Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 629
Filtrar
1.
Alzheimers Res Ther ; 16(1): 227, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39407323

RESUMO

BACKGROUND: Diagnosis of dementia with Lewy bodies (DLB) is challenging, especially in the earlier stages of the disease, owing to the clinical overlap with other neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's disease (PD). We aimed to identify the transcranial sonography (TCS) parameters that can help us to detect early DLB patients. METHODS: In this cross-sectional study, we prospectively recruited newly diagnosed DLB patients with less than 3 years from the onset of cognitive symptoms. For comparison purposes, we also included AD and PD patients, with a disease duration of less than 3 years, and a control group. TCS was performed to assess the substantia nigra (SN) echogenicity, the width of the third ventricle, and the frontal horns of the lateral ventricles. Subsequently, TCS images were analyzed with the medical image viewer Horos in order to quantify the intensity of the echogenicity of the SN. Univariate analysis and a logistic regression model were used to identify which variables can predict the diagnosis of DLB. RESULTS: One hundred and seven participants were included (23 DLB, 26 AD, 27 PD and 31 controls). The median age of DLB patients was 75(72-77) years, with a disease duration of 2 years. DLB and PD patients showed higher SN hyperechogenicity rates (72.73% and 81.82%, respectively) and a greater area of the SN compared to AD patients and controls (p < 0.001). DLB and AD patients had wider ventricular systems than the other study groups. The SN hyperechogenicity predicted a diagnosis of DLB with an odds ratio of 22.67 (95%CI 3.98; 129.12, p < 0.001) when compared to AD patients. Unilateral and bilateral widened frontal horns predicted diagnosis of DLB compared to PD with an odds ratio of 9.5 (95%CI 0.97; 92.83, p = 0.053) and 5.7 (95%CI 0.97; 33.6, p = 0.054), respectively. CONCLUSIONS: Echogenicity of the SN and widening of the frontal horns of lateral ventricles can predict the diagnosis of early DLB in this cohort of newly diagnosed patients, when compared to AD and PD patients. Transcranial sonography, a non-invasive tool, could be helpful for the diagnosis of DLB at its earlier stages.


Assuntos
Doença por Corpos de Lewy , Substância Negra , Ultrassonografia Doppler Transcraniana , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Feminino , Masculino , Idoso , Substância Negra/diagnóstico por imagem , Substância Negra/patologia , Estudos Transversais , Ultrassonografia Doppler Transcraniana/métodos , Ventrículos Cerebrais/diagnóstico por imagem , Ventrículos Cerebrais/patologia , Doença de Parkinson/diagnóstico por imagem , Estudos Prospectivos , Doença de Alzheimer/diagnóstico por imagem , Biomarcadores
2.
Parkinsonism Relat Disord ; 127: 107117, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39217795

RESUMO

INTRODUCTION: The a-Synuclein Origin and Connectome (SOC) model of Lewy body diseases postulates that a-syuclein will be asymmetrically distributed in some patients with Lewy body diseases, potentially leading to asymmetric neuronal dysfunction and symptoms. METHODS: We included two patient groups: 19 non-demented Parkinson's disease (nPD) patients with [18F]FDG PET and motor symptoms assessed by UPDRS-III, and 65 Lewy body dementia (LBD) patients with [18F]FDG PET and dopamine radioisotope imaging. Asymmetry indices were calculated for [18F]FDG PET by including the cortex for each hemisphere, for dopamine radioisotope imaging by including the putamen and caudate separately, and for motor symptoms by using the difference between right-left UPDRS-III score. Correlations between these asymmetry indices were explored to test the predictions of the SOC model. To identify cases with a more typical LBD imaging profile, we calculated a Cingulate Island Sign (CIS) index on the [18F]FDG PET image. RESULTS: We found a significant correlation between cortical interhemispheric [18F]FDG asymmetry and motor-symptom asymmetry in nPD patients (r = 0.62, P = 0.004). In patients with LBD, we found a significant correlation between cortical interhemispheric [18F]FDG asymmetry and dopamine transporter asymmetry in the caudate (r = 0.37, P = 0.0019), but not in the putamen (r = 0.15, P = 0.22). We observed that the correlation in the caudate was stronger in LBD subjects with the highest CIS index, i.e., with more typical LBD imaging profiles. CONCLUSION: Our study partly supports the SOC model, but further investigations are needed - ideally of de novo, non-demented PD patients.


Assuntos
Fluordesoxiglucose F18 , Doença por Corpos de Lewy , Tomografia por Emissão de Pósitrons , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/metabolismo , Feminino , Masculino , Idoso , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Pessoa de Meia-Idade , Dopamina/metabolismo , Idoso de 80 Anos ou mais , Putamen/diagnóstico por imagem , Putamen/metabolismo , Conectoma
3.
PLoS One ; 19(9): e0309885, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39250493

RESUMO

OBJECTIVE: Dementia with Lewy bodies (DLB) is recognized as the second most common cause of degenerative dementia in older people with Alzheimer's disease (AD), and distinguishing between these 2 diseases may be challenging in clinical practice. However, accurate differentiation is important because these 2 diseases have different prognoses and require different care. Recently, several studies have reported that neuromelanin-sensitive MRI can detect neurodegeneration in the substantia nigra pars compacta (SNc). DLB patients are considered to demonstrate degeneration and a reduction of dopaminergic neurons in the SNc. Therefore, neuromelanin-sensitive MRI may be useful for the diagnosis of DLB. Therefore, in this study, we aimed to investigate the usefulness of neuromelanin-sensitive MRI in the distinguishing DLB from AD. METHODS: A total of 21 probable DLB and 22 probable AD patients were enrolled. All participants underwent both DaT-SPECT and neuromelanin-sensitive MRI. A combined model of neuromelanin-sensitive MRI and Dopamine transporter single-photon emission computed tomography (DaT-SPECT) was created using logistic regression analysis (forced entry method). RESULTS: There was no difference in the diagnostic utility of neuromelanin-sensitive MRI and DaT-SPECT in distinguishing DLB from AD. There was no significant correlation between the results of neuromelanin-sensitive MRI and DaT-SPECT in DLB patients. The combination of neuromelanin-sensitive MRI and DaT-SPECT demonstrated higher diagnostic performance in distinguishing between DLB and AD compared with neuromelanin-sensitive MRI alone. Additionally, although the combination of both modalities showed a larger AUC compared with DaT-SPECT alone, the difference was not statistically significant. CONCLUSIONS: Neuromelanin-sensitive MRI may be equally or even more useful than DaT-SPECT in the clinical differentiation of DLB from AD. Furthermore, the combination of neuromelanin-sensitive MRI and DaT-SPECT may be a highly sensitive imaging marker for distinguishing DLB from AD.


Assuntos
Doença por Corpos de Lewy , Imageamento por Ressonância Magnética , Melaninas , Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/diagnóstico , Melaninas/metabolismo , Feminino , Idoso , Masculino , Imageamento por Ressonância Magnética/métodos , Idoso de 80 Anos ou mais , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Diagnóstico Diferencial , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo
4.
Fluids Barriers CNS ; 21(1): 73, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289698

RESUMO

BACKGROUND: Blood-brain barrier (BBB) dysfunction has been viewed as a potential underlying mechanism of neurodegenerative disorders, possibly involved in the pathogenesis and progression of Alzheimer's disease (AD). However, a relation between BBB dysfunction and dementia with Lewy bodies (DLB) has yet to be systematically investigated. Given the overlapping clinical features and neuropathology of AD and DLB, we sought to evaluate BBB permeability in the context of DLB and determine its association with plasma amyloid-ß (Aß) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). METHODS: For this prospective study, we examined healthy controls (n = 24, HC group) and patients diagnosed with AD (n = 29) or DLB (n = 20) between December 2020 and April 2022. Based on DCE-MRI studies, mean rates of contrast agent transfer from intra- to extravascular spaces (Ktrans) were calculated within regions of interest. Spearman's correlation and multivariate linear regression were applied to analyze associations between Ktrans and specific clinical characteristics. RESULTS: In members of the DLB (vs HC) group, Ktrans values of cerebral cortex (p = 0.024), parietal lobe (p = 0.007), and occipital lobe (p = 0.014) were significantly higher; and Ktrans values of cerebral cortex (p = 0.041) and occipital lobe (p = 0.018) in the DLB group were significantly increased, relative to those of the AD group. All participants also showed increased Ktrans values of parietal ( ß  = 0.391; p = 0.001) and occipital ( ß  = 0.357; p = 0.002) lobes that were significantly associated with higher scores of the Clinical Dementia Rating, once adjusted for age and sex. Similarly, increased Ktrans values of cerebral cortex ( ß  = 0.285; p = 0.015), frontal lobe ( ß  = 0.237; p = 0.043), and parietal lobe ( ß = 0.265; p = 0.024) were significantly linked to higher plasma Aß1-42/Aß1-40 ratios, after above adjustments. CONCLUSION: BBB leakage is a common feature of DLB and possibly is even more severe than in the setting of AD for certain regions of the brain. BBB leakage appears to correlate with plasma Aß1-42/Aß1-40 ratio and dementia severity.


Assuntos
Barreira Hematoencefálica , Doença por Corpos de Lewy , Imageamento por Ressonância Magnética , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Feminino , Masculino , Idoso , Idoso de 80 Anos ou mais , Estudos Prospectivos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Pessoa de Meia-Idade , Meios de Contraste
5.
Sci Rep ; 14(1): 21290, 2024 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266605

RESUMO

In Alzheimer's disease (AD), reports on the association between false recognition and brain structure have been inconsistent. In dementia with Lewy bodies (DLB), no such association has been reported. This study aimed to identify brain regions associated with false recognition in AD and DLB by analyzing regional gray matter volume (rGMV). We included 184 patients with AD and 60 patients with DLB. The number of false recognitions was assessed using the Alzheimer's Disease Assessment Scale' word recognition task. Brain regions associated with the number of false recognitions were examined by voxel-based morphometry analysis. The number of false recognitions significantly negatively correlated with rGMV in the bilateral hippocampus, left parahippocampal gyrus, bilateral amygdala, and bilateral entorhinal cortex in patients with AD (p < 0.05, family-wise error [FEW] corrected) and in the bilateral hippocampus, left parahippocampal gyrus, right inferior frontal gyrus, right middle frontal gyrus, right basal forebrain, right insula, left medial and lateral orbital gyri, and left fusiform in those with DLB (p < 0.05, FWE corrected). Bilateral hippocampus and left parahippocampal gyrus were associated with false recognition in both diseases. However, we found there were regions where the association between false recognition and rGMV differed from disease to disease.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Imageamento por Ressonância Magnética , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/patologia , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/fisiopatologia , Doença por Corpos de Lewy/patologia , Masculino , Feminino , Idoso , Imageamento por Ressonância Magnética/métodos , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Reconhecimento Psicológico/fisiologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Hipocampo/fisiopatologia , Giro Para-Hipocampal/diagnóstico por imagem , Giro Para-Hipocampal/fisiopatologia , Giro Para-Hipocampal/patologia
6.
Eur J Radiol ; 178: 111598, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996737

RESUMO

PURPOSE: This review aims to explore the role of Quantitative Susceptibility Mapping (QSM) in the early detection of neurodegenerative diseases, particularly Alzheimer's disease (AD) and Lewy body dementia (LBD). By examining QSM's ability to map brain iron deposition, we seek to highlight its potential as a diagnostic tool for preclinical dementia. METHODOLOGY: QSM techniques involve the advanced processing of MRI phase images to reconstruct tissue susceptibility, employing methods such as spherical mean value filtering and Tikhonov regularization for accurate background field removal. This review discusses how these methodologies enable the precise quantification of iron and other elements within the brain. RESULTS: QSM has demonstrated effectiveness in identifying early pathological changes in key brain regions, including the hippocampus, basal ganglia, and substantia nigra. These regions are significantly impacted in the early stages of AD and LBD. Studies reviewed indicate that QSM can detect subtle neurodegenerative changes, providing valuable insights into disease progression. However, challenges remain in standardizing QSM processing algorithms to ensure consistent results across different studies. CONCLUSION: QSM emerges as a promising tool for early dementia detection, offering precise measurements of brain iron deposition and other critical biomarkers. The review underscores the importance of refining QSM methodologies and integrating them with other imaging modalities to improve early diagnosis and management of neurodegenerative diseases. Future research should focus on standardizing QSM techniques and exploring their synergistic use with other neuroimaging methods to enhance its clinical utility.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Diagnóstico Precoce , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Demência/diagnóstico por imagem , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/metabolismo , Mapeamento Encefálico/métodos
7.
Alzheimers Res Ther ; 16(1): 170, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080741

RESUMO

BACKGROUND: Dementia with Lewy Bodies (DLB) is responsible for cognitive-behavioural disorders but also for gait disorders. The latter are thought to be related to parkinsonism, but the neural bases of these disorders are not well known, especially in the early stages. The aim of this study was to investigate by volumetric Magnetic Resonance Imaging the neuronal basis of gait disorders in DLB patients, compared to Healthy Elderly Controls and Alzheimer's Disease patients. METHODS: Clinical examination with motor assessment including 10-meter walking speed, one-leg balance and Timed Up and Go test, a comprehensive neuropsychological evaluation and 3D brain Magnetic Resonance Imaging were performed on 84 DLB patients, 39 Alzheimer's Disease patients and 22 Healthy Elderly Controls. We used Statistical Parametric Mapping 12 to perform a one-sample t-test to investigate the correlation between each gait score and gray matter volume (P ≤ 0.05 corrected for family-wise error). RESULTS: We found a correlation for DLB patients between walking speed and gray matter decrease (P < 0.05, corrected for family-wise error) in caudate nuclei, anterior cingulate cortex, mid-cingulate cortex, hippocampi, supplementary motor area, right cerebellar cortex and left parietal operculum. We found no correlation with Timed Up and Go test and one-leg balance. CONCLUSION: Gait disorders are underpinned by certain classical regions such as the cerebellum and the supplementary motor area. Our results suggest there may be a motivational and emotional component of voluntary gait in DLB subjects, underpinned by the cingulate cortex, a spatial orientation component, underpinned by hippocampi and suggest the involvement of brain processing speed and parkinsonism, underpinned by the caudate nuclei. TRIAL REGISTRATION: The study protocol has been registered on ClinicalTrials.gov. (NCT01876459) on June 12, 2013.


Assuntos
Encéfalo , Doença por Corpos de Lewy , Imageamento por Ressonância Magnética , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/patologia , Estudos Transversais , Marcha/fisiologia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/fisiopatologia , Doença por Corpos de Lewy/patologia , Testes Neuropsicológicos
8.
Jpn J Radiol ; 42(10): 1206-1212, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38856880

RESUMO

PURPOSE: The Cingulate Island score (CIScore) is useful index for differentiating between dementia with Lewy body (DLB) and Alzheimer's disease (AD) using regional cerebral blood flow (rCBF) SPECT. The Z score standing for medial temporal lobe (MTL) atrophy and the ratio of Z score between dorsal brain stem (DBS) to MTL are useful indices for differentiating between DLB and AD using MRI with VSRAD. The current study investigated the diagnostic ability by the combined use of rCBF SPECT and MRI in the differentiation between AD and DLB. MATERIALS AND METHODS: In cases with 42 AD and 28 DLB undertaken Tc-99m-ECD SPECT and MRI, we analyzed differential diagnostic ability between AD and DLB among following conditions by single or combined settings. Namely, they were (1) the CIScore as a parameter of rCBF SPECT (DLB â‰¦ 0.25), (2) Z score value of MTL atrophy (DLB â‰¦ 2.05), (3) the ratio of Z score of DBS to medial temporal gray matter as a parameter of brain atrophy using VSRAD (DLB â‰§ 0.38). Also, we analyzed them both including and omitting the elderly (over 75 years old). RESULTS: The accuracy of differential diagnosis in this condition was 74% for (1), 69% for (2), and 67% for (3). The accuracy by combination condition was 84% for (1) and (2), 81% for (1) and (3), and 67% for (2) and (3), respectively. The combination method by CIScore and the Z score of MTL showed the best accuracy. When we confined condition to ages younger than 75 years, the accuracy improved to 94% in the combination method. CONCLUSION: The combined use of CIScore and Z score of MTL was suggested to be useful in the differential diagnosis between DLB and AD particularly in younger than 75 years old.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Imageamento por Ressonância Magnética , Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Doença de Alzheimer/diagnóstico por imagem , Diagnóstico Diferencial , Masculino , Feminino , Idoso , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Imageamento por Ressonância Magnética/métodos , Idoso de 80 Anos ou mais , Compostos Radiofarmacêuticos , Sensibilidade e Especificidade , Pessoa de Meia-Idade , Circulação Cerebrovascular , Compostos de Organotecnécio , Cisteína/análogos & derivados
10.
Ann Nucl Med ; 38(10): 814-824, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38869809

RESUMO

OBJECTIVE: We aimed to establish a practical diagnostic index for Lewy body diseases (LBD), such as Parkinson's disease and dementia, with Lewy bodies in outpatient settings and criteria for exempting patients from late imaging. METHODS: We acquired early and late 123I-metaiodobenzylguanidine (MIBG) images from 108 consecutive patients with suspected LBD and standardized heart-to-mediastinum (H/M) ratios for collimator conditions. Exclusions included young-onset Parkinson's disease (age < 50 years) and genetic transthyretin-type amyloidosis. We developed logistic models incorporating H/M ratios with or without age (n = 92). The sympathetic MIBG index for LBD (SMILe index), categorized LBD likelihood from 0 (lowest) to 1 (highest). Diagnostic accuracy was assessed as the area under the receiver operating characteristic (ROC) curve (AUC). The characteristics of the new index were compared with H/M ratios. The need for late imaging was explored using the SMILe index. RESULTS: Early or late SMILe indexes using a single H/M ratio variable discriminated LBD from non-LBD. The AUC values for early and late SMILe indexes were 0.880 and 0.894 (p < 0.0001 for both), identical to those for early and late H/M ratios. The sensitivity and the specificity of early SMILe indexes with a 0.5 threshold were 76% and 90%, achieving accuracy of accuracy 86%. Similarly, the late SMILe index demonstrated a sensitivity of 76% and specificity of 87%, with an accuracy of 84%. Early SMILe indexes < 0.3 or > 0.7 (representing 84% patients) indicated a diagnosis without a late MIBG study. CONCLUSION: The 123I-MIBG-derived SMILe indexes provide likelihood of LBD, and those with a 50% threshold demonstrated optimal diagnostic accuracy for LBD. The index values of either < 0.3 or > 0.7 accurately selected patients who do not need late imaging.


Assuntos
3-Iodobenzilguanidina , Doença por Corpos de Lewy , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Probabilidade , Curva ROC , Fatores de Tempo , Mediastino/diagnóstico por imagem
11.
Ann Neurol ; 96(3): 539-550, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38888141

RESUMO

OBJECTIVE: Patients with Lewy body diseases have an increased risk of dementia, which is a significant predictor for survival. Posterior cortical hypometabolism on [18F]fluorodeoxyglucose positron emission tomography (PET) precedes the development of dementia by years. We therefore examined the prognostic value of cerebral glucose metabolism for survival. METHODS: We enrolled patients diagnosed with Parkinson's disease (PD), Parkinson's disease with dementia, or dementia with Lewy bodies who underwent [18F]fluorodeoxyglucose PET. Regional cerebral metabolism of each patient was analyzed by determining the expression of the PD-related cognitive pattern (Z-score) and by visual PET rating. We analyzed the predictive value of PET for overall survival using Cox regression analyses (age- and sex-corrected) and calculated prognostic indices for the best model. RESULTS: Glucose metabolism was a significant predictor of survival in 259 included patients (n = 118 events; hazard ratio: 1.4 [1.2-1.6] per Z-score; hazard ratio: 1.8 [1.5-2.2] per visual PET rating score; both p < 0.0001). Risk stratification with visual PET rating scores yielded a median survival of 4.8, 6.8, and 12.9 years for patients with severe, moderate, and mild posterior cortical hypometabolism (median survival not reached for normal cortical metabolism). Stratification into 5 groups based on the prognostic index revealed 10-year survival rates of 94.1%, 78.3%, 34.7%, 0.0%, and 0.0%. INTERPRETATION: Regional cerebral glucose metabolism is a significant predictor of survival in Lewy body diseases and may allow an earlier survival prediction than the clinical milestone "dementia." Thus, [18F]fluorodeoxyglucose PET may improve the basis for therapy decisions, especially for invasive therapeutic procedures like deep brain stimulation in Parkinson's disease. ANN NEUROL 2024;96:539-550.


Assuntos
Fluordesoxiglucose F18 , Glucose , Doença por Corpos de Lewy , Tomografia por Emissão de Pósitrons , Humanos , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/diagnóstico por imagem , Masculino , Feminino , Idoso , Glucose/metabolismo , Idoso de 80 Anos ou mais , Doença de Parkinson/metabolismo , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/mortalidade , Pessoa de Meia-Idade , Prognóstico , Córtex Cerebral/metabolismo , Córtex Cerebral/diagnóstico por imagem , Valor Preditivo dos Testes , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem
12.
J Alzheimers Dis ; 100(1): 127-137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848178

RESUMO

Background: Dementia with Lewy bodies (DLB) presents with various symptoms, posing challenges for early diagnosis challenging. Dopamine transporter (123I-FP-CIT) single-photon emission tomography (SPECT) and 123I-meta-iodobenzylguanidine (123I-MIBG) imaging are crucial diagnostic biomarkers. Hypothesis about body- and brain-first subtypes of DLB indicate that some DLB may show normal 123I-FP-CIT or 123I-MIBG results; but the characteristic expression of these two subtypes remains unclear. Objective: This study aimed to evaluate the diagnostic sensitivity of 123I-FP-CIT and 123I-MIBG imaging alone, combined in patients with DLB and explore symptoms associated with the abnormal imaging results. Methods: Demographic data, clinical status, and imaging results were retrospectively collected from patients diagnosed with possible DLB. Both images were quantified using semi-automated software, and the sensitivity of each imaging modality and their combination was calculated. Demographic data, cognition, and motor and non-motor symptoms were compared among the subgroups based on the imaging results. Symptoms related to each imaging abnormality were examined using binomial logistic regression analyses. Results: Among 114 patients with DLB, 80 underwent 123I-FP-CIT SPECT (sensitivity: 80.3%), 83 underwent 123I-MIBG imaging (68.2%), and 66 both (sensitivity of either abnormal result: 93.9%). Visual hallucinations differed among the four subgroups based on imaging results. Additionally, nocturia and orthostatic hypotension differed between abnormal and normal 123I-MIBG images. Conclusions: Overall, 123I-FP-CIT SPECT was slightly higher sensitivity than 123I-MIBG imaging, with combined imaging increasing diagnostic sensitivity. Normal results of a single imaging test may not refute DLB. Autonomic symptoms may lead to abnormal 123I-MIBG scintigraphy findings indicating body-first subtype of patients with DLB.


Assuntos
3-Iodobenzilguanidina , Proteínas da Membrana Plasmática de Transporte de Dopamina , Doença por Corpos de Lewy , Tomografia Computadorizada de Emissão de Fóton Único , Tropanos , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/metabolismo , Masculino , Feminino , Idoso , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Estudos Retrospectivos , Idoso de 80 Anos ou mais , Sensibilidade e Especificidade , Compostos Radiofarmacêuticos , Imagem de Perfusão do Miocárdio , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Pessoa de Meia-Idade , Imageamento Dopaminérgico
13.
Neuron ; 112(15): 2540-2557.e8, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843838

RESUMO

Deposition of α-synuclein fibrils is implicated in Parkinson's disease (PD) and dementia with Lewy bodies (DLB), while in vivo detection of α-synuclein pathologies in these illnesses has been challenging. Here, we have developed a small-molecule ligand, C05-05, for visualizing α-synuclein deposits in the brains of living subjects. In vivo optical and positron emission tomography (PET) imaging of mouse and marmoset models demonstrated that C05-05 captured a dynamic propagation of fibrillogenesis along neural pathways, followed by disruptions of these structures. High-affinity binding of 18F-C05-05 to α-synuclein aggregates in human brain tissues was also proven by in vitro assays. Notably, PET-detectable 18F-C05-05 signals were intensified in the midbrains of PD and DLB patients as compared with healthy controls, providing the first demonstration of visualizing α-synuclein pathologies in these illnesses. Collectively, we propose a new imaging technology offering neuropathology-based translational assessments of PD and allied disorders toward diagnostic and therapeutic research and development.


Assuntos
Modelos Animais de Doenças , Doença por Corpos de Lewy , Doença de Parkinson , Tomografia por Emissão de Pósitrons , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/diagnóstico por imagem , Humanos , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/diagnóstico por imagem , Callithrix , Masculino , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Feminino , Idoso , Camundongos Endogâmicos C57BL
14.
Sci Rep ; 14(1): 14748, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926597

RESUMO

Visual hallucinations in Lewy body disease (LBD) can be differentiated based on phenomenology into minor phenomena (MVH) and complex hallucinations (CVH). MVH include a variety of phenomena, such as illusions, presence and passage hallucinations occurring at early stages of LBD. The neural mechanisms of visual hallucinations are largely unknown. The hodotopic model posits that the hallucination state is due to abnormal activity in specialized visual areas, that occurs in the context of wider network connectivity alterations and that phenomenology of VH, including content and temporal characteristics, may help identify brain regions underpinning these phenomena. Here we investigated both the topological and hodological neural basis of visual hallucinations integrating grey and white matter imaging analyses. We studied LBD patients with VH and age matched healthy controls (HC). VH were assessed using a North-East-Visual-Hallucinations-Interview that captures phenomenological detail. Then we applied voxel-based morphometry and tract based spatial statistics approaches to identify grey and white matter changes. First, we compared LBD patients and HC. We found a reduced grey matter volume and a widespread damage of white tracts in LBD compared to HC. Then we tested the association between CVH and MVH and grey and white matter indices. We found that CVH duration was associated with decreased grey matter volume in the fusiform gyrus suggesting that LBD neurodegeneration-related abnormal activity in this area is responsible for CVH. An unexpected finding was that MVH severity was associated with a greater integrity of white matter tracts, specifically those connecting dorsal, ventral attention networks and visual areas. Our results suggest that networks underlying MVH need to be partly intact and functional for MVH experiences to occur, while CVH occur when cortical areas are damaged. The findings support the hodotopic view and the hypothesis that MVH and CVH relate to different neural mechanisms, with wider implications for the treatment of these symptoms in a clinical context.


Assuntos
Substância Cinzenta , Alucinações , Doença por Corpos de Lewy , Substância Branca , Humanos , Alucinações/fisiopatologia , Alucinações/etiologia , Alucinações/diagnóstico por imagem , Doença por Corpos de Lewy/fisiopatologia , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Substância Cinzenta/fisiopatologia , Feminino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Substância Branca/fisiopatologia , Masculino , Idoso , Imageamento por Ressonância Magnética , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Pessoa de Meia-Idade
15.
Sci Rep ; 14(1): 13911, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886538

RESUMO

Previous studies have demonstrated associations between enlarged perivascular spaces (EPVS) and dementias such as Alzheimer's disease. However, an association between EPVS and dementia with Lewy bodies (DLB) has not yet been clarified. We performed a cross-sectional analysis of our prospective study cohort of 109 participants (16 with DLB). We assessed cognitive function, pulse wave velocity (PWV), and brain magnetic resonance imaging features. The relationships between EPVS and DLB were evaluated using multivariable logistic regression analyses. Compared with the non-dementia group, the DLB group was more likely to have EPVS in the basal ganglia. Compared with participants without EPVS, those with EPVS were older and had cognitive impairment and high PWV. In multivariable analyses, EPVS in the basal ganglia was independently associated with DLB. High PWV was also independently associated with EPVS in both the basal ganglia and centrum semiovale. High PWV may cause cerebrovascular pulsatility, leading to accelerated EPVS in DLB participants.


Assuntos
Sistema Glinfático , Doença por Corpos de Lewy , Análise de Onda de Pulso , Humanos , Doença por Corpos de Lewy/fisiopatologia , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/patologia , Feminino , Masculino , Idoso , Sistema Glinfático/diagnóstico por imagem , Sistema Glinfático/fisiopatologia , Sistema Glinfático/patologia , Estudos Transversais , Imageamento por Ressonância Magnética , Estudos Prospectivos , Idoso de 80 Anos ou mais , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/fisiopatologia , Gânglios da Base/patologia
16.
J Neurol ; 271(7): 3754-3763, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38801432

RESUMO

INTRODUCTION: Loss of dorsolateral nigral hyperintensity (DNH) on iron-sensitive brain MRI is useful for Parkinson's disease detection. DNH loss could also be of diagnostic value in dementia with Lewy bodies (DLB), an a-synuclein-related pathology. We aim to quantitatively synthesize evidence, investigating the role of MRI, a first-line imaging modality, in early DLB detection and differentiation from other dementias. METHODS: Our study was conducted according to the PRISMA statement. MEDLINE, Scopus, Web of Science, and Cochrane Library were searched using the terms like "dementia with Lewy bodies", "dorsolateral nigral hyperintensity", and "MRI". Only English-written peer-reviewed diagnostic accuracy studies were included. We used QUADAS-2 for quality assessment. RESULTS: Our search yielded 363 search results. Three studies were eligible, all with satisfying, high quality. The total population of 227 patients included 63 with DLB and 164 with other diseases (Alzheimer disease, frontotemporal dementia, mild cognitive impairment). Using a univariate random-effects logistic regression model, our meta-analysis resulted in pooled sensitivity, specificity and DOR of 0.82 [0.62; 0.92], 0.79 [0.70; 0.86] and 16.26 ([3.3276; 79.4702], p = 0.0006), respectively, for scans with mixed field strength (1.5 and 3 T). Subgroup analysis of 3 T scans showed pooled sensitivity, specificity and DOR of 0.82 [0.61; 0.93], 0.82 [0.72; 0.89] and 18.36 ([4.24; 79.46], p < 0.0001), respectively. DISCUSSION: DNH loss on iron-sensitive MRI might comprise a supportive biomarker for DLB detection, that could augment the value of the DLB diagnostic criteria. Further evaluation using standardized protocols is needed, as well as direct comparison to other supportive and indicative biomarkers.


Assuntos
Doença por Corpos de Lewy , Imageamento por Ressonância Magnética , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/diagnóstico , Imageamento por Ressonância Magnética/normas , Substância Negra/diagnóstico por imagem , Substância Negra/patologia
17.
Neurology ; 102(12): e209460, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38815233

RESUMO

BACKGROUND AND OBJECTIVES: Alzheimer disease (AD) copathologies of ß-amyloid and tau are common in the Lewy body diseases (LBD), dementia with Lewy bodies (DLB) and Parkinson disease (PD), and target distinct hippocampal subfields compared with Lewy pathology, including subiculum and CA1. We investigated the hypothesis that AD copathologies impact the pattern of hippocampal subregion volume loss and cognitive function in LBD. METHODS: This was a cross-sectional and longitudinal, single-center, observational cohort study. Participants underwent neuropsychological testing and 3T-MRI with hippocampal segmentation using FreeSurferV7. PiB-PET and flortaucipir-PET imaging of comorbid ß-amyloid (A) and tau (T) were acquired. The association of functional cognition, ß-amyloid, and tau loads with hippocampal subregion volume was assessed. The contribution of subregion volumes to the relationship of AD-related deposits on functional cognition was examined with mediation analysis. The effects of AD-related deposits on the rate of subregion atrophy were evaluated with mixed-effects models. RESULTS: Of 103 participants (mean age: 70.3 years; 37.3% female), 52 had LBD with impaired cognition (LBD-I), 26 had normal cognition (LBD-N), and 25 were A- healthy controls (HCs). Volumes of hippocampal subregions prone to AD copathologies, including subiculum (F = 6.9, p = 0.002), presubiculum (F = 7.3, p = 0.001), and parasubiculum (F = 5.9, p = 0.004), were reduced in LBD-I compared with LBD-N and HC. Volume was preserved in CA2/3, Lewy pathology susceptible subregions. In LBD-I, reduced CA1, subiculum, and presubiculum volumes were associated with greater functional cognitive impairment (all p < 0.05). Compared with HC, subiculum volume was reduced in A+T+ but not A-T- participants (F = 2.62, p = 0.043). Reduced subiculum volume mediated the effect of amyloid on functional cognition (0.12, 95% CI: 0.005 to 0.26, p = 0.040). In 26 longitudinally-evaluated participants, baseline tau deposition was associated with faster CA1 (p = 0.021) and subiculum (p = 0.002) atrophy. DISCUSSION: In LBD, volume loss in hippocampal output subregions-particularly the subiculum-is associated with functional cognition and AD-related deposits. Tau deposition appears to accelerate subiculum and CA1 atrophy, whereas Aß does not. Subiculum volume may have value as a biomarker of AD copathology-mediated neurodegeneration and disease progression.


Assuntos
Peptídeos beta-Amiloides , Hipocampo , Doença por Corpos de Lewy , Tomografia por Emissão de Pósitrons , Proteínas tau , Humanos , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/patologia , Feminino , Masculino , Idoso , Proteínas tau/metabolismo , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Hipocampo/metabolismo , Estudos Transversais , Peptídeos beta-Amiloides/metabolismo , Estudos Longitudinais , Imageamento por Ressonância Magnética , Idoso de 80 Anos ou mais , Testes Neuropsicológicos , Estudos de Coortes , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Pessoa de Meia-Idade
18.
Neurocase ; 30(1): 1-7, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38758704

RESUMO

A research participant was monitored over nearly two decades at Mayo Clinic, undergoing annual neurologic assessments, neuropsychological tests, and multimodal imaging. Initially, he was cognitively normal but developed symptoms consistent with Posterior Cortical Atrophy (PCA) during the study. Early tests indicated mild, yet normal-range declines in language and visuospatial skills. FDG-PET scans revealed increased metabolism in posterior brain regions long before symptoms appeared. Advanced analysis using a novel in-house machine-learning tool predicted concurrent Alzheimer's disease and dementia with Lewy bodies. Autopsy confirmed a mixed neurodegenerative condition with significant Alzheimer's pathology and dense neocortical Lewy bodies. This case underscores the value of longitudinal imaging in predicting complex neurodegenerative diseases, offering vital insights into the early neurocognitive changes associated with PCA and dementia with Lewy bodies.


Assuntos
Atrofia , Doença por Corpos de Lewy , Tomografia por Emissão de Pósitrons , Humanos , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/diagnóstico por imagem , Masculino , Atrofia/patologia , Córtex Cerebral/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Idoso , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Sintomas Prodrômicos , Testes Neuropsicológicos
19.
Acta Radiol ; 65(7): 825-834, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38785068

RESUMO

BACKGROUND: Brain magnetic resonance imaging voxel-based morphometry (VBM) and perfusion single-photon emission computed tomography (SPECT) are useful for differentiating dementia with Lewy bodies (DLB) from Alzheimer's disease (AD). PURPOSE: To determine whether combining multiple parameters of VBM and SPECT using a multiparametric scoring system (MSS) improves diagnostic accuracy in differentiating DLB from AD. MATERIAL AND METHODS: In total, 23 patients with DLB and 57 patients with AD underwent imaging using a voxel-based specific regional analysis system for AD (VSRAD), an easy Z-score imaging system, and a Z-Graph using three-dimensional stereotactic surface projection. The cutoff values were determined using the receiver operating characteristic curve to differentiate DLB from AD for all parameters. Patients were scored 1 (DLB) or 0 (AD) for each statistically significant parameter, according to a threshold. The total score was determined for each case to obtain a cutoff value for the MSS. RESULTS: The mean Z-scores in the medial temporal lobes using the VSRAD were significantly lower in patients with DLB than in those with AD. Each Z-score of the summed Z-scores in all four segmented regions of the occipital lobes using the Z-Graph was significantly higher in patients with DLB than in those with AD. Among the five parameters, the highest accuracy was 80% for the Z-score of the summed Z-scores in the left medial occipital lobe. For the MSS, a cutoff value of four improved the diagnostic accuracy to 82%. CONCLUSION: MSS was more accurate than any single parameter of VBM or SPECT in differentiating DLB from AD.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Imageamento por Ressonância Magnética , Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Doença de Alzheimer/diagnóstico por imagem , Feminino , Doença por Corpos de Lewy/diagnóstico por imagem , Masculino , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Idoso , Diagnóstico Diferencial , Imageamento por Ressonância Magnética/métodos , Idoso de 80 Anos ou mais , Compostos Radiofarmacêuticos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Sensibilidade e Especificidade , Reprodutibilidade dos Testes , Pessoa de Meia-Idade , Iofetamina
20.
ACS Sens ; 9(6): 2858-2868, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38787339

RESUMO

Copper participates in a range of critical functions in the nervous system and human brain. Disturbances in brain copper content is strongly associated with neurological diseases. For example, changes in the level and distribution of copper are reported in neuroblastoma, Alzheimer's disease, and Lewy body disorders, such as Parkinson disease and dementia with Lewy bodies (DLB). There is a need for more sensitive techniques to measure intracellular copper levels to have a better understanding of the role of copper homeostasis in neuronal disorders. Here, we report a reaction-based near-infrared (NIR) ratiometric fluorescent probe CyCu1 for imaging Cu2+ in biological samples. High stability and selectivity of CyCu1 enabled the probe to be deployed as a sensor in a range of systems, including SH-SY5Y cells and neuroblastoma tumors. Furthermore, it can be used in plant cells, reporting on copper added to Arabidopsis roots. We also used CyCu1 to explore Cu2+ levels and distribution in post-mortem brain tissues from patients with DLB. We found significant decreases in Cu2+ content in the cytoplasm, neurons, and extraneuronal space in the degenerating substantia nigra in DLB compared with healthy age-matched control tissues. These findings enhance our understanding of Cu2+ dysregulation in Lewy body disorders. Our probe also shows promise as a photoacoustic imaging agent, with potential for applications in bimodal imaging.


Assuntos
Encéfalo , Cobre , Corantes Fluorescentes , Corantes Fluorescentes/química , Cobre/análise , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Linhagem Celular Tumoral , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/metabolismo , Imagem Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA