Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125699

RESUMO

Neurodegenerative diseases are a group of complex diseases characterized by a progressive loss of neurons and degeneration in different areas of the nervous system. They share similar mechanisms, such as neuroinflammation, oxidative stress, and mitochondrial injury, resulting in neuronal loss. One of the biggest challenges in diagnosing neurodegenerative diseases is their heterogeneity. Clinical symptoms are usually present in the advanced stages of the disease, thus it is essential to find optimal biomarkers that would allow early diagnosis. Due to the development of ultrasensitive methods analyzing proteins in other fluids, such as blood, huge progress has been made in the field of biomarkers for neurodegenerative diseases. The application of protein biomarker measurement has significantly influenced not only diagnosis but also prognosis, differentiation, and the development of new therapies, as it enables the recognition of early stages of disease in individuals with preclinical stages or with mild symptoms. Additionally, the introduction of biochemical markers into routine clinical practice may improve diagnosis and allow for a stratification group of people with higher risk, as well as an extension of well-being since a treatment could be started early. In this review, we focus on blood biomarkers, which could be potentially useful in the daily medical practice of selected neurodegenerative diseases.


Assuntos
Biomarcadores , Doenças Neurodegenerativas , Humanos , Biomarcadores/sangue , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/diagnóstico
2.
Commun Biol ; 7(1): 904, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060467

RESUMO

The difficulty of obtaining samples from certain human tissues has led to efforts to find accessible sources to analyze molecular markers derived from DNA. In this study, we look for DNA methylation patterns in blood samples and its association with the brain methylation pattern in neurodegenerative disorders. Using data from methylation databases, we selected 18,293 CpGs presenting correlated methylation levels between blood and brain (bb-CpGs) and compare their methylation level between blood samples from patients with neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Multiple Sclerosis, and X Fragile Syndrome) and healthy controls. Sixty-four bb-CpGs presented significant distinct methylation levels in patients, being: nine for Alzheimer's disease, nine for Parkinson's disease, 28 for Multiple Sclerosis, and 18 for Fragile X Syndrome. Similar differences in methylation pattern for the nine Alzheimer's bb-CpGs was also observed when comparing brain tissue from patients vs. controls. The genomic regions of some of these 64 bb-CpGs are placed close to or inside genes previously associated with the respective condition. Our findings support the rationale of using blood DNA as a surrogate of brain tissue to analyze changes in CpG methylation level in patients with neurodegenerative diseases, opening the possibility for characterizing new biomarkers.


Assuntos
Biomarcadores , Encéfalo , Ilhas de CpG , Metilação de DNA , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/sangue , Encéfalo/metabolismo , Biomarcadores/sangue , Doença de Alzheimer/genética , Doença de Alzheimer/sangue , Masculino , Feminino , Estudos de Casos e Controles
3.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39063053

RESUMO

The health and well-being of retired rugby union and league players, particularly regarding the long-term effects of concussions, are of major concern. Concussion has been identified as a major risk factor for neurodegenerative diseases, such as Alzheimer's and Amyotrophic Lateral Sclerosis (ALS), in athletes engaged in contact sports. This study aimed to assess differences in specific biomarkers between UK-based retired rugby players with a history of concussion and a non-contact sports group, focusing on biomarkers associated with Alzheimer's, ALS, and CTE. We randomly selected a sample of male retired rugby or non-contact sport athletes (n = 56). The mean age was 41.84 ± 6.44, and the mean years since retirement from the sport was 7.76 ± 6.69 for participants with a history of substantial concussions (>5 concussions in their career) (n = 30). The mean age was 45.75 ± 11.52, and the mean years since retirement was 6.75 ± 4.64 for the healthy controls (n = 26). Serum biomarkers (t-tau, RBP-4, SAA, Nf-L, and retinol), plasma cytokines, and biomarkers associated with serum-derived exosomes (Aß42, p-tau181, p-tau217, and p-tau231) were analyzed using validated commercial ELISA assays. The results of the selected biomarkers were compared between the two groups. Biomarkers including t-tau and p-tau181 were significantly elevated in the history of the substantial concussion group compared to the non-contact sports group (t-tau: p < 0.01; p-tau181: p < 0.05). Although between-group differences in p-tau217, p-tau231, SAA, Nf-L, retinol, and Aß42 were not significantly different, there was a trend for higher levels of Aß42, p-tau217, and p-tau231 in the concussed group. Interestingly, the serum-derived exosome sizes were significantly larger (p < 0.01), and serum RBP-4 levels were significantly reduced (p < 0.05) in the highly concussed group. These findings indicate that retired athletes with a history of multiple concussions during their careers have altered serum measurements of exosome size, t-tau, p-tau181, and RBP-4. These biomarkers should be explored further for the prediction of future neurodegenerative outcomes, including ALS, in those with a history of concussion.


Assuntos
Atletas , Biomarcadores , Concussão Encefálica , Futebol Americano , Doenças Neurodegenerativas , Aposentadoria , Humanos , Biomarcadores/sangue , Masculino , Concussão Encefálica/sangue , Concussão Encefálica/epidemiologia , Pessoa de Meia-Idade , Reino Unido/epidemiologia , Futebol Americano/lesões , Adulto , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/epidemiologia , Doenças Neurodegenerativas/etiologia , Rugby , Proteínas tau/sangue , Fatores de Risco , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Traumatismos em Atletas/sangue , Traumatismos em Atletas/epidemiologia
4.
Exp Gerontol ; 194: 112503, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38955238

RESUMO

OBJECTIVE: Observational studies have shown that increased serum urate is associated with a lower risk of neurodegenerative diseases (NDs), but the causality remains unclear. We employed a two-sample Mendelian randomization (MR) approach to assess the causal relationship between serum urate and four common subtypes of NDs, including Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). METHODS: Serum urate data came from the CKDGen Consortium. GWAS data for PD, AD, ALS, and MS were obtained from four databases in the primary analysis and then acquired statistics from the FinnGen consortium for replication and meta-analysis. Inverse variance weighted (IVW), weighted median (WM), and MR-Egger regression methods were applied in the MR analyses. Pleiotropic effects, heterogeneity, and leave-one-out analyses were evaluated to validate the results. RESULTS: There was no evidence for the effect of serum urate on PD (OR: 1.00, 95 % CI: 0.90-1.11, P = 0.97), AD (OR: 1.02, 95 % CI: 1.00-1.04, P = 0.06), ALS (OR: 1.05, 95 % CI: 0.97-1.13, P = 0.22), and MS (OR: 1.01, 95 % CI: 0.89-1.14, P = 0.90) risk when combined with the FinnGen consortium, neither was any evidence of pleiotropy detected between the instrumental variables (IVs). CONCLUSION: The MR analysis suggested that serum urate may not be causally associated with a risk of PD, AD, ALS, and MS.


Assuntos
Esclerose Lateral Amiotrófica , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Doenças Neurodegenerativas , Ácido Úrico , Humanos , Ácido Úrico/sangue , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/sangue , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/sangue , Doença de Parkinson/genética , Doença de Parkinson/sangue , Esclerose Múltipla/genética , Esclerose Múltipla/sangue , Doença de Alzheimer/genética , Doença de Alzheimer/sangue , Polimorfismo de Nucleotídeo Único , Causalidade
5.
Transl Neurodegener ; 13(1): 32, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898538

RESUMO

The central nervous system (CNS) is integrated by glial and neuronal cells, and both release extracellular vesicles (EVs) that participate in CNS homeostasis. EVs could be one of the best candidates to operate as nanosized biological platforms for analysing multidimensional bioactive cargos, which are protected during systemic circulation of EVs. Having a window into the molecular level processes that are happening in the CNS could open a new avenue in CNS research. This raises a particular point of interest: can CNS-derived EVs in blood serve as circulating biomarkers that reflect the pathological status of neurological diseases? L1 cell adhesion molecule (L1CAM) is a widely reported biomarker to identify CNS-derived EVs in peripheral blood. However, it has been demonstrated that L1CAM is also expressed outside the CNS. Given that principal data related to neurodegenerative diseases, such as multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and Alzheimer's disease were obtained using L1CAM-positive EVs, efforts to overcome present challenges related to its specificity are required. In this sense, other surface biomarkers for CNS-derived EVs, such as glutamate aspartate transporter (GLAST) and myelin oligodendrocyte glycoprotein (MOG), among others, have started to be used. Establishing a panel of EV biomarkers to analyse CNS-derived EVs in blood could increase the specificity and sensitivity necessary for these types of studies. This review covers the main evidence related to CNS-derived EVs in cerebrospinal fluid and blood samples of patients with neurological diseases, focusing on the reported biomarkers and the technical possibilities for their isolation. EVs are emerging as a mirror of brain physiopathology, reflecting both localized and systemic changes. Therefore, when the technical hindrances for EV research and clinical applications are overcome, novel disease-specific panels of EV biomarkers would be discovered to facilitate transformation from traditional medicine to personalized medicine.


Assuntos
Biomarcadores , Sistema Nervoso Central , Vesículas Extracelulares , Doenças Neurodegenerativas , Humanos , Vesículas Extracelulares/metabolismo , Biomarcadores/sangue , Sistema Nervoso Central/metabolismo , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/metabolismo , Animais
6.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891863

RESUMO

Inflammatory bowel diseases (IBDs) are characterized by chronic gastrointestinal inflammation due to abnormal immune responses to gut microflora. The gut-brain axis is disrupted in IBDs, leading to neurobiological imbalances and affective symptoms. Systemic inflammation in IBDs affects the brain's inflammatory response system, hormonal axis, and blood-brain barrier integrity, influencing the gut microbiota. This review aims to explore the association between dysregulations in the gut-brain axis, serum biomarkers, and the development of cognitive disorders. Studies suggest a potential association between IBDs and the development of neurodegeneration. The mechanisms include systemic inflammation, nutritional deficiency, GBA dysfunction, and the effect of genetics and comorbidities. The objective is to identify potential correlations and propose future research directions to understand the impact of altered microbiomes and intestinal barrier functions on neurodegeneration. Serum levels of vitamins, inflammatory and neuronal damage biomarkers, and neuronal growth factors have been investigated for their potential to predict the development of neurodegenerative diseases, but current results are inconclusive and require more studies.


Assuntos
Biomarcadores , Eixo Encéfalo-Intestino , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Doenças Neurodegenerativas , Humanos , Biomarcadores/sangue , Doenças Neurodegenerativas/sangue , Doenças Inflamatórias Intestinais/sangue , Encéfalo/metabolismo , Encéfalo/patologia , Animais
7.
JACC Heart Fail ; 12(6): 1073-1085, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839151

RESUMO

BACKGROUND: Cognitive impairment is prevalent in patients with heart failure with reduced ejection fraction (HFrEF), affecting self-care and outcomes. Novel blood-based biomarkers have emerged as potential diagnostic tools for neurodegeneration. OBJECTIVES: This study aimed to assess neurodegeneration in HFrEF by measuring neurofilament light chain (NfL), total tau (t-tau), amyloid beta 40 (Aß40), and amyloid beta 42 (Aß42) in a large, well-characterized cohort. METHODS: The study included 470 patients with HFrEF from a biobank-linked prospective registry at the Medical University of Vienna. High-sensitivity single-molecule assays were used for measurement. Unplanned heart failure (HF) hospitalization and all-cause death were recorded as outcome parameters. RESULTS: All markers, but not the Aß42:Aß40 ratio, correlated with HF severity, ie, N-terminal pro-B-type natriuretic peptide and NYHA functional class, and comorbidity burden and were significantly associated with all-cause death and HF hospitalization (crude HR: all-cause death: NfL: 4.44 [95% CI: 3.02-6.53], t-tau: 5.04 [95% CI: 2.97-8.58], Aß40: 3.90 [95% CI: 2.27-6.72], and Aß42: 5.14 [95% CI: 2.84-9.32]; HF hospitalization: NfL: 2.48 [95% CI: 1.60-3.85], t-tau: 3.44 [95% CI: 1.95-6.04], Aß40: 3.13 [95% CI: 1.84-5.34], and Aß42: 3.48 [95% CI: 1.93-6.27]; P < 0.001 for all). These associations remained statistically significant after multivariate adjustment including N-terminal pro-B-type natriuretic peptide. The discriminatory accuracy of NfL in predicting all-cause mortality was comparable to the well-established risk marker N-terminal pro-B-type natriuretic peptide (C-index: 0.70 vs 0.72; P = 0.225), whereas the C-indices of t-tau, Aß40, Aß42, and the Aß42:Aß40 ratio were significantly lower (P < 0.05 for all). CONCLUSIONS: Neurodegeneration is directly interwoven with the progression of HF. Biomarkers of neurodegeneration, particularly NfL, may help identify patients potentially profiting from a comprehensive neurological work-up. Further research is necessary to test whether early diagnosis or optimized HFrEF treatment can preserve cognitive function.


Assuntos
Peptídeos beta-Amiloides , Biomarcadores , Insuficiência Cardíaca , Proteínas de Neurofilamentos , Fragmentos de Peptídeos , Índice de Gravidade de Doença , Proteínas tau , Humanos , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/diagnóstico , Masculino , Feminino , Biomarcadores/sangue , Peptídeos beta-Amiloides/sangue , Idoso , Fragmentos de Peptídeos/sangue , Proteínas tau/sangue , Proteínas de Neurofilamentos/sangue , Pessoa de Meia-Idade , Peptídeo Natriurético Encefálico/sangue , Hospitalização/estatística & dados numéricos , Volume Sistólico/fisiologia , Estudos Prospectivos , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/diagnóstico , Disfunção Cognitiva/sangue , Disfunção Cognitiva/diagnóstico
9.
Artigo em Inglês | MEDLINE | ID: mdl-38908505

RESUMO

BACKGROUND: Establishing causal relationships between metabolic biomarkers and neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) is a challenge faced by observational studies. In this study, our aim was to investigate the causal associations between plasma metabolites and neurodegenerative diseases using Mendelian Randomization (MR) methods. METHODS: We utilized genetic associations with 1400 plasma metabolic traits as exposures. We used large-scale genome-wide association study (GWAS) summary statistics for AD and PD as our discovery datasets. For validation, we performed repeated analyses using different GWAS datasets. The main statistical method employed was inverse variance-weighted (IVW). We also conducted enrichment pathway analysis for IVW-identified metabolites. RESULTS: In the discovered dataset, there are a total of 69 metabolites (36 negatively, 33 positively) potentially associated with AD, and 47 metabolites (24 negatively, 23 positively) potentially associated with PD. Among these, 4 significant metabolites overlap with significant metabolites (PIVW < 0.05)in the validation dataset for AD, and 1 metabolite overlaps with significant metabolites in the validation dataset for PD. Three metabolites serve as common potential metabolic markers for both AD and PD, including Tryptophan betaine, Palmitoleoylcarnitine (C16:1), and X-23655 levels. Further pathway enrichment analysis suggests that the SLC-mediated transmembrane transport pathway, involving tryptophan betaine and carnitine metabolites, may represent potential intervention targets for treating AD and PD. CONCLUSION: This study offers novel insights into the causal effects of plasma metabolites on degenerative diseases through the integration of genomics and metabolomics. The identification of metabolites and metabolic pathways linked to AD and PD enhances our comprehension of the underlying biological mechanisms and presents promising targets for future therapeutic interventions in AD and PD.


Assuntos
Biomarcadores , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Doença de Parkinson , Humanos , Doença de Parkinson/sangue , Doença de Parkinson/genética , Biomarcadores/sangue , Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/genética , Metabolômica
10.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928000

RESUMO

Neurological damage is the pathological substrate of permanent disability in various neurodegenerative disorders. Early detection of this damage, including its identification and quantification, is critical to preventing the disease's progression in the brain. Tau, glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL), as brain protein biomarkers, have the potential to improve diagnostic accuracy, disease monitoring, prognostic assessment, and treatment efficacy. These biomarkers are released into the cerebrospinal fluid (CSF) and blood proportionally to the degree of neuron and astrocyte damage in different neurological disorders, including stroke, traumatic brain injury, multiple sclerosis, neurodegenerative dementia, and Parkinson's disease. Here, we review how Tau, GFAP, and NfL biomarkers are detected in CSF and blood as crucial diagnostic tools, as well as the levels of these biomarkers used for differentiating a range of neurological diseases and monitoring disease progression. We also discuss a biosensor approach that allows for the real-time detection of multiple biomarkers in various neurodegenerative diseases. This combined detection system of brain protein biomarkers holds significant promise for developing more specific and accurate clinical tools that can identify the type and stage of human neurological diseases with greater precision.


Assuntos
Biomarcadores , Proteína Glial Fibrilar Ácida , Doenças Neurodegenerativas , Proteínas de Neurofilamentos , Proteínas tau , Humanos , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/sangue , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Proteínas de Neurofilamentos/sangue , Proteína Glial Fibrilar Ácida/líquido cefalorraquidiano , Proteína Glial Fibrilar Ácida/sangue , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/sangue , Doenças Neurodegenerativas/líquido cefalorraquidiano , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/sangue , Encéfalo/metabolismo , Encéfalo/patologia
11.
Biol Cell ; 116(7): e2400019, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38822416

RESUMO

BACKGROUND: Red blood cells (RBCs) are usually considered simple cells and transporters of gases to tissues. HYPOTHESIS: However, recent research has suggested that RBCs may have diagnostic potential in major neurodegenerative disorders (NDDs). RESULTS: This review summarizes the current knowledge on changes in RBC in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and other NDDs. It discusses the deposition of neuronal proteins like amyloid-ß, tau, and α-synuclein, polyamines, changes in the proteins of RBCs like band-3, membrane transporter proteins, heat shock proteins, oxidative stress biomarkers, and altered metabolic pathways in RBCs during neurodegeneration. It also highlights the comparison of RBC diagnostic markers to other in-market diagnoses and discusses the challenges in utilizing RBCs as diagnostic tools, such as the need for standardized protocols and further validation studies. SIGNIFICANCE STATEMENT: The evidence suggests that RBCs have diagnostic potential in neurodegenerative disorders, and this study can pave the foundation for further research which may lead to the development of novel diagnostic approaches and treatments.


Assuntos
Biomarcadores , Eritrócitos , Doenças Neurodegenerativas , Humanos , Eritrócitos/metabolismo , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/sangue , Biomarcadores/metabolismo , Biomarcadores/sangue , Estresse Oxidativo , Animais , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/sangue
12.
Alzheimers Dement ; 20(7): 4411-4422, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38864416

RESUMO

INTRODUCTION: Brain-derived extracellular vesicles (BEVs) in blood allows for minimally-invasive investigations of central nervous system (CNS) -specific markers of age-related neurodegenerative diseases (NDDs). Polymer-based EV- and immunoprecipitation (IP)-based BEV-enrichment protocols from blood have gained popularity. We systematically investigated protocol consistency across studies, and determined CNS-specificity of proteins associated with these protocols. METHODS: NDD articles investigating BEVs in blood using polymer-based and/or IP-based BEV enrichment protocols were systematically identified, and protocols compared. Proteins used for BEV-enrichment and/or post-enrichment were assessed for CNS- and brain-cell-type-specificity, extracellular domains (ECD+), and presence in EV-databases. RESULTS: A total of 82.1% of studies used polymer-based (ExoQuick) EV-enrichment, and 92.3% used L1CAM for IP-based BEV-enrichment. Centrifugation times differed across studies. A total of 26.8% of 82 proteins systematically identified were CNS-specific: 50% ECD+, 77.3% were listed in EV-databases. CONCLUSIONS: We identified protocol steps requiring standardization, and recommend additional CNS-specific proteins that can be used for BEV-enrichment or as BEV-biomarkers. HIGHLIGHTS: Across NDDs, we identified protocols commonly used for EV/BEV enrichment from blood. We identified protocol steps showing variability that require harmonization. We assessed CNS-specificity of proteins used for BEV-enrichment or found in BEV cargo. CNS-specific EV proteins with ECD+ or without were identified. We recommend evaluation of blood-BEV enrichment using these additional ECD+ proteins.


Assuntos
Biomarcadores , Encéfalo , Vesículas Extracelulares , Doenças Neurodegenerativas , Vesículas Extracelulares/metabolismo , Humanos , Doenças Neurodegenerativas/sangue , Biomarcadores/sangue
13.
J Neurol Sci ; 461: 123041, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744216

RESUMO

Inflammatory central nervous system (CNS) diseases, such as multiple sclerosis (MS) and myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD), are characterized by humoral immune abnormalities. Anti-MOG antibodies are not specific to MOGAD, with their presence described in MS. Autoantibodies may also be present and play a role in various neurodegenerative diseases. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease driven by motor neuron dysfunction. While immune involvement in ALS has been recognized, the presence of antibodies targeting CNS myelin antigens has not been established. We aimed to establish a live cell-based assay for quantification of serum anti-MOG IgG1 in patients with CNS diseases, including MS and ALS. In total, 771 serum samples from the John L. Trotter MS Center and the Northeast ALS Consortium were examined using a live cell-based assay for detection of anti-MOG IgG1. Samples from three cohorts were tested in blinded fashion: healthy control (HC) subjects, patients with clinically diagnosed MOGAD, and an experimental group of ALS and MS patients. All samples from established MOGAD cases were positive for anti-MOG antibodies, while all HC samples were negative. Anti-MOG IgG1 was detected in 65 of 658 samples (9.9%) from MS subjects and 4 of 108 (3.7%) samples from ALS subjects. The presence of serum anti-MOG IgG1 in MS and ALS patients raises questions about the contribution of these antibodies to disease pathophysiology as well as accuracy of diagnostic approaches for CNS inflammatory diseases.


Assuntos
Esclerose Lateral Amiotrófica , Autoanticorpos , Imunoglobulina G , Glicoproteína Mielina-Oligodendrócito , Glicoproteína Mielina-Oligodendrócito/imunologia , Humanos , Autoanticorpos/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/diagnóstico , Imunoglobulina G/sangue , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/diagnóstico , Idoso , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/sangue , Adulto , Esclerose Múltipla/imunologia , Esclerose Múltipla/sangue , Animais
14.
Alzheimers Res Ther ; 16(1): 106, 2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38730474

RESUMO

BACKGROUND: Previous studies on the associations between serum urate levels and neurodegenerative outcomes have yielded inconclusive results, and the causality remains unclear. This study aimed to investigate whether urate levels are associated with the risks of Alzheimer's disease and related dementias (ADRD), Parkinson's disease (PD), and neurodegenerative deaths. METHODS: This prospective study included 382,182 participants (45.7% men) from the UK Biobank cohort. Cox proportional hazards models were used to assess the associations between urate levels and risk of neurodegenerative outcomes. In the Mendelian randomization (MR) analysis, urate-related single-nucleotide polymorphisms were identified through a genome-wide association study. Both linear and non-linear MR approaches were utilized to investigate the potential causal associations. RESULTS: During a median follow-up period of 12 years, we documented 5,400 ADRD cases, 2,553 PD cases, and 1,531 neurodegenerative deaths. Observational data revealed that a higher urate level was associated with a decreased risk of ADRD (hazard ratio [HR]: 0.93, 95% confidence interval [CI]: 0.90, 0.96), PD (HR: 0.87, 95% CI: 0.82, 0.91), and neurodegenerative death (HR: 0.88, 95% CI: 0.83, 0.94). Negative linear associations between urate levels and neurodegenerative events were observed (all P-values for overall < 0.001 and all P-values for non-linearity > 0.05). However, MR analyses yielded no evidence of either linear or non-linear associations between genetically predicted urate levels and the risk of the aforementioned neurodegenerative events. CONCLUSION: Although the prospective cohort study demonstrated that elevated urate levels were associated with a reduced risk of neurodegenerative outcomes, MR analyses found no evidence of causality.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Ácido Úrico , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Alzheimer/genética , Doença de Alzheimer/sangue , Doença de Alzheimer/epidemiologia , Estudos de Coortes , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/epidemiologia , Doença de Parkinson/genética , Doença de Parkinson/sangue , Doença de Parkinson/epidemiologia , Estudos Prospectivos , Biobanco do Reino Unido , Reino Unido/epidemiologia , Ácido Úrico/sangue
15.
Alzheimers Res Ther ; 16(1): 94, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689358

RESUMO

BACKGROUND: Although blood-based biomarkers have been identified as cost-effective and scalable alternatives to PET and CSF markers of neurodegenerative disease, little is known about how these biomarkers predict future brain atrophy and cognitive decline in cognitively unimpaired individuals. Using data from the Baltimore Longitudinal Study of Aging (BLSA), we examined whether plasma biomarkers of Alzheimer's disease (AD) pathology (amyloid-ß [Aß42/40], phosphorylated tau [pTau-181]), astrogliosis (glial fibrillary acidic protein [GFAP]), and neuronal injury (neurofilament light chain [NfL]) were associated with longitudinal brain volume loss and cognitive decline. Additionally, we determined whether sex, APOEε4 status, and plasma amyloid-ß status modified these associations. METHODS: Plasma biomarkers were measured using Quanterix SIMOA assays. Regional brain volumes were measured by 3T MRI, and a battery of neuropsychological tests assessed five cognitive domains. Linear mixed effects models adjusted for demographic factors, kidney function, and intracranial volume (MRI analyses) were completed to relate baseline plasma biomarkers to baseline and longitudinal brain volume and cognitive performance. RESULTS: Brain volume analyses included 622 participants (mean age ± SD: 70.9 ± 10.2) with an average of 3.3 MRI scans over 4.7 years. Cognitive performance analyses included 674 participants (mean age ± SD: 71.2 ± 10.0) with an average of 3.9 cognitive assessments over 5.7 years. Higher baseline pTau-181 was associated with steeper declines in total gray matter volume and steeper regional declines in several medial temporal regions, whereas higher baseline GFAP was associated with greater longitudinal increases in ventricular volume. Baseline Aß42/40 and NfL levels were not associated with changes in brain volume. Lower baseline Aß42/40 (higher Aß burden) was associated with a faster decline in verbal memory and visuospatial performance, whereas higher baseline GFAP was associated with a faster decline in verbal fluency. Results were generally consistent across sex and APOEε4 status. However, the associations of higher pTau-181 with increasing ventricular volume and memory declines were significantly stronger among individuals with higher Aß burden, as was the association of higher GFAP with memory decline. CONCLUSIONS: Among cognitively unimpaired older adults, plasma biomarkers of AD pathology (pTau-181) and astrogliosis (GFAP), but not neuronal injury (NfL), serve as markers of future brain atrophy and cognitive decline.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Atrofia , Biomarcadores , Encéfalo , Disfunção Cognitiva , Proteínas tau , Humanos , Feminino , Masculino , Biomarcadores/sangue , Idoso , Atrofia/patologia , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Doença de Alzheimer/sangue , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/sangue , Disfunção Cognitiva/sangue , Disfunção Cognitiva/patologia , Proteínas tau/sangue , Proteínas tau/líquido cefalorraquidiano , Estudos Longitudinais , Proteína Glial Fibrilar Ácida/sangue , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Proteínas de Neurofilamentos/sangue , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/patologia , Testes Neuropsicológicos , Imageamento por Ressonância Magnética , Fragmentos de Peptídeos/sangue
16.
Alzheimers Dement ; 20(6): 3889-3905, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38644682

RESUMO

INTRODUCTION: We investigate pathological correlates of plasma phosphorylated tau 181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL) across a clinically diverse spectrum of neurodegenerative disease, including normal cognition (NormCog) and impaired cognition (ImpCog). METHODS: Participants were NormCog (n = 132) and ImpCog (n = 461), with confirmed ß-amyloid (Aß+/-) status (cerebrospinal fluid, positron emission tomography, autopsy) and single molecule array plasma measurements. Logistic regression and receiver operating characteristic (ROC) area under the curve (AUC) tested how combining plasma analytes discriminated Aß+ from Aß-. Survival analyses tested time to clinical dementia rating (global CDR) progression. RESULTS: Multivariable models (p-tau+GFAP+NfL) had the best performance to detect Aß+ in NormCog (ROCAUC = 0.87) and ImpCog (ROCAUC = 0.87). Survival analyses demonstrated that higher NfL best predicted faster CDR progression for both Aß+ (hazard ratio [HR] = 2.94; p = 8.1e-06) and Aß- individuals (HR = 3.11; p = 2.6e-09). DISCUSSION: Combining plasma biomarkers can optimize detection of Alzheimer's disease (AD) pathology across cognitively normal and clinically diverse neurodegenerative disease. HIGHLIGHTS: Participants were clinically heterogeneous, with autopsy- or biomarker-confirmed Aß. Combining plasma p-tau181, GFAP, and NfL improved diagnostic accuracy for Aß status. Diagnosis by plasma biomarkers is more accurate in amnestic AD than nonamnestic AD. Plasma analytes show independent associations with tau PET and post mortem Aß/tau. Plasma NfL predicted longitudinal cognitive decline in both Aß+ and Aß- individuals.


Assuntos
Peptídeos beta-Amiloides , Biomarcadores , Doenças Neurodegenerativas , Proteínas de Neurofilamentos , Tomografia por Emissão de Pósitrons , Proteínas tau , Humanos , Biomarcadores/sangue , Feminino , Masculino , Proteínas tau/sangue , Proteínas tau/líquido cefalorraquidiano , Idoso , Proteínas de Neurofilamentos/sangue , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/diagnóstico , Peptídeos beta-Amiloides/sangue , Proteína Glial Fibrilar Ácida/sangue , Progressão da Doença , Disfunção Cognitiva/sangue , Disfunção Cognitiva/diagnóstico , Pessoa de Meia-Idade , Fosforilação , Cognição/fisiologia
17.
J Neurol ; 271(7): 4180-4190, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38589629

RESUMO

Multimodal biomarkers may identify former contact sports athletes with repeated concussions and at risk for dementia. Our study aims to investigate whether biomarker evidence of neurodegeneration in former professional athletes with repetitive concussions (ExPro) is associated with worse cognition and mood/behavior, brain atrophy, and altered functional connectivity. Forty-one contact sports athletes with repeated concussions were divided into neurodegenerative biomarker-positive (n = 16) and biomarker-negative (n = 25) groups based on positivity of serum neurofilament light-chain. Six healthy controls (negative for biomarkers) with no history of concussions were also analyzed. We calculated cognitive and mood/behavior composite scores from neuropsychological assessments. Gray matter volume maps and functional connectivity of the default mode, salience, and frontoparietal networks were compared between groups using ANCOVAs, controlling for age, and total intracranial volume. The association between the connectivity networks and sports characteristics was analyzed by multiple regression analysis in all ExPro. Participants presented normal-range mean performance in executive function, memory, and mood/behavior tests. The ExPro groups did not differ in professional years played, age at first participation in contact sports, and number of concussions. There were no differences in gray matter volume between groups. The neurodegenerative biomarker-positive group had lower connectivity in the default mode network (DMN) compared to the healthy controls and the neurodegenerative biomarker-negative group. DMN disconnection was associated with increased number of concussions in all ExPro. Biomarkers of neurodegeneration may be useful to detect athletes that are still cognitively normal, but with functional connectivity alterations after concussions and at risk of dementia.


Assuntos
Atletas , Traumatismos em Atletas , Biomarcadores , Concussão Encefálica , Imageamento por Ressonância Magnética , Humanos , Masculino , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/fisiopatologia , Concussão Encefálica/sangue , Adulto , Biomarcadores/sangue , Feminino , Traumatismos em Atletas/fisiopatologia , Traumatismos em Atletas/complicações , Traumatismos em Atletas/diagnóstico por imagem , Proteínas de Neurofilamentos/sangue , Testes Neuropsicológicos , Pessoa de Meia-Idade , Adulto Jovem , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Conectoma , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/fisiopatologia , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/diagnóstico , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia
18.
Arterioscler Thromb Vasc Biol ; 44(5): 1042-1052, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38545782

RESUMO

The brain is the most lipid-rich organ in the body, and the intricate interplay between lipid metabolism and pathologies associated with neurodegenerative disorders is being increasingly recognized. The brain is bathed in cerebrospinal fluid (CSF), which, like plasma, contains lipid-protein complexes called lipoproteins that are responsible for extracellular lipid transport. Multiple CSF lipoprotein populations exist, some of which are produced de novo in the central nervous system and others that appear to be generated from protein constituents that are produced in the periphery. These CSF lipoproteins are thought to play key roles in maintaining lipid homeostasis in the central nervous system, while little else is known due to their limited accessibility and their low abundance in CSF. Recent work has provided new insights into the compositional complexity of CSF lipoprotein families and their metabolism in cerebral circulation. The purpose of this review is to summarize our current state of knowledge on the composition, origin, and metabolism of CSF lipoproteins.


Assuntos
Lipoproteínas , Humanos , Animais , Lipoproteínas/líquido cefalorraquidiano , Encéfalo/metabolismo , Metabolismo dos Lipídeos , Doenças Neurodegenerativas/líquido cefalorraquidiano , Doenças Neurodegenerativas/sangue
19.
Turk J Med Sci ; 53(5): 1465-1475, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38812995

RESUMO

Background/aim: There are reports stating that deteriorations in metal homeostasis in neurodegenerative diseases promote abnormal protein accumulation. In this study, the serum metal levels in Alzheimer's disease (AD) and Parkinson's disease (PD) and its relationship with the cortical regions of the brain were investigated. Materials and methods: The patients were divided into 3 groups consisting of the AD group, PD group, and healthy control group (n = 15 for each). The volumes of specific brain regions were measured over the participants' 3-dimensional magnetic resonance images, and they were compared across the groups. Copper, zinc, iron, and ferritin levels in the serums were determined, and their correlations with the brain region volumes were examined. Results: The volumes of left hippocampus and right substantia nigra were lower in the AD and PD groups, while the volume of the left nucleus caudatus (CdN) and bilateral insula were lower in the AD group compared to the control group. Serum zinc levels were lower in the AD and PD groups, while the iron level was lower in the PD group in comparison to the control group. In addition, the serum ferritin level was higher in the AD group than in the control group. Serum zinc and copper levels in the AD group were positively correlated with the volumes of the right entorhinal cortex, thalamus, CdN, and insula. Serum zinc and copper levels in the PD group showed a negative correlation with the left nucleus accumbens (NAc), right putamen, and right insula volumes. While the serum ferritin level in the PD group displayed a positive correlation with the bilateral CdN, putamen, and NAc, as well as the right hippocampus and insula volumes, no area was detected that showed a correlation with the serum ferritin level in the AD group. Conclusion: A relationship was determined between the serum metal levels in the AD and PD groups and certain brain cortical regions that showed volumetric changes, which can be important for the early diagnosis of neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Encéfalo , Ferritinas , Ferro , Imageamento por Ressonância Magnética , Doença de Parkinson , Zinco , Humanos , Masculino , Feminino , Idoso , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Zinco/sangue , Ferro/sangue , Ferro/metabolismo , Doença de Parkinson/sangue , Doença de Parkinson/diagnóstico por imagem , Pessoa de Meia-Idade , Ferritinas/sangue , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Cobre/sangue , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/diagnóstico por imagem , Estudos de Casos e Controles , Metais/sangue
20.
Parkinsonism Relat Disord ; 96: 29-35, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35149357

RESUMO

INTRODUCTION: Blood and cerebrospinal fluid represent emerging candidate fluids for biomarker identification in Parkinson's disease (PD). METHODS: We studied 8 individuals carrying the E46K-SNCA mutation (3 PD dementia (PDD), 1 tremor-dominant PD, 2 young rigid-akinetic PD and 2 asymptomatic) and 8 age- and sex-matched healthy controls. We quantified the levels of total alpha-synuclein (a-syn), neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), Tau and ubiquitin carboxy-terminal hydrolase L1 (UCHL1) with SiMoA (Quanterix) in cerebrospinal fluid (CSF) of mutation carriers and in serum of all participants. The correlation between the concentration of biofluid markers and clinical outcomes was evaluated. RESULTS: Although based on a small number of cases, CSF a-syn was decreased in symptomatic E46K-SNCA carriers compared to the asymptomatic ones. Asymptomatic carriers exhibited similar serum biomarker levels as compared to matched controls, except for serum a-syn, which was higher in asymptomatic individuals. Carriers with PDD diagnosis displayed increased levels of serum NfL and GFAP compared to matched controls. These findings highly correlated with cognitive and motor status of E46K-SNCA carriers, but not with disease duration. CONCLUSIONS: Patients with familial forms of neurodegenerative disease exhibit variable penetrance of the phenotype and are exceptionally valuable for delineating biomarkers. Serum and CSF molecular biomarkers in E46K-SNCA mutation carriers show that a-syn might be suitable to track the conversion from asymptomatic to PD, whereas NfL and GFAP might serve to foresee the progression to PD dementia. These findings should be interpreted with caution and need to be replicated in other genetic synucleinopathy cohorts.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , alfa-Sinucleína , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Humanos , Mutação , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/líquido cefalorraquidiano , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/genética , Doença de Parkinson/sangue , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , alfa-Sinucleína/sangue , alfa-Sinucleína/líquido cefalorraquidiano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA