Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Adv Biol (Weinh) ; 7(6): e2200277, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36721069

RESUMO

Efferocytosis, responsible for apoptotic cell clearance, is an essential factor against atherosclerosis. It is reported that efferocytosis is severely impaired in fibroatheroma, especially in vulnerable thin cap fibroatheroma. However, there is a shortage of studies on efferocytosis defects in cell and animal models. Here, the impacts of oxidized low density lipoprotein (ox-LDL) and glut 1 inhibitor (STF31) on efferocytosis of macrophages are studied, and an evaluation system is constructed. Through regulating the cell ratios and stimulus, three types of atherosclerotic spheroids are fabricated, and a necrotic core emerges with surrounding apoptotic cells. Rat models present a similar phenomenon in that substantial apoptotic cells are uncleared in time in vulnerable plaque, and the model period is shortened to 7 weeks. Mechanism studies reveal that ox-LDL, through mRNA and miRNA modulation, downregulates efferocytosis receptor (PPARγ/LXRα/MerTK), internalization molecule (SLC29a1), and upregulates the competitive receptor CD300a that inhibits efferocytosis receptor-ligand binding process. The foam cell differentiation has also confirmed that CD36 and Lp-PLA2 levels are significantly elevated, and macrophages present an interesting transition into prothrombic phenotype. Collectively, the atherosclerotic models featured by efferocytosis defect provide a comprehensive platform to evaluate the efficacy of medicine and biomaterials for atherosclerosis treatment.


Assuntos
Doenças dos Animais , Aterosclerose , Placa Aterosclerótica , Ratos , Animais , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Apoptose/fisiologia , Macrófagos/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Fagocitose/fisiologia , Doenças dos Animais/metabolismo
2.
Fish Shellfish Immunol ; 124: 421-429, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35429624

RESUMO

Numerous studies have proved that endoplasmic reticulum (ER)-stress is an important cause of aquatic animal diseases. Therefore, for effectively preventing and controlling aquatic animal diseases, a systematic and in-depth understanding of the environmental stress response in aquatic animals is necessary. In present study, the influence of ER-stress in Litopenaeus vannamei was investigated using Illumina HiSeq based RNA-Seq. Comparing to the cDNA library of hemocytes treated with DMSO in L. vannamei, 286 unigenes were significantly upregulated and 473 unigenes were significantly down-regulated in the Thapsigargin treated group. KEGG analysis indicated that the differentially expressed genes (DEGs) are mainly related to ER-stress, immune as well as metabolism. Besides the classical ER-stress response pathways, the regulation of cell cycle and DNA replication are also important measures of ER-stress response. It has been suggested that the influence of ER-stress on immune genes might be an important factor in environmental stress inducing shrimp disease. Our investigation exhibited that immune-related DEG Prophenoloxidase activating enzyme 2 (LvPPAE2) roled in anti-pathogen immunity of shrimp. This study provides a solid foundation for uncovering the environmental adaptation response and especially its relationship with L. vannamei immune system.


Assuntos
Doenças dos Animais , Penaeidae , Doenças dos Animais/metabolismo , Animais , Retículo Endoplasmático , Perfilação da Expressão Gênica/veterinária , Hemócitos , Transcriptoma
3.
PLoS Pathog ; 17(11): e1010033, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34780568

RESUMO

Contagious cancers are a rare pathogenic phenomenon in which cancer cells gain the ability to spread between genetically distinct hosts. Nine examples have been identified across marine bivalves, dogs and Tasmanian devils, but the Tasmanian devil is the only mammalian species known to have given rise to two distinct lineages of contagious cancer, termed Devil Facial Tumour 1 (DFT1) and 2 (DFT2). Remarkably, DFT1 and DFT2 arose independently from the same cell type, a Schwann cell, and while their ultra-structural features are highly similar they exhibit variation in their mutational signatures and infection dynamics. As such, DFT1 and DFT2 provide a unique framework for investigating how a common progenitor cell can give rise to distinct contagious cancers. Using a proteomics approach, we show that DFT1 and DFT2 are derived from Schwann cells in different differentiation states, with DFT2 carrying a molecular signature of a less well differentiated Schwann cell. Under inflammatory signals DFT1 and DFT2 have different gene expression profiles, most notably involving Schwann cell markers of differentiation, reflecting the influence of their distinct origins. Further, DFT2 cells express immune cell markers typically expressed during nerve repair, consistent with an ability to manipulate their extracellular environment, facilitating the cell's ability to transmit between individuals. The emergence of two contagious cancers in the Tasmanian devil suggests that the inherent plasticity of Schwann cells confers a vulnerability to the formation of contagious cancers.


Assuntos
Doenças dos Animais/patologia , Diferenciação Celular , Doenças Transmissíveis/patologia , Neoplasias Faciais/veterinária , Regulação Neoplásica da Expressão Gênica , Proteoma/metabolismo , Células de Schwann/patologia , Doenças dos Animais/genética , Doenças dos Animais/metabolismo , Animais , Variação Biológica da População , Doenças Transmissíveis/genética , Doenças Transmissíveis/metabolismo , Neoplasias Faciais/classificação , Perfilação da Expressão Gênica , Marsupiais , Proteoma/análise , Células de Schwann/metabolismo , Transcriptoma
4.
Front Immunol ; 12: 682562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046043

RESUMO

Most tripartite motif (TRIM) family proteins are critical components of the autophagy machinery and play important roles in host defense against viral pathogens in mammals. However, the roles of TRIM proteins in autophagy and viral infection have not been studied in lower invertebrates, especially crustaceans. In this study, we first identified a TRIM50-like gene from Penaeus monodon (designated PmTRIM50-like), which, after a white spot syndrome virus (WSSV) challenge, was significantly upregulated at the mRNA and protein levels in the intestine and hemocytes. Knockdown of PmTRIM50-like led to an increase in the WSSV quantity in shrimp, while its overexpression led to a decrease compared with the controls. Autophagy can be induced by WSSV or rapamycin challenge and has been shown to play a positive role in restricting WSSV replication in P. monodon. The mRNA and protein expression levels of PmTRIM50-like significantly increased with the enhancement of rapamycin-induced autophagy. The autophagy activity induced by WSSV or rapamycin challenge could be inhibited by silencing PmTRIM50-like in shrimp. Further studies showed that rapamycin failed to induce autophagy or inhibit WSSV replication after knockdown of PmTRIM50-like. Moreover, pull-down and in vitro ubiquitination assays demonstrated that PmTRIM50-like could interact with WSSV envelope proteins and target them for ubiquitination in vitro. Collectively, this study demonstrated that PmTRIM50-like is required for autophagy and is involved in restricting the proliferation of WSSV through its ubiquitination. This is the first study to report the role of a TRIM family protein in virus infection and host autophagy in crustaceans.


Assuntos
Doenças dos Animais/etiologia , Autofagia/genética , Penaeidae/genética , Penaeidae/virologia , Ubiquitina-Proteína Ligases/genética , Replicação Viral , Vírus da Síndrome da Mancha Branca 1/fisiologia , Doenças dos Animais/metabolismo , Animais , Interações Hospedeiro-Patógeno/imunologia , Penaeidae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
5.
Sci Rep ; 11(1): 10717, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021197

RESUMO

Worldwide the increase in multi-resistant bacteria due to misuse of traditional antibiotics is a growing threat for our health. Finding alternatives to traditional antibiotics is thus timely. Probiotic bacteria have numerous beneficial effects and could offer safer alternatives to traditional antibiotics. Here, we use the nematode Caenorhabditis elegans (C. elegans) to screen a library of different lactobacilli to identify potential probiotic bacteria and characterize their mechanisms of action. We show that pretreatment with the Lactobacillus spp. Lb21 increases lifespan of C. elegans and results in resistance towards pathogenic methicillin-resistant Staphylococcus aureus (MRSA). Using genetic analysis, we find that Lb21-mediated MRSA resistance is dependent on the DBL-1 ligand of the TGF-ß signaling pathway in C. elegans. This response is evolutionarily conserved as we find that Lb21 also induces the TGF-ß pathway in porcine epithelial cells. We further characterize the host responses in an unbiased proteome analysis and identify 474 proteins regulated in worms fed Lb21 compared to control food. These include fatty acid CoA synthetase ACS-22, aspartic protease ASP-6 and vitellogenin VIT-2 which are important for Lb21-mediated MRSA resistance. Thus, Lb21 exerts its probiotic effect on C. elegans in a multifactorial manner. In summary, our study establishes a mechanistic basis for the antimicrobial potential of lactobacilli.


Assuntos
Doenças dos Animais/metabolismo , Doenças dos Animais/microbiologia , Proteínas de Caenorhabditis elegans/metabolismo , Resistência à Doença , Staphylococcus aureus Resistente à Meticilina , Neuropeptídeos/metabolismo , Probióticos , Infecções Estafilocócicas/veterinária , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular , Resistência à Doença/imunologia , Interações entre Hospedeiro e Microrganismos , Interações Hospedeiro-Patógeno , Ligantes , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/imunologia , Probióticos/administração & dosagem , Transdução de Sinais
6.
Front Immunol ; 12: 613729, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708207

RESUMO

Viral infection triggers insect immune response, including RNA interference, apoptosis and autophagy, and profoundly changes the gene expression profiles in infected cells. Although intracellular degradation is crucial for restricting viral infection, intercellular communication is required to mount a robust systemic immune response. This review focuses on recent advances in understanding the intercellular communications in insect antiviral immunity, including protein-based and virus-derived RNA based cell-cell communications, with emphasis on the signaling pathway that induces the production of the potential cytokines. The prospects and challenges of future work are also discussed.


Assuntos
Comunicação Celular , Resistência à Doença/imunologia , Interações Hospedeiro-Patógeno/imunologia , Insetos/imunologia , Insetos/virologia , Doenças dos Animais/genética , Doenças dos Animais/imunologia , Doenças dos Animais/metabolismo , Doenças dos Animais/virologia , Animais , Biomarcadores , Citocinas/metabolismo , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Imunidade Inata , Insetos/metabolismo
7.
Sci Rep ; 10(1): 21225, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277587

RESUMO

Each year from April to May, high mortality rates are reported in red swamp crayfish (Procambarus clarkii) cultured in Jiangsu and other regions, in China, and this phenomenon has come to be known as "Black May" disease (BMD). Therefore, in order to investigate the possible causes of this disease, this study gathered BMD-affected P. clarkii samples and performed transcriptome analysis on hepatopancreas, gill, and muscle tissues. A total of 19,995,164, 149,212,804, and 222,053,848 clean reads were respectively obtained from the gills, muscle, and hepatopancreas of BMD-affected P. clarkii, and 114,024 unigenes were identified. The number of differentially expressed genes (DEGs) in gill, muscle, and hepatopancreas was 1703, 964, and 476, respectively. GO and KEGG enrichment analyses of the DEGs were then conducted. Based on KEGG pathway enrichment analysis, the most significantly differentially expressed pathways were mainly those involved with metabolism, human disease, and cellular processes. Further analysis of the significantly DEGs revealed that they were mainly related to the mitochondrial-mediated apoptosis pathway and that the expression of these DEGs was mostly down-regulated. Moreover, the expression of genes related to immune and metabolism-related pathways was also significantly down-regulated, and these significantly-inhibited pathways were the likely causes of P. clarkii death. Therefore, our results provide a basis for the identification of BMD causes.


Assuntos
Doenças dos Animais/metabolismo , Apoptose/genética , Astacoidea/metabolismo , Brânquias/metabolismo , Hepatopâncreas/metabolismo , Músculos/metabolismo , Transcriptoma/genética , Doenças dos Animais/genética , Animais , Astacoidea/citologia , Astacoidea/genética , Astacoidea/imunologia , China , Regulação para Baixo , Perfilação da Expressão Gênica , Ontologia Genética , Brânquias/citologia , Brânquias/imunologia , Brânquias/patologia , Hepatopâncreas/citologia , Hepatopâncreas/imunologia , Hepatopâncreas/patologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Músculos/citologia , Músculos/imunologia , Músculos/patologia , RNA-Seq , Transdução de Sinais/genética
8.
PLoS One ; 15(11): e0242688, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33232341

RESUMO

The ectoparasitic mite Varroa destructor is one of the most destructive pests of the honey bee (Apis mellifera) and the primary biotic cause of colony collapse in many regions of the world. These mites inflict physical injury on their honey bee hosts from feeding on host hemolymph and fat body cells/cellular components, and serve as the vector for deadly honey bee viruses, including Deformed wing virus (DWV) and the related Varroa destructor virus-1 (VDV-1) (i.e., DWV-like viruses). Studies focused on elucidating the dynamics of Varroa-mediated vectoring and transmission of DWV-like viruses may be confounded by viruses present in ingested host tissues or the mites themselves. Here we describe a system that includes an artificial diet free of insect tissue-derived components for maintaining Varroa mites for in vitro experimentation. Using this system, together with the novel engineered cDNA clone-derived genetically tagged VDV-1 and wild-type DWV, we demonstrated for the first time that Varroa mites provided an artificial diet supplemented with engineered viruses for 36 hours could acquire and transmit sufficient numbers of virus particles to establish an infection in virus-naïve hosts. While the in vitro system described herein provides for only up to five days of mite survival, precluding study of the long-term impacts of viruses on mite health, the system allows for extensive insights into the dynamics of Varroa-mediated vectoring and transmission of honey bee viruses.


Assuntos
Doenças dos Animais , Ração Animal/virologia , Abelhas , Vírus de RNA , Varroidae/virologia , Viroses , Doenças dos Animais/genética , Doenças dos Animais/metabolismo , Doenças dos Animais/transmissão , Animais , Abelhas/metabolismo , Abelhas/parasitologia , Abelhas/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus de RNA/metabolismo , Viroses/genética , Viroses/metabolismo , Viroses/transmissão
9.
Metabolomics ; 16(9): 100, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32915338

RESUMO

BACKGROUND: Green-lipped mussels, commercially known as Greenshell™ mussels (Perna canaliculus Gmelin 1791), contribute > $300 million to New Zealand's aquaculture exports. However, mortalities during summer months and potential pathogenic outbreaks threaten the industry. Thermal stress mechanisms and immunological responses to pathogen infections need to be understood to develop health assessment strategies and early warning systems. METHODS: P. canaliculus were collected during a mortality event at a commercial aquaculture farm in Firth of Thames, New Zealand. Gill tissues from six healthy and six unhealthy mussels were excised and processed for metabolomic (GC-MS) and label-free proteomic (LC-MS) profiling. Univariate analyses were conducted separately on each data layer, with data being integrated via sparse multiple discriminative canonical correlation analysis. Pathway enrichment analysis was used to probe coordinated changes in functionally related metabolite sets. RESULTS: Findings revealed disruptions of the tricarboxylic acid (TCA) cycle and fatty acid metabolism in unhealthy mussels. Metabolomics analyses also indicated oxidative stress in unhealthy mussels. Proteomics analyses identified under-expression of proteins associated with cytoskeleton structure and regulation of cilia/flagellum in gill tissues of unhealthy mussels. Integrated omics revealed a positive correlation between Annexin A4 and CCDC 150 and saturated fatty acids, as well as a negative correlation between 2-aminoadipic acid and multiple cytoskeletal proteins. CONCLUSIONS: Our study demonstrates the ability of using integrative omics to reveal metabolic perturbations and protein structural changes in the gill tissues of stressed P. canaliculus and provides new insight into metabolite and protein interactions associated with incidences of summer mortality in this species.


Assuntos
Doenças dos Animais/metabolismo , Bivalves/metabolismo , Proteômica , Doenças dos Animais/microbiologia , Doenças dos Animais/mortalidade , Animais , Cílios/metabolismo , Biologia Computacional , Análise Discriminante , Cromatografia Gasosa-Espectrometria de Massas , Brânquias/metabolismo , Redes e Vias Metabólicas , Metabolômica , Nova Zelândia , Estresse Oxidativo , Perna (Organismo) , Estações do Ano
10.
Front Immunol ; 11: 1247, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765486

RESUMO

Ostreid herpesvirus-1 microvariant (OsHV-1 µVar) is considered a major infectious microbe that can reduce the survival of natural or cultured oysters in summer. Because they lack an adaptive immune system, oysters are dependent on their innate immune systems to fight pathogens. The duplication and functional divergence of innate immune genes in the oyster have been studied, but the contribution of molecular mechanisms underlying innate immunity remains to be defined. Here, we identified the interacting proteins associated with Crassostrea gigas Toll-like receptors (CgTLR) using a yeast two-hybrid (Y2H) screening system. A total of eight proteins were identified that could interact with CgTLR. Three of these appeared at least four times in the screening and were related to MyD88. Two genes encoding these MyD88-like proteins, CgMyD88-1 and CgMyD88-2, possessed typical death and TIR domains. The third gene encoding an MyD88-like protein possessed only a TIR domain, and we named it CgMyD88s. CgMyD88s interacted only with CgTLR, but not CgMyD88-1 or CgMyD88-2. Both CgMyD88-1 and CgMyD88-2 mRNAs were upregulated after OsHV-1 µVar infection, whereas the expression of CgMyD88s decreased. When overexpressed in HEK293T cells, CgMyD88-1 and CgMyD88-2 activated an NF-κB reporter, whereas CgMyD88s impaired activation induced by CgMyD88-1 or CgMyD88-2. Intriguingly, the silencing of CgMyD88s using double-stranded RNA (dsRNA)-mediated RNA interference increased the expression of CgMyD88-1 and CgMyD88-2. Taken together, our results revealed that CgMyD88-1, CgMyD88-2, and CgMyD88s may all participate in the TLR-mediated innate immune pathway and that CgMyD88s served as a plug to avoid oysters from excessive inflammatory response during OsHV-1 µVar infections.


Assuntos
Doenças dos Animais/etiologia , Doenças dos Animais/metabolismo , Crassostrea/virologia , Infecções por Vírus de DNA/veterinária , Vírus de DNA/fisiologia , Imunidade Inata , Fator 88 de Diferenciação Mieloide/metabolismo , Animais , Hemócitos/metabolismo , Humanos , Fator 88 de Diferenciação Mieloide/química , NF-kappa B/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Receptores Toll-Like/metabolismo
11.
Horm Behav ; 126: 104838, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32791065

RESUMO

Density-dependence is an important mechanism in the population regulation of small mammals. Stressors induced by high-density (e.g., crowding and aggression) can cause physiological and neurological disorders, and are hypothesized to be associated with alterations in gut microbiota, which may in turn reduce the fitness of animals by increasing stress- or disease-associated microbes. In this study, we examined the effects of housing density on the hormone levels, immunity, and composition of gut microbiota in male Brandt's voles (Lasiopodomys brandtii) by conducting two specific housing density experiments with or without physical contact between voles. Voles in high density groups exhibited higher serum corticosterone (CORT), serotonin (5-HT), and immunoglobulin G (IgG) levels, as well as higher testosterone (T) levels only in the experiment with physical contact. Meanwhile, high-density treatments induced significant changes in the composition of gut microbiota by increasing disease-associated microbes. The levels of hormones and immunity (i.e., CORT, 5-HT, and IgG) elevated by the high density treatment were significantly correlated with some specific microbes. These results imply that high-density-induced stress may shape the fitness of animals under natural conditions by altering their gut microbiota. Our study provides novel insights into the potential roles of gut microbiota in the density-dependent population regulation of small rodents as well as the potential mechanisms underlying psychological disorders in humans and animals under crowded conditions.


Assuntos
Arvicolinae , Corticosterona/metabolismo , Aglomeração/psicologia , Microbioma Gastrointestinal/fisiologia , Abrigo para Animais , Doenças dos Animais/imunologia , Doenças dos Animais/metabolismo , Doenças dos Animais/microbiologia , Animais , Arvicolinae/imunologia , Arvicolinae/metabolismo , Arvicolinae/microbiologia , Arvicolinae/psicologia , Corticosterona/análise , Fezes/química , Masculino , Densidade Demográfica , Interação Social , Estresse Psicológico/imunologia , Estresse Psicológico/metabolismo , Estresse Psicológico/microbiologia
12.
J Vet Diagn Invest ; 32(5): 635-647, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32807042

RESUMO

Using analytical chemistry techniques such as nuclear magnetic resonance (NMR) spectroscopy and liquid or gas chromatography-mass spectrometry (LC/GC-MS), metabolomics allows detection of most endogenous and exogenous metabolites in a biological sample. Metabolomics has a wide range of applications, and has been employed in nutrition science, toxicology, environmental studies, and systems biology. Metabolomics is particularly useful in biomedical science, and has been used for diagnostic laboratory testing, identifying targets for drug development, and monitoring drug metabolism, mode of action, and toxicity. Despite its immense potential, metabolomics remains underutilized in the study of spontaneous animal diseases. Our aim was to comprehensively review the existing literature on the use of metabolomics in spontaneous veterinary diseases. Three databases were used to find journal articles that applied metabolomics in veterinary medicine. A screening process was then conducted to eliminate references that did not meet the eligibility criteria; only primary research studies investigating spontaneous animal disease were included; 38 studies met the inclusion criteria. The main techniques used were NMR and MS. All studies detected metabolite alterations in diseased animals compared with non-diseased animals. Metabolomics was mainly used to study diseases of the digestive, reproductive, and musculoskeletal systems. Inflammatory conditions made up the largest proportion of studies when articles were categorized by disease process. Following a comprehensive analysis of the literature on metabolomics in spontaneous veterinary diseases, we concluded that metabolomics, although in its early stages in veterinary research, is a promising tool regarding diagnosis, biomarker discovery, and in uncovering new insights into disease pathophysiology.


Assuntos
Doenças dos Animais/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/veterinária , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Animais , Cromatografia Gasosa-Espectrometria de Massas/métodos
13.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32661139

RESUMO

The COVID-19 pandemic has caused an unprecedented global public health and economic crisis. The origin and emergence of its causal agent, SARS-CoV-2, in the human population remains mysterious, although bat and pangolin were proposed to be the natural reservoirs. Strikingly, unlike the SARS-CoV-2-like coronaviruses (CoVs) identified in bats and pangolins, SARS-CoV-2 harbors a polybasic furin cleavage site in its spike (S) glycoprotein. SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) as its receptor to infect cells. Receptor recognition by the S protein is the major determinant of host range, tissue tropism, and pathogenesis of coronaviruses. In an effort to search for the potential intermediate or amplifying animal hosts of SARS-CoV-2, we examined receptor activity of ACE2 from 14 mammal species and found that ACE2s from multiple species can support the infectious entry of lentiviral particles pseudotyped with the wild-type or furin cleavage site-deficient S protein of SARS-CoV-2. ACE2 of human/rhesus monkey and rat/mouse exhibited the highest and lowest receptor activities, respectively. Among the remaining species, ACE2s from rabbit and pangolin strongly bound to the S1 subunit of SARS-CoV-2 S protein and efficiently supported the pseudotyped virus infection. These findings have important implications for understanding potential natural reservoirs, zoonotic transmission, human-to-animal transmission, and use of animal models.IMPORTANCE SARS-CoV-2 uses human ACE2 as a primary receptor for host cell entry. Viral entry mediated by the interaction of ACE2 with spike protein largely determines host range and is the major constraint to interspecies transmission. We examined the receptor activity of 14 ACE2 orthologs and found that wild-type and mutant SARS-CoV-2 lacking the furin cleavage site in S protein could utilize ACE2 from a broad range of animal species to enter host cells. These results have important implications in the natural hosts, interspecies transmission, animal models, and molecular basis of receptor binding for SARS-CoV-2.


Assuntos
Doenças dos Animais/metabolismo , Doenças dos Animais/virologia , Betacoronavirus/fisiologia , Infecções por Coronavirus/veterinária , Pandemias/veterinária , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/veterinária , Receptores Virais/metabolismo , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/classificação , COVID-19 , Linhagem Celular , Especificidade de Hospedeiro , Humanos , Modelos Moleculares , Mutação , Peptidil Dipeptidase A/química , Filogenia , Ligação Proteica , Domínios Proteicos , Proteólise , Receptores Virais/química , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Relação Estrutura-Atividade , Tropismo Viral , Internalização do Vírus
14.
Int J Biol Macromol ; 156: 730-739, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32311399

RESUMO

ß-catenin, an adaptor molecule in Wnt/ß-catenin signaling pathway, is associated with different physiological processes such as intestinal immune, apoptosis, and inflammation-associated response. However, the function of ß-catenin is still largely unknown in Apostichopus japonicus. In the present study, we cloned and characterized ß-catenin gene from A. japonicus by RNA-seq and RACE approaches. The complete sequence of Ajß-catenin consisted of a 5' UTR of 166 bp, a 3' UTR of 501 bp and an ORF of 2433 bp encoding a protein of 810 amino acids. Ajß-catenin has a GSK-ß consensus phosphorylation site of 21 amino acids located at N-terminal region and twelve Armadillo/ß-catenin-like repeat (ARM) domains from 145 to 671 aa. Spatial expression analysis revealed that Ajß-catenin mRNA levels displayed higher abundance in intestine. For Vibrio splendidus challenged sea cucumber, Ajß-catenin transcripts reached their peak at 6 h and remained at higher levels until 24 h post infection in comparison with that of the control group. GSK-3ß inhibitor treatment could induce both Ajß-catenin and the inflammatory factors expression. Ajß-catenin silencing could also down-regulate inflammatory factors expression. These results collectively suggested that Ajß-catenin was a novel molecule mediate V. splendidus-induced immune response of A. japonicus via regulating the inflammatory factors expression.


Assuntos
Doenças dos Animais/metabolismo , Doenças dos Animais/microbiologia , Stichopus/metabolismo , Vibrioses/veterinária , Vibrio/metabolismo , beta Catenina/metabolismo , Sequência de Aminoácidos , Doenças dos Animais/genética , Doenças dos Animais/imunologia , Animais , Sequência de Bases , Clonagem Molecular , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Filogenia , Análise de Sequência de DNA , Stichopus/imunologia , Relação Estrutura-Atividade , beta Catenina/química , beta Catenina/genética
15.
Microb Pathog ; 138: 103786, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31604154

RESUMO

Energy metabolism is a sensitive indicator of cellular disorders. Therefore, the objective of this study was to investigate changes in cardiac and hepatic energy metabolism during listeriosis using an experimental model. We divided gerbils into two groups: Control (n = 11) and orally Infected (n = 12) with 5 × 109 CFU/mL of Listeria monocytogenes. Euthanasia and sampling were performed on days 6 and 12 post-infection (PI). Histopathological lesions were not found in the heart; however, the liver showed pyogranuloma. In the hearts of infected animals, cytosolic creatine kinase activity was lower on day 6 and 12 PI; mitochondrial creatine kinase/pyruvate kinase (PK), and sodium potassium pump (Na+/K+-ATPase) activities were lower on day 12 PI. Hepatic PK and Na+/K+-ATPase activities were lower in the infected group on day 12 PI. Lipoperoxidation was higher in the livers and hearts of infected animals on day 12 PI, and antioxidant capacity against peroxyl radicals (ACAP) was also higher in this group. These data suggest that subclinical listeriosis alters hepatic and cardiac energy metabolism, possibly related to decreased activity of phosphotransferases and ATPase. Subsequent antioxidant responses are not sufficient to correct alterations in lipid peroxidation and bioenergetics, possibly leading to important cellular pathological mechanisms.


Assuntos
Doenças dos Animais/metabolismo , Doenças dos Animais/microbiologia , Metabolismo Energético , Gerbillinae/metabolismo , Gerbillinae/microbiologia , Listeria monocytogenes/fisiologia , Listeriose/veterinária , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/metabolismo , Biomarcadores , Peroxidação de Lipídeos , Fígado/metabolismo , Fígado/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo
16.
Artigo em Inglês | MEDLINE | ID: mdl-31456953

RESUMO

Tick-borne relapsing fever (TBRF), characterized by recurring febrile episodes, is globally distributed and among the most common bacterial infections in some African countries. Despite the public health concern that this disease represents, little is known regarding the virulence determinants required by TBRF Borrelia during infection. Because the chromosomes of TBRF Borrelia show extensive colinearity with those of Lyme disease (LD) Borrelia, the exceptions represent unique genes encoding proteins that are potentially essential to the disparate enzootic cycles of these two groups of spirochetes. One such exception is a gene encoding an HtrA family protease, BtpA, that is present in TBRF Borrelia, but not in LD spirochetes. Previous work suggested that btpA orthologs may be important for resistance to stresses faced during mammalian infection. Herein, proteomic analyses of the TBRF spirochete, Borrelia turicatae, demonstrated that BtpA, as well as proteins encoded by adjacent genes in the B. turicatae genome, were produced in response to culture at mammalian body temperature, suggesting a role in mammalian infection. Further, transcriptional analyses revealed that btpA was expressed with the genes immediately upstream and downstream as part of an operon. To directly assess if btpA is involved in resistance to environmental stresses, btpA deletion mutants were generated. btpA mutants demonstrated no growth defect in response to heat shock, but were more sensitive to oxidative stress produced by t-butyl peroxide compared to wild-type B. turicatae. Finally, btpA mutants were fully infectious in a murine relapsing fever (RF) infection model. These results indicate that BtpA is either not required for mammalian infection, or that compensatory mechanisms exist in TBRF spirochetes to combat environmental stresses encountered during mammalian infection in the absence of BtpA.


Assuntos
Doenças dos Animais/microbiologia , Proteínas de Bactérias/metabolismo , Borrelia/enzimologia , Febre Recorrente/veterinária , Serina Endopeptidases/metabolismo , Doenças dos Animais/metabolismo , Animais , Proteínas de Bactérias/genética , Temperatura Corporal , Borrelia/genética , Regulação Bacteriana da Expressão Gênica , Temperatura Alta , Mamíferos , Camundongos , Mutação , Óperon , Estresse Oxidativo , Proteômica/métodos , Serina Endopeptidases/genética
17.
Stem Cell Rev Rep ; 15(4): 506-518, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31140074

RESUMO

The lack of clear regulations for the use of veterinary stem cells has triggered the commercialization of unproven experimental therapies for companion animal diseases. Adult stem cells have complex biological characteristics that are directly related to the therapeutic application, but several questions remain to be answered. In order to regulate the use of these cells, well-conducted, controlled scientific studies that generate high-quality data should be performed, in order to assess the efficacy and safety of the intended treatment. This paper discusses the scientific challenges of mesenchymal stem cell therapy in veterinary regenerative medicine, and reviews published trials of adipose-tissue-derived stem cells in companion animal diseases that spontaneously occur.


Assuntos
Células-Tronco Adultas/metabolismo , Doenças dos Animais , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Células-Tronco Adultas/patologia , Doenças dos Animais/metabolismo , Doenças dos Animais/patologia , Doenças dos Animais/terapia , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Medicina Regenerativa , Medicina Veterinária
18.
Artigo em Inglês | MEDLINE | ID: mdl-30711040

RESUMO

The most significant community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) in Korea is sequence type (ST) 72 with staphylococcal cassette chromosome mec (SCCmec) type IV (ST72-MRSA-IV). Although the impact of CA-MRSA on the clinical outcomes versus healthcare-associated (HA)-MRSA remains unclear, it has recently been revealed that ST5 HA-MRSA-II is associated with higher mortality compared with ST72 CA-MRSA-IV, suggesting higher virulence in ST5 HA-MRSA-II strains. In this investigation, human-/animal-originated ST72-MRSA-IV strains were examined for virulence phenotypes and compared with those of ST5-MRSA-II strains, the established HA-MRSA in Korea. Overall, ST5 HA-MRSA-II strains demonstrated higher levels of resistance to host defense-cationic antimicrobial peptides of human (LL-37), bovine (BMAP-28), and bacterial (polymyxin B) origins versus ST72-MRSA-IV strains via enhanced surface positive charge. Hemolysis profiles, gelatinase activity, and staphylococcal superantigen gene profiles were not different between ST72 CA-MRSA and ST5 HA-MRSA strains. However, ST5 HA-MRSA strains were able to downregulate initial cytokine response in murine macrophages.


Assuntos
Doenças dos Animais/metabolismo , Doenças dos Animais/microbiologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Infecções Comunitárias Adquiridas/veterinária , Infecção Hospitalar/veterinária , Interações Hospedeiro-Patógeno , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/veterinária , Animais , Antibacterianos/farmacologia , Toxinas Bacterianas/genética , Farmacorresistência Bacteriana , Imunidade Inata , Gado/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Staphylococcus aureus Resistente à Meticilina/classificação , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Testes de Sensibilidade Microbiana , Virulência , Fatores de Virulência/genética
19.
Front Immunol ; 10: 2763, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921103

RESUMO

A small open reading frame (smORF) or short open reading frame (sORF) encodes a polypeptide of <100 amino acids in eukaryotes (50 amino acids in prokaryotes). Studies have shown that several sORF-encoded peptides (SEPs) have important physiological functions in different organisms. Many ribosomal proteins belonging to SEPs play important roles in several cellular processes, such as DNA damage repair and apoptosis. Several studies have implicated SEPs in response to infection and innate immunity, but the mechanisms have been unclear for most of them. In this study, we identified a sORF-encoded ribosomal protein S27 (RPS27) in Marsupenaeus japonicus. The expression of MjRPS27 was significantly upregulated in shrimp infected with white spot syndrome virus (WSSV). After knockdown of MjRPS27 by RNA interference, WSSV replication increased significantly. Conversely, after MjRPS27 overexpression, WSSV replication decreased in shrimp and the survival rate of the shrimp increased significantly. These results suggested that MjRPS27 inhibited viral replication. Further study showed that, after MjRPS27 knockdown, the mRNA expression level of MjDorsal, MjRelish, and antimicrobial peptides (AMPs) decreased, and the nuclear translocation of MjDorsal and MjRelish into the nucleus also decreased. These findings indicated that MjRPS27 might activate the NF-κB pathway and regulate the expression of AMPs in shrimp after WSSV challenge, thereby inhibiting viral replication. We also found that MjRPS27 interacted with WSSV's envelope proteins, including VP19, VP24, and VP28, suggesting that MjRPS27 may inhibit WSSV proliferation by preventing virion assembly in shrimp. This study was the first to elucidate the function of the ribosomal protein MjRPS27 in the antiviral immunity of shrimp.


Assuntos
Proteínas de Artrópodes/metabolismo , NF-kappa B/metabolismo , Penaeidae/metabolismo , Penaeidae/virologia , Peptídeos/metabolismo , Transdução de Sinais , Proteínas do Envelope Viral/metabolismo , Doenças dos Animais/metabolismo , Doenças dos Animais/virologia , Animais , Interações Hospedeiro-Patógeno , Ligação Proteica , Vírus da Síndrome da Mancha Branca 1
20.
PLoS One ; 13(4): e0194488, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29621258

RESUMO

Bovine Respiratory Disease (BRD) is a major source of economic loss within the agricultural industry. Vaccination against BRD-associated viruses does not offer complete immune protection and vaccine failure animals present potential routes for disease spread. Serological differentiation of infected from vaccinated animals (DIVA) is possible using antigen-deleted vaccines, but during virus outbreaks DIVA responses are masked by wild-type virus preventing accurate serodiagnosis. Previous work by the authors has established the potential for metabolomic profiling to reveal metabolites associated with systemic immune responses to vaccination. The current study builds on this work by demonstrating for the first time the potential to use plasma metabolite profiling to differentiate between vaccinated and non-vaccinated animals following infection-challenge. Male Holstein Friesian calves were intranasally vaccinated (Pfizer RISPOVAL®PI3+RSV) and subsequently challenged with Bovine Parainfluenza Virus type-3 (BPI3V) via nasal inoculation. Metabolomic plasma profiling revealed that viral challenge led to a shift in acquired plasma metabolite profiles from day 2 to 20 p.i., with 26 metabolites identified whose peak intensities were significantly different following viral challenge depending on vaccination status. Elevated levels of biliverdin and bilirubin and decreased 3-indolepropionic acid in non-vaccinated animals at day 6 p.i. may be associated with increased oxidative stress and reactive oxygen scavenging at periods of peak virus titre. During latter stages of infection, increased levels of N-[(3α,5ß,12α)-3,12-dihydroxy-7,24-dioxocholan-24-yl]glycine and lysophosphatidycholine and decreased enterolactone in non-vaccinated animals may reflect suppression of innate immune response mechanisms and progression to adaptive immune responses. Levels of hexahydrohippurate were also shown to be significantly elevated in non-vaccinated animals from days 6 to 20 p.i. These findings demonstrate the potential of metabolomic profiling to identify plasma markers that can be employed in disease diagnostic applications to both differentially identify infected non-vaccinated animals during disease outbreaks and provide greater information on the health status of infected animals.


Assuntos
Doenças dos Animais/etiologia , Doenças dos Animais/metabolismo , Metaboloma , Metabolômica , Doenças dos Animais/imunologia , Doenças dos Animais/prevenção & controle , Animais , Biomarcadores/sangue , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/metabolismo , Doenças dos Bovinos/virologia , Cromatografia Líquida de Alta Pressão , Bases de Dados Factuais , Masculino , Metabolômica/métodos , Vírus Sincicial Respiratório Bovino/imunologia , Vacinação , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA