Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 859
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 44(6): 1365-1378, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38695170

RESUMO

BACKGROUND: Macrophages play a crucial role in atherosclerotic plaque formation, and the death of macrophages is a vital factor in determining the fate of atherosclerosis. GSDMD (gasdermin D)-mediated pyroptosis is a programmed cell death, characterized by membrane pore formation and inflammatory factor release. METHODS: ApoE-/- and Gsdmd-/- ApoE-/- mice, bone marrow transplantation, and AAV (adeno-associated virus serotype 9)-F4/80-shGSDMD (shRNA-GSDMD) were used to examine the effect of macrophage-derived GSDMD on atherosclerosis. Single-cell RNA sequencing was used to investigate the changing profile of different cellular components and the cellular localization of GSDMD during atherosclerosis. RESULTS: First, we found that GSDMD is activated in human and mouse atherosclerotic plaques and Gsdmd-/- attenuates the atherosclerotic lesion area in high-fat diet-fed ApoE-/- mice. We performed single-cell RNA sequencing of ApoE-/- and Gsdmd-/- ApoE-/- mouse aortas and showed that GSDMD is principally expressed in atherosclerotic macrophages. Using bone marrow transplantation and AAV-F4/80-shGSDMD, we identified the potential role of macrophage-derived GSDMD in aortic pyroptosis and atherosclerotic injuries in vivo. Mechanistically, GSDMD contributes to mitochondrial perforation and mitochondrial DNA leakage and subsequently activates the STING (stimulator of interferon gene)-IRF3 (interferon regulatory factor 3)/NF-κB (nuclear factor kappa B) axis. Meanwhile, GSDMD regulates the STING pathway activation and macrophage migration via cytokine secretion. Inhibition of GSDMD with GSDMD-specific inhibitor GI-Y1 (GSDMD inhibitor Y1) can effectively alleviate the progression of atherosclerosis. CONCLUSIONS: Our study has provided a novel macrophage-derived GSDMD mechanism in the promotion of atherosclerosis and demonstrated that GSDMD can be a potential therapeutic target for atherosclerosis.


Assuntos
Aterosclerose , Modelos Animais de Doenças , Fator Regulador 3 de Interferon , Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Mitocôndrias , NF-kappa B , Proteínas de Ligação a Fosfato , Piroptose , Transdução de Sinais , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Camundongos , NF-kappa B/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos Knockout para ApoE , Placa Aterosclerótica , Doenças da Aorta/patologia , Doenças da Aorta/metabolismo , Doenças da Aorta/genética , Doenças da Aorta/prevenção & controle , Gasderminas
2.
Arterioscler Thromb Vasc Biol ; 44(6): 1379-1392, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38695167

RESUMO

BACKGROUND: Thromboembolic events secondary to rupture or erosion of advanced atherosclerotic lesions is the global leading cause of death. The most common and effective means to reduce these major adverse cardiovascular events, including myocardial infarction and stroke, is aggressive lipid lowering via a combination of drugs and dietary modifications. However, we know little regarding the effects of reducing dietary lipids on the composition and stability of advanced atherosclerotic lesions, the mechanisms that regulate these processes, and what therapeutic approaches might augment the benefits of lipid lowering. METHODS: Smooth muscle cell lineage-tracing Apoe-/- mice were fed a high-cholesterol Western diet for 18 weeks and then a zero-cholesterol standard laboratory diet for 12 weeks before treating them with an IL (interleukin)-1ß or control antibody for 8 weeks. We assessed lesion size and remodeling indices, as well as the cellular composition of aortic and brachiocephalic artery lesions, indices of plaque stability, overall plaque burden, and phenotypic transitions of smooth muscle cell and other lesion cells by smooth muscle cell lineage tracing combined with single-cell RNA sequencing, cytometry by time-of-flight, and immunostaining plus high-resolution confocal microscopic z-stack analysis. RESULTS: Lipid lowering by switching Apoe-/- mice from a Western diet to a standard laboratory diet reduced LDL cholesterol levels by 70% and resulted in multiple beneficial effects including reduced overall aortic plaque burden, as well as reduced intraplaque hemorrhage and necrotic core area. However, contrary to expectations, IL-1ß antibody treatment after diet-induced reductions in lipids resulted in multiple detrimental changes including increased plaque burden and brachiocephalic artery lesion size, as well as increasedintraplaque hemorrhage, necrotic core area, and senescence as compared with IgG control antibody-treated mice. Furthermore, IL-1ß antibody treatment upregulated neutrophil degranulation pathways but downregulated smooth muscle cell extracellular matrix pathways likely important for the protective fibrous cap. CONCLUSIONS: Taken together, IL-1ß appears to be required for the maintenance of standard laboratory diet-induced reductions in plaque burden and increases in multiple indices of plaque stability.


Assuntos
Aterosclerose , Modelos Animais de Doenças , Interleucina-1beta , Camundongos Knockout para ApoE , Miócitos de Músculo Liso , Placa Aterosclerótica , Animais , Interleucina-1beta/metabolismo , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Aterosclerose/genética , Camundongos , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Masculino , Dieta Ocidental , Camundongos Endogâmicos C57BL , Aorta/patologia , Aorta/metabolismo , Aorta/efeitos dos fármacos , Doenças da Aorta/patologia , Doenças da Aorta/prevenção & controle , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Dieta Hiperlipídica , Músculo Liso Vascular/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Tronco Braquiocefálico/patologia , Tronco Braquiocefálico/metabolismo , Tronco Braquiocefálico/efeitos dos fármacos
3.
Cardiovasc Res ; 120(6): 581-595, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38563353

RESUMO

AIMS: The interleukin-1 receptor accessory protein (IL1RAP) is a co-receptor required for signalling through the IL-1, IL-33, and IL-36 receptors. Using a novel anti-IL1RAP-blocking antibody, we investigated the role of IL1RAP in atherosclerosis. METHODS AND RESULTS: Single-cell RNA sequencing data from human atherosclerotic plaques revealed the expression of IL1RAP and several IL1RAP-related cytokines and receptors, including IL1B and IL33. Histological analysis showed the presence of IL1RAP in both the plaque and adventitia, and flow cytometry of murine atherosclerotic aortas revealed IL1RAP expression on plaque leucocytes, including neutrophils and macrophages. High-cholesterol diet fed apolipoprotein E-deficient (Apoe-/-) mice were treated with a novel non-depleting IL1RAP-blocking antibody or isotype control for the last 6 weeks of diet. IL1RAP blockade in mice resulted in a 20% reduction in subvalvular plaque size and limited the accumulation of neutrophils and monocytes/macrophages in plaques and of T cells in adventitia, compared with control mice. Indicative of reduced plaque inflammation, the expression of several genes related to leucocyte recruitment, including Cxcl1 and Cxcl2, was reduced in brachiocephalic arteries of anti-IL1RAP-treated mice, and the expression of these chemokines in human plaques was mainly restricted to CD68+ myeloid cells. Furthermore, in vitro studies demonstrated that IL-1, IL-33, and IL-36 induced CXCL1 release from both macrophages and fibroblasts, which could be mitigated by IL1RAP blockade. CONCLUSION: Limiting IL1RAP-dependent cytokine signalling pathways in atherosclerotic mice reduces plaque burden and plaque inflammation, potentially by limiting plaque chemokine production.


Assuntos
Doenças da Aorta , Aterosclerose , Modelos Animais de Doenças , Inflamação , Proteína Acessória do Receptor de Interleucina-1 , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Placa Aterosclerótica , Transdução de Sinais , Animais , Aterosclerose/patologia , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Aterosclerose/genética , Aterosclerose/imunologia , Humanos , Doenças da Aorta/patologia , Doenças da Aorta/prevenção & controle , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/imunologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Inflamação/imunologia , Inflamação/genética , Proteína Acessória do Receptor de Interleucina-1/metabolismo , Proteína Acessória do Receptor de Interleucina-1/genética , Masculino , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Anti-Inflamatórios/farmacologia , Feminino , Camundongos
4.
Arterioscler Thromb Vasc Biol ; 44(6): 1318-1329, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634281

RESUMO

BACKGROUND: Tissue resident memory T (TRM) cells are a T-cell subset that resides at the site of prior antigen recognition to protect the body against reoccurring encounters. Besides their protective function, TRM cells have also been implicated in inflammatory disorders. TRM cells are characterized by the expression of CD69 and transcription factors Hobit (homolog of Blimp-1 [B lymphocyte-induced maturation protein 1] in T cells) and Blimp-1. As the majority of T cells in the arterial intima expresses CD69, TRM cells may contribute to the pathogenesis of atherosclerosis as well. Here, we aimed to assess the presence and potential role of TRM cells in atherosclerosis. METHODS: To identify TRM cells in human atherosclerotic lesions, a single-cell RNA-sequencing data set was interrogated, and T-cell phenotypes were compared with that of integrated predefined TRM cells. The presence and phenotype of TRM in atherosclerotic lesions was corroborated using a mouse model that enabled tracking of Hobit-expressing TRM cells. To explore the function of TRM cells during atherogenesis, RAG1-/- (recombination activating gene 1 deficient) LDLr-/- (low-density lipoprotein receptor knockout) mice received a bone marrow transplant from HobitKO/CREBlimp-1flox/flox mice, which exhibit abrogated TRM cell formation, whereafter the mice were fed a Western-type diet for 10 weeks. RESULTS: Human atherosclerotic lesions contained T cells that exhibited a TRM cell-associated gene signature. Moreover, a fraction of these T cells clustered together with predefined TRM cells upon integration. The presence of Hobit-expressing TRM cells in the atherosclerotic lesion was confirmed in mice. These lesion-derived TRM cells were characterized by the expression of CD69 and CD49α. Moreover, we demonstrated that this small T-cell subset significantly affects lesion composition, by reducing the amount of intralesional macrophages and increasing collagen content. CONCLUSIONS: TRM cells, characterized by the expression of CD69 and CD49α, constitute a minor population in atherosclerotic lesions and are associated with increased lesion stability in a Hobit and Blimp-1 knockout mouse model.


Assuntos
Aterosclerose , Modelos Animais de Doenças , Memória Imunológica , Macrófagos , Células T de Memória , Camundongos Endogâmicos C57BL , Placa Aterosclerótica , Receptores de LDL , Animais , Aterosclerose/patologia , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/genética , Humanos , Células T de Memória/imunologia , Células T de Memória/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Receptores de LDL/genética , Receptores de LDL/deficiência , Camundongos , Masculino , Camundongos Knockout , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos de Diferenciação de Linfócitos T/genética , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Fenótipo , Feminino , Antígenos CD/metabolismo , Antígenos CD/genética , Doenças da Aorta/patologia , Doenças da Aorta/imunologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 44(6): 1346-1364, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660806

RESUMO

BACKGROUND: Atherosclerosis is the major underlying pathology of cardiovascular disease and is driven by dyslipidemia and inflammation. Inhibition of the immunoproteasome, a proteasome variant that is predominantly expressed by immune cells and plays an important role in antigen presentation, has been shown to have immunosuppressive effects. METHODS: We assessed the effect of ONX-0914, an inhibitor of the immunoproteasomal catalytic subunits LMP7 (proteasome subunit ß5i/large multifunctional peptidase 7) and LMP2 (proteasome subunit ß1i/large multifunctional peptidase 2), on atherosclerosis and metabolism in LDLr-/- and APOE*3-Leiden.CETP mice. RESULTS: ONX-0914 treatment significantly reduced atherosclerosis, reduced dendritic cell and macrophage levels and their activation, as well as the levels of antigen-experienced T cells during early plaque formation, and Th1 cells in advanced atherosclerosis in young and aged mice in various immune compartments. Additionally, ONX-0914 treatment led to a strong reduction in white adipose tissue mass and adipocyte progenitors, which coincided with neutrophil and macrophage accumulation in white adipose tissue. ONX-0914 reduced intestinal triglyceride uptake and gastric emptying, likely contributing to the reduction in white adipose tissue mass, as ONX-0914 did not increase energy expenditure or reduce total food intake. Concomitant with the reduction in white adipose tissue mass upon ONX-0914 treatment, we observed improvements in markers of metabolic syndrome, including lowered plasma triglyceride levels, insulin levels, and fasting blood glucose. CONCLUSIONS: We propose that immunoproteasomal inhibition reduces 3 major causes underlying cardiovascular disease, dyslipidemia, metabolic syndrome, and inflammation and is a new target in drug development for atherosclerosis treatment.


Assuntos
Tecido Adiposo Branco , Aterosclerose , Modelos Animais de Doenças , Síndrome Metabólica , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma , Receptores de LDL , Animais , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Aterosclerose/genética , Aterosclerose/metabolismo , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/imunologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/patologia , Receptores de LDL/genética , Receptores de LDL/deficiência , Complexo de Endopeptidases do Proteassoma/metabolismo , Masculino , Inibidores de Proteassoma/farmacologia , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Doenças da Aorta/prevenção & controle , Doenças da Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/enzimologia , Doenças da Aorta/imunologia , Doenças da Aorta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Placa Aterosclerótica , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Camundongos Knockout para ApoE , Camundongos , Metabolismo Energético/efeitos dos fármacos , Oligopeptídeos
6.
Atherosclerosis ; 392: 117519, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581737

RESUMO

BACKGROUND AND AIMS: Atherosclerosis is the primary underlying cause of myocardial infarction and stroke, which are the major causes of death globally. Heparanase (Hpse) is a pro-inflammatory extracellular matrix degrading enzyme that has been implicated in atherogenesis. However, to date the precise roles of Hpse in atherosclerosis and its mechanisms of action are not well defined. This study aims to provide new insights into the contribution of Hpse in different stages of atherosclerosis in vivo. METHODS: We generated Hpse gene-deficient mice on the atherosclerosis-prone apolipoprotein E gene knockout (ApoE-/-) background to investigate the impact of Hpse gene deficiency on the initiation and progression of atherosclerosis after 6 and 14 weeks high-fat diet feeding, respectively. Atherosclerotic lesion development, blood serum profiles, lesion composition and aortic immune cell populations were evaluated. RESULTS: Hpse-deficient mice exhibited significantly reduced atherosclerotic lesion burden in the aortic sinus and aorta at both time-points, independent of changes in plasma cholesterol levels. A significant reduction in the necrotic core size and an increase in smooth muscle cell content were also observed in advanced atherosclerotic plaques of Hpse-deficient mice. Additionally, Hpse deficiency reduced circulating and aortic levels of VCAM-1 at the initiation and progression stages of disease and circulating MCP-1 levels in the initiation but not progression stage. Moreover, the aortic levels of total leukocytes and dendritic cells in Hpse-deficient ApoE-/- mice were significantly decreased compared to control ApoE-/-mice at both disease stages. CONCLUSIONS: This study identifies Hpse as a key pro-inflammatory enzyme driving the initiation and progression of atherosclerosis and highlighting the potential of Hpse inhibitors as novel anti-inflammatory treatments for cardiovascular disease.


Assuntos
Aorta , Aterosclerose , Modelos Animais de Doenças , Progressão da Doença , Glucuronidase , Camundongos Knockout para ApoE , Placa Aterosclerótica , Animais , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/enzimologia , Aterosclerose/metabolismo , Glucuronidase/deficiência , Glucuronidase/genética , Glucuronidase/metabolismo , Aorta/patologia , Aorta/metabolismo , Aorta/enzimologia , Doenças da Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/enzimologia , Doenças da Aorta/metabolismo , Dieta Hiperlipídica , Apolipoproteínas E/genética , Apolipoproteínas E/deficiência , Camundongos Endogâmicos C57BL , Masculino , Molécula 1 de Adesão de Célula Vascular/metabolismo , Camundongos , Camundongos Knockout , Seio Aórtico/patologia , Necrose
7.
Cell Rep ; 43(3): 113815, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38428421

RESUMO

Diabetes-associated atherosclerosis involves excessive immune cell recruitment and plaque formation. However, the mechanisms remain poorly understood. Transcriptomic analysis of the aortic intima in Ldlr-/- mice on a high-fat, high-sucrose-containing (HFSC) diet identifies a macrophage-enriched nuclear long noncoding RNA (lncRNA), MERRICAL (macrophage-enriched lncRNA regulates inflammation, chemotaxis, and atherosclerosis). MERRICAL expression increases by 249% in intimal lesions during progression. lncRNA-mRNA pair genomic mapping reveals that MERRICAL positively correlates with the chemokines Ccl3 and Ccl4. MERRICAL-deficient macrophages exhibit lower Ccl3 and Ccl4 expression, chemotaxis, and inflammatory responses. Mechanistically, MERRICAL guides the WDR5-MLL1 complex to activate CCL3 and CCL4 transcription via H3K4me3 modification. MERRICAL deficiency in HFSC diet-fed Ldlr-/- mice reduces lesion formation by 74% in the aortic sinus and 86% in the descending aorta by inhibiting leukocyte recruitment into the aortic wall and pro-inflammatory responses. These findings unveil a regulatory mechanism whereby a macrophage-enriched lncRNA potently inhibits chemotactic responses, alleviating lesion progression in diabetes.


Assuntos
Doenças da Aorta , Aterosclerose , Diabetes Mellitus , Placa Aterosclerótica , RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Quimiotaxia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/metabolismo , Macrófagos/metabolismo , Diabetes Mellitus/patologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Receptores de LDL , Placa Aterosclerótica/metabolismo
8.
Gen Thorac Cardiovasc Surg ; 72(5): 293-304, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480670

RESUMO

Heritable thoracic aortic disease puts patients at risk for aortic aneurysms, rupture, and dissections. The diagnosis and management of this heterogenous patient population continues to evolve. Last year, the American Heart Association/American College of Cardiology Joint Committee published diagnosis and management guidelines for aortic disease, which included those with genetic aortopathies. Additionally, evolving research studying the implications of underlying genetic aberrations with new genetic testing continues to become available. In this review, we evaluate the current literature surrounding the diagnosis and management of heritable thoracic aortic disease, as well as novel therapeutic approaches and future directions of research.


Assuntos
Aneurisma da Aorta Torácica , Aneurisma Aórtico , Doenças da Aorta , Estados Unidos , Humanos , Aorta Torácica/cirurgia , Doenças da Aorta/genética , Doenças da Aorta/cirurgia , Aneurisma da Aorta Torácica/diagnóstico , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/cirurgia
9.
Arterioscler Thromb Vasc Biol ; 44(4): 946-953, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38450510

RESUMO

BACKGROUND: Women with a history of preeclampsia have evidence of premature atherosclerosis and increased risk of myocardial infarction and stroke compared with women who had a normotensive pregnancy. Whether this is due to common risk factors or a direct impact of prior preeclampsia exposure has never been tested in a mouse atherosclerosis model. METHODS: Pregnant LDLR-KO (low-density lipoprotein receptor knockout; n=35) female mice were randomized in midgestation to sFlt1 (soluble fms-like tyrosine kinase 1)-expressing adenovirus or identical control adenovirus. Postpartum, mice were fed high-fat diet for 8 weeks to induce atherogenesis. Comparison between the control and preeclampsia models was made for metabolic parameters, atherosclerosis burden and composition by histology, plaque inflammation by flow cytometry, and aortic cytokines and inflammatory markers using a cytokine array. RESULTS: In pregnant LDLR-KO mice, sFlt1 adenovirus significantly induced serum sFlt1, blood pressure, renal endotheliosis, and decreased pup viability. After 8 weeks of postpartum high fat feeding, body weight, fasting glucose, plasma cholesterol, HDL (high-density lipoprotein), and LDL (low-density lipoprotein) were not significantly different between groups with no change in aortic root plaque size, lipid content, or necrotic core area. Flow cytometry demonstrated significantly increased CD45+ aortic arch leukocytes and CD3+T cells and aortic lysate contained more CCL (CC motif chemokine ligand) 22 and fetuin A and decreased expression of IGFBP6 (insulin-like growth factor-binding protein 6) and CCL21 in preeclampsia-exposed mice compared with controls. CONCLUSIONS: In atherogenic LDLR-KO mice, exposure to sFlt1-induced preeclampsia during pregnancy increases future atherosclerotic plaque inflammation, supporting the concept that preeclampsia directly exacerbates atherosclerotic inflammation independent of preexisting risk factors. This mechanism may contribute to ischemic vascular disease in women after preeclampsia pregnancy.


Assuntos
Doenças da Aorta , Aterosclerose , Placa Aterosclerótica , Pré-Eclâmpsia , Humanos , Feminino , Animais , Camundongos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Doenças da Aorta/genética , Camundongos Knockout , Aterosclerose/genética , Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Receptores de LDL/genética , Citocinas , Camundongos Endogâmicos C57BL
10.
Atherosclerosis ; 392: 117506, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518516

RESUMO

BACKGROUND AND AIMS: Long noncoding RNAs are involved in the pathogenesis of atherosclerosis. As long noncoding RNAs maternally expressed gene 3 (Meg3) prevents cellular senescence of hepatic vascular endothelium and obesity-induced insulin resistance, we decided to examine its role in cellular senescence and atherosclerosis. METHODS AND RESULTS: By analyzing our data and human and mouse data from the Gene Expression Omnibus database, we found that Meg3 expression was reduced in humans and mice with cardiovascular disease, indicating its potential role in atherosclerosis. In Ldlr-/- mice fed a Western diet for 12 weeks, Meg3 silencing by chemically modified antisense oligonucleotides attenuated the formation of atherosclerotic lesions by 34.9% and 20.1% in male and female mice, respectively, revealed by en-face Oil Red O staining, which did not correlate with changes in plasma lipid profiles. Real-time quantitative PCR analysis of cellular senescence markers p21 and p16 revealed that Meg3 deficiency aggravates hepatic cellular senescence but not cellular senescence at aortic roots. Human Meg3 transgenic mice were generated to examine the role of Meg3 gain-of-function in the development of atherosclerosis induced by PCSK9 overexpression. Meg3 overexpression promotes atherosclerotic lesion formation by 29.2% in Meg3 knock-in mice independent of its effects on lipid profiles. Meg3 overexpression inhibits hepatic cellular senescence, while it promotes aortic cellular senescence likely by impairing mitochondrial function and delaying cell cycle progression. CONCLUSIONS: Our data demonstrate that Meg3 promotes the formation of atherosclerotic lesions independent of its effects on plasma lipid profiles. In addition, Meg3 regulates cellular senescence in a tissue-specific manner during atherosclerosis. Thus, we demonstrated that Meg3 has multifaceted roles in cellular senescence and atherosclerosis.


Assuntos
Aterosclerose , Senescência Celular , Camundongos Knockout , Pró-Proteína Convertase 9 , RNA Longo não Codificante , Receptores de LDL , Animais , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Humanos , Masculino , Feminino , Receptores de LDL/genética , Receptores de LDL/metabolismo , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/genética , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/patologia , Camundongos , Placa Aterosclerótica , Camundongos Endogâmicos C57BL , Doenças da Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Mitocôndrias/metabolismo , Transdução de Sinais , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética
11.
Arterioscler Thromb Vasc Biol ; 44(3): 741-754, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38299357

RESUMO

BACKGROUND: The metabolic alterations occurring within the arterial architecture during atherosclerosis development remain poorly understood, let alone those particular to each arterial tunica. We aimed first to identify, in a spatially resolved manner, the specific metabolic changes in plaque, media, adventitia, and cardiac tissue between control and atherosclerotic murine aortas. Second, we assessed their translatability to human tissue and plasma for cardiovascular risk estimation. METHODS: In this observational study, mass spectrometry imaging (MSI) was applied to identify region-specific metabolic differences between atherosclerotic (n=11) and control (n=11) aortas from low-density lipoprotein receptor-deficient mice, via histology-guided virtual microdissection. Early and advanced plaques were compared within the same atherosclerotic animals. Progression metabolites were further analyzed by MSI in 9 human atherosclerotic carotids and by targeted mass spectrometry in human plasma from subjects with elective coronary artery bypass grafting (cardiovascular risk group, n=27) and a control group (n=27). RESULTS: MSI identified 362 local metabolic alterations in atherosclerotic mice (log2 fold-change ≥1.5; P≤0.05). The lipid composition of cardiac tissue is altered during atherosclerosis development and presents a generalized accumulation of glycerophospholipids, except for lysolipids. Lysolipids (among other glycerophospholipids) were found at elevated levels in all 3 arterial layers of atherosclerotic aortas. LPC(18:0) (lysophosphatidylcholine; P=0.024) and LPA(18:1) (lysophosphatidic acid; P=0.025) were found to be significantly elevated in advanced plaques as compared with mouse-matched early plaques. Higher levels of both lipid species were also observed in fibrosis-rich areas of advanced- versus early-stage human samples. They were found to be significantly reduced in human plasma from subjects with elective coronary artery bypass grafting (P<0.001 and P=0.031, respectively), with LPC(18:0) showing significant association with cardiovascular risk (odds ratio, 0.479 [95% CI, 0.225-0.883]; P=0.032) and diagnostic potential (area under the curve, 0.778 [95% CI, 0.638-0.917]). CONCLUSIONS: An altered phospholipid metabolism occurs in atherosclerosis, affecting both the aorta and the adjacent heart tissue. Plaque-progression lipids LPC(18:0) and LPA(18:1), as identified by MSI on tissue, reflect cardiovascular risk in human plasma.


Assuntos
Doenças da Aorta , Aterosclerose , Doenças Cardiovasculares , Placa Aterosclerótica , Humanos , Animais , Camundongos , Placa Aterosclerótica/metabolismo , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/metabolismo , Fatores de Risco , Aterosclerose/diagnóstico , Aterosclerose/metabolismo , Aorta/diagnóstico por imagem , Aorta/metabolismo , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Glicerofosfolipídeos/metabolismo , Fatores de Risco de Doenças Cardíacas
12.
Hypertension ; 81(4): 738-751, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38318714

RESUMO

Aortic diseases such as atherosclerosis, aortic aneurysms, and aortic stiffening are significant complications that can have significant impact on end-stage cardiovascular disease. With limited pharmacological therapeutic strategies that target the structural changes in the aorta, surgical intervention remains the only option for some patients with these diseases. Although there have been significant contributions to our understanding of the cellular architecture of the diseased aorta, particularly in the context of atherosclerosis, furthering our insight into the cellular drivers of disease is required. The major cell types of the aorta are well defined; however, the advent of single-cell RNA sequencing provides unrivaled insights into the cellular heterogeneity of each aortic cell type and the inferred biological processes associated with each cell in health and disease. This review discusses previous concepts that have now been enhanced with recent advances made by single-cell RNA sequencing with a focus on aortic cellular heterogeneity.


Assuntos
Doenças da Aorta , Aterosclerose , Humanos , RNA , Aorta/metabolismo , Doenças da Aorta/genética , Perfilação da Expressão Gênica , Aterosclerose/genética , Aterosclerose/metabolismo
13.
Kidney Int ; 105(6): 1221-1238, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38417578

RESUMO

Vascular calcification is a pathological process commonly associated with atherosclerosis, chronic kidney disease, and diabetes. Paraspeckle protein NONO is a multifunctional RNA/DNA binding protein involved in many nuclear biological processes but its role in vascular calcification remains unclear. Here, we observed that NONO expression was decreased in calcified arteries of mice and patients with CKD. We generated smooth muscle-specific NONO-knockout mice and established three different mouse models of vascular calcification by means of 5/6 nephrectomy, adenine diet to induce chronic kidney failure, or vitamin D injection. The knockout mice were more susceptible to the development of vascular calcification relative to control mice, as verified by an increased calcification severity and calcium deposition. Likewise, aortic rings from knockout mice showed more significant vascular calcification than those from control mice ex vivo. In vitro, NONO deficiency aggravated high phosphate-induced vascular smooth muscle cell osteogenic differentiation and apoptosis, whereas NONO overexpression had a protective effect. Mechanistically, we demonstrated that the regulation of vascular calcification by NONO was mediated by bone morphogenetic protein 2 (BMP2). NONO directly bound to the BMP2 promoter using its C-terminal region, exerting an inhibitory effect on the transcription of BMP2. Thus, our study reveals that NONO is a novel negative regulator of vascular calcification, which inhibits osteogenic differentiation of vascular smooth muscle cell and vascular calcification via negatively regulating BMP2 transcription. Hence, NONO may provide a promising target for the prevention and treatment of vascular calcification.


Assuntos
Proteína Morfogenética Óssea 2 , Modelos Animais de Doenças , Camundongos Knockout , Músculo Liso Vascular , Miócitos de Músculo Liso , Osteogênese , Insuficiência Renal Crônica , Transcrição Gênica , Calcificação Vascular , Calcificação Vascular/patologia , Calcificação Vascular/prevenção & controle , Calcificação Vascular/metabolismo , Calcificação Vascular/genética , Calcificação Vascular/etiologia , Animais , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/genética , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Camundongos , Masculino , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/prevenção & controle , Osteogênese/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Diferenciação Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Doenças da Aorta/genética , Doenças da Aorta/prevenção & controle , Doenças da Aorta/patologia , Doenças da Aorta/metabolismo , Células Cultivadas
14.
Arterioscler Thromb Vasc Biol ; 44(2): 334-351, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38095107

RESUMO

Aortic disease, including dissection, aneurysm, and rupture, carries significant morbidity and mortality and is a notable cause of sudden cardiac death. Much of our knowledge regarding the genetic basis of aortic disease has relied on the study of individuals with Mendelian aortopathies and, until recently, the genetic determinants of population-level variance in aortic phenotypes remained unclear. However, the application of machine learning methodologies to large imaging datasets has enabled researchers to rapidly define aortic traits and mine dozens of novel genetic associations for phenotypes such as aortic diameter and distensibility. In this review, we highlight the emerging potential of genomics for identifying causal genes and candidate drug targets for aortic disease. We describe how deep learning technologies have accelerated the pace of genetic discovery in this field. We then provide a blueprint for translating genetic associations to biological insights, reviewing techniques for locus and cell type prioritization, high-throughput functional screening, and disease modeling using cellular and animal models of aortic disease.


Assuntos
Aneurisma da Aorta Torácica , Doenças da Aorta , Dissecção Aórtica , Animais , Humanos , Genômica/métodos , Doenças da Aorta/genética , Dissecção Aórtica/genética , Fenótipo , Aneurisma da Aorta Torácica/genética
15.
J Cardiovasc Transl Res ; 17(1): 153-166, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37713049

RESUMO

Macrophage is the main effector cell during atherosclerosis. We applied single-cell RNA sequencing (scRNA) data to investigate the role of macrophage subsets in atherosclerosis. Monocyte and macrophage clusters were divided into 6 subclusters. Each subcluster's markers were calculated and validated by immunofluorescence. Elevated macrophage subclusters in the WD group were subject to enrichment pathway analysis and exhibited different phenotypes. Pseudotime analysis shows the subclusters originate from monocytes. We cultured bone marrow-derived macrophages with CSF-1 and ox-LDL to simulate an atherosclerotic-like environment and detected the transformation of subclusters. Macrophage-Vegfa and Macrophage-C1qb increased in the WD group. Macrophage-Vegfa acquires the characteristics of phagocytosis and immune response, while Macrophage-C1qb is not involved in lipid metabolism. The two subclusters are both enriched in cell movement and migration pathways. Experimental verification proved Monocyte-Ly6C evolved into Macrophage-Vegfa and Macrophage-C1qb during atherosclerosis progression.


Assuntos
Doenças da Aorta , Aterosclerose , Placa Aterosclerótica , Humanos , Macrófagos/metabolismo , Monócitos/metabolismo , Aterosclerose/metabolismo , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Aorta/metabolismo , Placa Aterosclerótica/genética
16.
Am J Physiol Heart Circ Physiol ; 325(5): H1133-H1143, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37682237

RESUMO

Children with beta-thalassemia (BT) present with an increase in carotid intima-medial thickness, an early sign suggestive of premature atherosclerosis. However, it is unknown if there is a direct relationship between BT and atherosclerotic disease. To evaluate this, wild-type (WT, littermates) and BT (Hbbth3/+) mice, both male and female, were placed on a 3-mo high-fat diet with low-density lipoprotein receptor suppression via overexpression of proprotein convertase subtilisin/kexin type 9 (PCSK9) gain-of-function mutation (D377Y). Mechanistically, we hypothesize that heme-mediated oxidative stress creates a proatherogenic environment in BT because BT is a hemolytic anemia that has increased free heme and exhausted hemopexin, heme's endogenous scavenger, in the vasculature. We evaluated the effect of hemopexin (HPX) therapy, mediated via an adeno-associated virus, to the progression of atherosclerosis in BT and a phenylhydrazine-induced model of intravascular hemolysis. In addition, we evaluated the effect of deferiprone (DFP)-mediated iron chelation in the progression of atherosclerosis in BT mice. Aortic en face and aortic root lesion area analysis revealed elevated plaque accumulation in both male and female BT mice compared with WT mice. Hemopexin therapy was able to decrease plaque accumulation in both BT mice and mice on our phenylhydrazine (PHZ)-induced model of hemolysis. DFP decreased atherosclerosis in BT mice but did not provide an additive benefit to HPX therapy. Our data demonstrate for the first time that the underlying pathophysiology of BT leads to accelerated atherosclerosis and shows that heme contributes to atherosclerotic plaque development in BT.NEW & NOTEWORTHY This work definitively shows for the first time that beta-thalassemia leads to accelerated atherosclerosis. We demonstrated that intravascular hemolysis is a prominent feature in beta-thalassemia and the resulting increases in free heme are mechanistically relevant. Adeno-associated virus (AAV)-hemopexin therapy led to decreased free heme and atherosclerotic plaque area in both beta-thalassemia and phenylhydrazine-treated mice. Deferiprone-mediated iron chelation led to deceased plaque accumulation in beta-thalassemia mice but provided no additive benefit to hemopexin therapy.


Assuntos
Doenças da Aorta , Aterosclerose , Placa Aterosclerótica , Talassemia beta , Humanos , Criança , Masculino , Feminino , Camundongos , Animais , Pró-Proteína Convertase 9/genética , Talassemia beta/complicações , Talassemia beta/genética , Hemopexina , Deferiprona , Hemólise , Doenças da Aorta/genética , Doenças da Aorta/patologia , Camundongos Knockout , Aterosclerose/genética , Aterosclerose/patologia , Heme , Fenil-Hidrazinas , Quelantes de Ferro , Camundongos Endogâmicos C57BL
18.
Curr Opin Pediatr ; 35(5): 538-545, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37497761

RESUMO

PURPOSE OF REVIEW: To synthesize and critically assess recent clinical and research advancements in pediatric bicuspid aortic valve (BAV) and its associated aortopathy. RECENT FINDINGS: In pediatric patients with BAV, progressive aortic dilation (i.e. bicuspid aortopathy) is commonly present and associated with increased risk for aortic aneurysm, dissection, and surgery in adulthood. Ongoing research explores the cause, incidence, and progression of bicuspid aortopathy to promote earlier diagnosis and improve preventive management. Recent findings include: high familial incidence and need for improved familial screening; safety of recreational physical activity in most affected children; potential for medical management to slow aortic growth; feasibility of pediatric registries to evaluate longitudinal outcomes; and potential genetic and hemodynamic biomarkers for disease risk stratification. SUMMARY: Pediatric bicuspid aortopathy is an important area for investigation and preventive management to improve long-term cardiovascular outcomes. Recent literature promotes familial screening, recreational exercise, medical prophylaxis, registry-based longitudinal evaluation, and continued scientific inquiry.


Assuntos
Doenças da Aorta , Doença da Válvula Aórtica Bicúspide , Doenças das Valvas Cardíacas , Humanos , Criança , Doença da Válvula Aórtica Bicúspide/complicações , Valva Aórtica/cirurgia , Doenças das Valvas Cardíacas/diagnóstico , Doenças das Valvas Cardíacas/etiologia , Doenças das Valvas Cardíacas/terapia , Aorta , Doenças da Aorta/etiologia , Doenças da Aorta/genética
19.
Curr Opin Cardiol ; 38(3): 157-161, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795406

RESUMO

PURPOSE OF REVIEW: Structural genomic variants have emerged as a relevant cause for several disorders, including intellectual disability, neuropsychiatric disorders, cancer and congenital heart disease. In this review, we will discuss the current knowledge about the involvement of structural genomic variants and, in particular, copy number variants in the development of thoracic aortic and aortic valve disease. RECENT FINDINGS: There is a growing interest in the identification of structural variants in aortopathy. Copy number variants identified in thoracic aortic aneurysms and dissections, bicuspid aortic valve related aortopathy, Williams-Beuren syndrome and Turner syndrome are discussed in detail. Most recently, the first inversion disrupting FBN1 has been reported as a cause for Marfan syndrome. SUMMARY: During the past 15 years, the knowledge on the role of copy number variants as a cause for aortopathy has grown significantly, which is partially due to the development of novel technologies including next-generation sequencing. Although copy number variants are now often investigated on a routine basis in diagnostic laboratories, more complex structural variants such as inversions, which require the use of whole genome sequencing, are still relatively new to the field of thoracic aortic and aortic valve disease.


Assuntos
Doenças da Aorta , Doença da Válvula Aórtica Bicúspide , Humanos , Doenças da Aorta/genética , Valva Aórtica/anormalidades , Genômica , Doenças das Valvas Cardíacas/genética
20.
Rev Esp Cardiol (Engl Ed) ; 76(6): 434-443, 2023 Jun.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-36307044

RESUMO

INTRODUCTION AND OBJECTIVES: Genetic testing is becoming increasingly important for diagnosis and personalized treatments in aortopathies. Here, we aimed to genetically diagnose a group of acute aortic syndrome (AAS) patients consecutively admitted to an intensive care unit and to explore the clinical usefulness of AAS-associated variants during treatment decision-making and family traceability. METHODS: We applied targeted next-generation sequencing, covering 42 aortic diseases genes in AAS patients with no signs consistent with syndromic conditions. Detected variants were segregated by Sanger sequencing in available family members. Demographic features, risk factors and clinical symptoms were statistically analyzed by Fisher or Fisher-Freeman-Halton Exact tests, to assess their relationship with genetic results. RESULTS: Analysis of next-generation sequencing data in 73 AAS patients led to the detection of 34 heterozygous candidate variants in 14 different genes in 32 patients. Family screening was performed in 31 relatives belonging to 9 families. We found 13 relatives harboring the family variant, of which 10 showed a genotype compatible with the occurrence of AAS. Statistical tests revealed that the factors associated with a positive genetic diagnosis were the absence of hypertension, lower age, family history of AAS and absence of pain. CONCLUSIONS: Our findings broaden the spectrum of the genetic background for AAS. In addition, both index patients and studied relatives benefited from the results obtained, establishing the most appropriate level of surveillance for each group. Finally, this strategy could be reinforced by the use of stastistically significant clinical features as a predictive tool for the hereditary character of AAS. CLINICALTRIALS: gov (Identifier: NCT04751058).


Assuntos
Síndrome Aórtica Aguda , Doenças da Aorta , Dissecção Aórtica , Humanos , Perfil Genético , Doenças da Aorta/diagnóstico , Doenças da Aorta/genética , Testes Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA