of symptoms, including respiratory and nervous disorders, as well as hemorrhage lesions in the digestive system are observed in this disease. This research investigated the presence of NDV in 10 poultry farms with high mortality and respiratory symptoms in Kerman province, Iran (between January 2020 to October 2020). Tissue samples were collected from mortalities of 10 flocks in different parts of Kerman province and inoculated into embryonated eggs. The NDV was detected in the allantoic fluid by polymerization of partial F gene protein. The virus was positive in the samples of 5 flocks. The results of the phylogenetic analysis also showed that the sequence of isolates was related to genotype II (three isolates) and sub-genotype VIId (two isolates) of NDVs. It was also found that the amino acid sequences of sub-genotype VIId isolates in the 113 to 116 positions were RRQKR and in the 117 positions was the presence of F (phenylalanine). The other three isolates were grouped with B1, Clone, and LaSota vaccines, and the amino acid sequence in the cleavage site included GRQGRL. The similarity between the studied isolates was 99.6%-98.4%. In this study, virulent viruses were isolated and tracked in broiler farms that were vaccinated with live and killed vaccines. It is recommended to pay more attention to designing the vaccination program.


Assuntos
Galinhas , Doença de Newcastle , Vírus da Doença de Newcastle , Doenças das Aves Domésticas , Animais , Vírus da Doença de Newcastle/genética , Doença de Newcastle/virologia , Doença de Newcastle/epidemiologia , Doença de Newcastle/mortalidade , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/mortalidade , Irã (Geográfico)/epidemiologia , Filogenia , Genótipo
18.
Arch Razi Inst ; 78(6): 1794-1803, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38828167

RESUMO

Newcastle disease (ND) is an economically significant and extremely spreadable viral illness affecting a wide variety of avian species. ND can rapidly spread within poultry farms and result in considerable economic losses for the global poultry industry. This disease is endemic in Iran, and despite intensive vaccination efforts in the poultry industry, outbreaks of ND occur unexpectedly. This study aimed to isolate the Newcastle disease virus (NDV) from poultry farms with breathing problems in Markazi province, Iran, and investigate the evolutionary relationship and molecular characteristics of the isolates during 2017-2019. To this end, tissue samples (lung, brain, and trachea) were taken from 42 broiler farms exhibiting respiratory symptoms. The samples were inoculated into 9-11-day-old embryonated eggs, and the virus was isolated from 20 (47.6%) of the 42 farms. Subsequently, RT-PCR was used to amplify partial fusion gene sequences from the new isolates. The amplified products were sequenced and compared phylogenetically to the standard pilot dataset (125 selected sequences) generated by the NDV consortium. As determined by phylogenetic analysis, all nine isolates belonged to subgenotype VII.1.1 of genotype VII and were highly similar to isolates from other parts of Iran and China. Moreover, all isolates possessed a polybasic cleavage site motif (112RRQKRF117), characteristic of virulent strains. Furthermore, the present isolates shared a high nucleotide identity (96%) with viruses previously isolated from other provinces of Iran, as determined by BLAST searches and multiple alignments. In addition, they shared a high degree of sequence similarity but were distinct from the existing NDV vaccines. Therefore, the genetic dissimilarity between current vaccine strains and circulating NDVs must be considered in vaccination programs.


Assuntos
Galinhas , Doença de Newcastle , Vírus da Doença de Newcastle , Filogenia , Doenças das Aves Domésticas , Animais , Irã (Geográfico)/epidemiologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/isolamento & purificação , Doença de Newcastle/virologia , Doença de Newcastle/epidemiologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Proteínas Virais de Fusão/genética , Genótipo
19.
Braz. j. microbiol ; 47(1): 231-242, Jan.-Mar. 2016. tab
Artigo em Inglês | LILACS | ID: lil-775108

RESUMO

Abstract This study was designed with the goal of adding as much information as possible about the role of pigeons (Columba livia) and chickens (Gallus gallus) in Newcastle disease virus epidemiology. These species were submitted to direct experimental infection with Newcastle disease virus to evaluate interspecies transmission and virus-host relationships. The results obtained in four experimental models were analyzed by hemagglutination inhibition and reverse transcriptase polymerase chain reaction for detection of virus shedding. These techniques revealed that both avian species, when previously immunized with a low pathogenic Newcastle disease virus strain (LaSota), developed high antibody titers that significantly reduced virus shedding after infection with a highly pathogenic Newcastle disease virus strain (São Joao do Meriti) and that, in chickens, prevent clinical signs. Infected pigeons shed the pathogenic strain, which was not detected in sentinel chickens or control birds. When the presence of Newcastle disease virus was analyzed in tissue samples by RT-PCR, in both species, the virus was most frequently found in the spleen. The vaccination regimen can prevent clinical disease in chickens and reduce viral shedding by chickens or pigeons. Biosecurity measures associated with vaccination programs are crucial to maintain a virulent Newcastle disease virus-free status in industrial poultry in Brazil.


Assuntos
Animais , Doença de Newcastle/patologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/crescimento & desenvolvimento , Estruturas Animais/virologia , Anticorpos Antivirais/sangue , Brasil , Galinhas , Columbidae , Modelos Animais de Doenças , Transmissão de Doença Infecciosa , Testes de Inibição da Hemaglutinação , Interações Hospedeiro-Patógeno , Doença de Newcastle/imunologia , Doença de Newcastle/transmissão , Vírus da Doença de Newcastle/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Eliminação de Partículas Virais
20.
Arq. bras. med. vet. zootec ; 48(6): 645-56, dez. 1996. tab
Artigo em Português | LILACS | ID: lil-257030

RESUMO

Estudou-se a resposta imune de aves infectadas experimentalmente com amostras lentogênicas do vírus da doença de Newcastle (VDN), incluindo uma amostra com tropismo para o sistema respiratório e outra com tropismo entérico. Foram utilizadas as vias ocular, nasal, água de bebida e aspersão para a inoculação das amostras virais. A pesquisa foi realizada em 1.600 aves de linhagem para corte, divididas em oito grupos, de acordo com a amostra do vírus e a via de inoculação. Dez aves de cada grupo foram sacrificadas semanalmente. A resposta imune foi avaliada pela determinaçäo de anticorpos por ELISA e inibição da hemaglutinação. Os grupos inoculados com a amostra La Sota exibiram níveis mais elevados de anticorpos anti-VDN, superiores aos dos grupos inoculados com a amostra VG/GA. A resposta anamnéstica foi mais baixa para a amostra VG/GA inoculada pela água de bebida, e os níveis mais elevados de anticorpos circulantes, no pré-desafio, näo impediram a infecçäo pelo vírus


Assuntos
Animais , Avulavirus/isolamento & purificação , Galinhas/virologia , Doença de Newcastle/imunologia , Doença de Newcastle/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA