RESUMO
BACKGROUND: Despite achieving endoscopic remission, over 20% of inflammatory bowel disease (IBD) patients experience chronic abdominal pain. Visceral pain and the microbiome exhibit sex-dependent interactions, while visceral pain in IBD shows a sex bias. Our aim was to evaluate whether post-inflammatory microbial perturbations contribute to visceral hypersensitivity in a sex-dependent manner. METHODS: Males, cycling females, ovariectomized, and sham-operated females were given dextran sodium sulfate to induce colitis and allowed to recover. Germ-free recipients received sex-appropriate and cross-sex fecal microbial transplants (FMT) from post-inflammatory donor mice. Visceral sensitivity was assessed by recording visceromotor responses to colorectal distention. The composition of the microbiota was evaluated via 16S rRNA gene V4 amplicon sequencing, while the metabolome was assessed using targeted (short chain fatty acids - SCFA) and semi-targeted mass spectrometry. RESULTS: Post-inflammatory cycling females developed visceral hyperalgesia when compared to males. This effect was reversed by ovariectomy. Both post-inflammatory males and females exhibited increased SCFA-producing species, but only males had elevated fecal SCFA content. FMT from post-inflammatory females transferred visceral hyperalgesia to both males and females, while FMT from post-inflammatory males could only transfer visceral hyperalgesia to males. CONCLUSIONS: Female sex, hormonal status as well as the gut microbiota play a role in pain modulation. Our data highlight the importance of considering biological sex in the evaluation of visceral pain.
Assuntos
Colite , Disbiose , Microbioma Gastrointestinal , Dor Visceral , Masculino , Feminino , Animais , Disbiose/microbiologia , Dor Visceral/microbiologia , Dor Visceral/fisiopatologia , Dor Visceral/metabolismo , Colite/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Microbiota Fecal , Fatores Sexuais , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/metabolismo , RNA Ribossômico 16S/genética , Fezes/microbiologia , Sulfato de Dextrana , Modelos Animais de Doenças , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/análise , Dor Crônica/microbiologia , Dor Crônica/fisiopatologia , Inflamação/microbiologia , Hiperalgesia/microbiologiaRESUMO
Neuronal ensemble activity entrained by local field potential (LFP) patterns underlies a variety of brain functions, including emotion, cognition, and pain perception. Recent advances in machine learning approaches may enable more effective methods for analyzing LFP patterns across multiple brain areas than conventional time-frequency analysis. In this study, we tested the performance of two machine learning algorithms, AlexNet and the Transformer models, to classify LFP patterns in eight pain-related brain regions before and during acetic acid-induced visceral pain behaviors. Over short time windows lasting several seconds, applying AlexNet to LFP power datasets, but not to raw time-series LFP traces from multiple brain areas, successfully achieved superior classification performance compared with simple LFP power analysis. Furthermore, applying the Transformer directly to the raw LFP traces achieved significantly superior classification performance than AlexNet when using LFP power datasets. These results demonstrate the utility of the Transformer in the analysis of neurophysiological signals, and pave the way for its future applications in the decoding of more complex neuronal activity patterns.
Assuntos
Encéfalo , Aprendizado de Máquina , Dor Visceral , Encéfalo/fisiopatologia , Dor Visceral/fisiopatologia , Animais , Algoritmos , Masculino , Neurônios/fisiologia , CamundongosRESUMO
Irritable bowel syndrome (IBS) is a common functional bowel disorder characterized by abdominal pain and visceral hypersensitivity. Reducing visceral hypersensitivity is the key to effectively relieving abdominal pain in IBS. Increasing evidence has confirmed that the thalamic nucleus reuniens (Re) and 5-hydroxytryptamine (5-HT) neurotransmitter system play an important role in the development of colorectal visceral pain, whereas the exact mechanisms remain largely unclear. In this study, we found that high expression of the 5-HT2B receptors in the Re glutamatergic neurons promoted colorectal visceral pain. Specifically, we found that neonatal maternal deprivation (NMD) mice exhibited visceral hyperalgesia and enhanced spontaneous synaptic transmission in the Re brain region. Colorectal distension (CRD) stimulation induced a large amount of c-Fos expression in the Re brain region of NMD mice, predominantly in glutamatergic neurons. Furthermore, optogenetic manipulation of glutamatergic neuronal activity in the Re altered colorectal visceral pain responses in CON and NMD mice. In addition, we demonstrated that 5-HT2B receptor expression on the Re glutamatergic neurons was upregulated and ultimately promoted colorectal visceral pain in NMD mice. These findings suggest a critical role of the 5HT2B receptors on the Re glutamatergic neurons in the regulation of colorectal visceral pain.
Assuntos
Neurônios , Receptor 5-HT2B de Serotonina , Dor Visceral , Animais , Dor Visceral/metabolismo , Dor Visceral/fisiopatologia , Neurônios/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Masculino , Camundongos , Ácido Glutâmico/metabolismo , Privação Materna , Camundongos Endogâmicos C57BL , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Colo/metabolismo , Colo/inervação , Reto/inervação , Animais Recém-Nascidos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleos Ventrais do Tálamo/metabolismoRESUMO
BACKGROUND: Irritable bowel syndrome (IBS) is one of the most frequent and debilitating conditions leading to gastroenterological referrals. However, recommended treatments remain limited, yielding only limited therapeutic gains. Chitin-glucan (CG) is a novel dietary prebiotic classically used in humans at a dosage of 1.5-3.0 g/d and is considered a safe food ingredient by the European Food Safety Authority. To provide an alternative approach to managing patients with IBS, we performed preclinical molecular, cellular, and animal studies to evaluate the role of chitin-glucan in the main pathophysiological mechanisms involved in IBS. AIM: To evaluate the roles of CG in visceral analgesia, intestinal inflammation, barrier function, and to develop computational molecular models. METHODS: Visceral pain was recorded through colorectal distension (CRD) in a model of long-lasting colon hypersensitivity induced by an intra-rectal administration of TNBS [15 milligrams (mg)/kilogram (kg)] in 33 Sprague-Dawley rats. Intracolonic pressure was regularly assessed during the 9 wk-experiment (weeks 0, 3, 5, and 7) in animals receiving CG (n = 14) at a human equivalent dose (HED) of 1.5 g/d or 3.0 g/d and compared to negative control (tap water, n = 11) and positive control (phloroglucinol at 1.5 g/d HED, n = 8) groups. The anti-inflammatory effect of CG was evaluated using clinical and histological scores in 30 C57bl6 male mice with colitis induced by dextran sodium sulfate (DSS) administered in their drinking water during 14 d. HT-29 cells under basal conditions and after stimulation with lipopolysaccharide (LPS) were treated with CG to evaluate changes in pathways related to analgesia (µ-opioid receptor (MOR), cannabinoid receptor 2 (CB2), peroxisome proliferator-activated receptor alpha, inflammation [interleukin (IL)-10, IL-1b, and IL-8] and barrier function [mucin 2-5AC, claudin-2, zonula occludens (ZO)-1, ZO-2] using the real-time PCR method. Molecular modelling of CG, LPS, lipoteichoic acid (LTA), and phospholipomannan (PLM) was developed, and the ability of CG to chelate microbial pathogenic lipids was evaluated by docking and molecular dynamics simulations. Data were expressed as the mean ± SEM. RESULTS: Daily CG orally-administered to rats or mice was well tolerated without including diarrhea, visceral hypersensitivity, or inflammation, as evaluated at histological and molecular levels. In a model of CRD, CG at a dosage of 3 g/d HED significantly decreased visceral pain perception by 14% after 2 wk of administration (P < 0.01) and reduced inflammation intensity by 50%, resulting in complete regeneration of the colonic mucosa in mice with DSS-induced colitis. To better reproduce the characteristics of visceral pain in patients with IBS, we then measured the therapeutic impact of CG in rats with TNBS-induced inflammation to long-lasting visceral hypersensitivity. CG at a dosage of 1.5 g/d HED decreased visceral pain perception by 20% five weeks after colitis induction (P < 0.01). When the CG dosage was increased to 3.0 g/d HED, this analgesic effect surpassed that of the spasmolytic agent phloroglucinol, manifesting more rapidly within 3 wk and leading to a 50% inhibition of pain perception (P < 0.0001). The underlying molecular mechanisms contributing to these analgesic and anti-inflammatory effects of CG involved, at least in part, a significant induction of MOR, CB2 receptor, and IL-10, as well as a significant decrease in pro-inflammatory cytokines IL-1b and IL-8. CG also significantly upregulated barrier-related genes including muc5AC, claudin-2, and ZO-2. Molecular modelling of CG revealed a new property of the molecule as a chelator of microbial pathogenic lipids, sequestering gram-negative LPS and gram-positive LTA bacterial toxins, as well as PLM in fungi at the lowesr energy conformations. CONCLUSION: CG decreased visceral perception and intestinal inflammation through master gene regulation and direct binding of microbial products, suggesting that CG may constitute a new therapeutic strategy for patients with IBS or IBS-like symptoms.
Assuntos
Quitina , Colo , Modelos Animais de Doenças , Glucanos , Síndrome do Intestino Irritável , Ratos Sprague-Dawley , Dor Visceral , Animais , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/fisiopatologia , Masculino , Humanos , Colo/efeitos dos fármacos , Colo/patologia , Ratos , Dor Visceral/tratamento farmacológico , Dor Visceral/fisiopatologia , Dor Visceral/metabolismo , Dor Visceral/etiologia , Quitina/farmacologia , Glucanos/farmacologia , Glucanos/administração & dosagem , Camundongos , Prebióticos/administração & dosagem , Ácido Trinitrobenzenossulfônico/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/fisiopatologia , Colite/patologia , Células HT29RESUMO
Following colonic inflammation, the uninjured bladder afferent neurons are also activated. The mechanisms and pathways underlying this sensory neuron cross-activation (from injured neurons to uninjured neurons) are not fully understood. Colonic and bladder afferent neurons reside in the same spinal segments and are separated by satellite glial cells (SGCs) and extracellular matrix in dorsal root ganglia (DRG). SGCs communicate with sensory neurons in a bidirectional fashion. This review summarizes the differentially regulated genes/proteins in the injured and uninjured DRG neurons and explores the role of SGCs in regulation of sensory neuron crosstalk in visceral cross-organ sensitization. The review also highlights the paracrine pathways in mediating neuron-SGC and SGC-neuron coupling with an emphasis on the neurotrophins and purinergic systems. Finally, I discuss the results from recent RNAseq profiling of SGCs to reveal useful molecular markers for characterization, functional study, and therapeutic targets of SGCs. SIGNIFICANCE STATEMENT: Satellite glial cells (SGCs) are the largest glial subtypes in sensory ganglia and play a critical role in mediating sensory neuron crosstalk, an underlying mechanism in colon-bladder cross-sensitization. Identification of novel and unique molecular markers of SGCs can advance the discovery of therapeutic targets in treatment of chronic pain including visceral pain comorbidity.
Assuntos
Neuroglia , Células Receptoras Sensoriais , Dor Visceral , Animais , Humanos , Dor Visceral/metabolismo , Dor Visceral/fisiopatologia , Neuroglia/metabolismo , Células Receptoras Sensoriais/metabolismo , Gânglios Espinais/metabolismo , Células Satélites Perineuronais/metabolismo , Bexiga Urinária/inervação , Bexiga Urinária/metabolismo , Colo/metabolismo , Colo/inervaçãoRESUMO
Empathetic relationships and the social transference of behaviours have been shown to occur in humans, and more recently through the development of rodent models, where both fear and pain phenotypes develop in observer animals. Clinically, observing traumatic events can induce 'trauma and stressor-related disorders' as defined in the DSM 5. These disorders are often comorbid with pain and gastrointestinal disturbances; however, our understanding of how gastrointestinal - or visceral - pain can be vicariously transmitted is lacking. Visceral pain originates from the internal organs, and despite its widespread prevalence, remains poorly understood. We established an observation paradigm to assess the impact of witnessing visceral pain. We utilised colorectal distension (CRD) to induce visceral pain behaviours in a stimulus rodent while the observer rodent observed. Twenty four hours post-observation, the observer rodent's visceral sensitivity was assessed using CRD. The observer rodents were found to have significant hyperalgesia as determined by lower visceral pain threshold and higher number of total pain behaviours compared with controls. The behaviours of the observer animals during the observation were found to be correlated with the behaviours of the stimulus animal employed. We found that observer animals had hypoactivity of the hypothalamic-pituitary-adrenal (HPA) axis, highlighted by reduced corticosterone at 90 minutes post-CRD. Using c-Fos immunohistochemistry we showed that observer animals also had increased activation of the anterior cingulate cortex, and decreased activation of the paraventricular nucleus, compared with controls. These results suggest that witnessing another animal in pain produces a behavioural phenotype and impacts the brain-gut axis.
Assuntos
Modelos Animais de Doenças , Estresse Psicológico , Dor Visceral , Animais , Masculino , Dor Visceral/fisiopatologia , Dor Visceral/psicologia , Ratos , Estresse Psicológico/fisiopatologia , Ratos Sprague-Dawley , Sistema Hipotálamo-Hipofisário/fisiopatologia , Sistema Hipotálamo-Hipofisário/metabolismo , Hiperalgesia/fisiopatologia , Sistema Hipófise-Suprarrenal/fisiopatologia , Sistema Hipófise-Suprarrenal/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Limiar da Dor/fisiologiaRESUMO
Disorders of the gut-brain interaction (DGBIs) are presently classified into mutually exclusive anatomical area-related symptom-based categories according to the Rome IV criteria. The pathophysiology of visceral nociception, which contributes to the wide range of symptoms of DGBIs, involves complex psychobiological processes arising from the bidirectional interactions of multiple systems at the gut and brain levels, which affect symptom expression and illness behaviors. The attitude toward an illness and expression of pain and bowel habit vary across cultures with variable interpretation based on sociocultural beliefs, which may not tally with the medical definitions. Thus, psychological factors impact DGBI definitions, their severity and health care utilization. Due to the poor localization and multisegment referral of visceral pain, the anatomical site of pain may not correspond to the affected segment, and there may be a variable degree of overlap among symptoms. The somewhat restrictively defined Rome IV criteria assume one-to-one correlation of symptoms with underlying pathophysiology and ignore overlapping DGBIs, nonstandardized symptom categories, and change or shift in category over time. The microorganic nature of DGBIs resulting from systemic, metabolic or motility disorders, gut dysbiosis and inflammation are not addressed in the Rome IV criteria. Although there is a multidimensional clinical profile that does address these factors, it is not followed rigorously in practice. Threshold changes for diagnostic criteria or addition/deletion of symptoms leads to wide variation among different DGBI criteria resulting in uncertain comparability of results. Although the Rome IV criteria are excellent for research studies and therapeutic trials in homogenous populations, further improvement is needed for their wider applicability in clinical practice.
Assuntos
Eixo Encéfalo-Intestino , Humanos , Eixo Encéfalo-Intestino/fisiologia , Gastroenteropatias/fisiopatologia , Gastroenteropatias/diagnóstico , Gastroenteropatias/epidemiologia , Dor Visceral/fisiopatologiaRESUMO
BACKGROUND: Experimental research evaluating differences between the visceral and somatic stimulation is limited to pain and typically uses different induction methods for visceral and somatic stimulation (e.g., rectal balloon distention vs. tactile hand stimulation). Our study aimed to compare differences in response time, intensity, unpleasantness, and threat between identical electrical visceral and somatic stimulations at both painful and non-painful perceptual thresholds. METHODS: Electrical stimulation was applied to the wrist and distal esophagus in 20 healthy participants. A double pseudorandom staircase determined perceptual thresholds of Sensation, Discomfort, and Pain for the somatic and visceral stimulations, separately. Stimulus reaction time (ms, via button press), and intensity, unpleasantness, and threat ratings were recorded after each stimulus. General linear mixed models compared differences in the four outcomes by stimulation type, threshold, and the stimulation type-by-threshold interaction. Sigmoidal maximum effect models evaluated differences in outcomes across all delivered stimulation intensities. KEY RESULTS: Overall, visceral stimulations were perceived as more intense, threatening, and unpleasant compared to somatic stimulations, but participants responded faster to somatic stimulations. There was no significant interaction effect, but planned contrasts demonstrated differences at individual thresholds. Across all delivered intensities, higher intensity stimulations were needed to reach the half-maximum effect of self-reported intensity, unpleasantness, and threat ratings in the visceral domain. CONCLUSIONS AND INFERENCES: Differences exist between modalities for both non-painful and painful sensations. These findings may have implications for translating paradigms and behavioral treatments from the somatic domain to the visceral domain, though future research in larger clinical samples is needed.
Assuntos
Emoções , Humanos , Masculino , Feminino , Adulto , Emoções/fisiologia , Adulto Jovem , Estimulação Elétrica/métodos , Limiar da Dor/fisiologia , Percepção da Dor/fisiologia , Sensação/fisiologia , Dor Visceral/fisiopatologia , Dor Visceral/psicologia , Esôfago/fisiologia , Dor/psicologia , Dor/fisiopatologia , Tempo de Reação/fisiologiaRESUMO
Chronic visceral pain is one of the most common reasons for patients with gastrointestinal disorders, such as inflammatory bowel disease or disorders of brain-gut interaction, to seek medical attention. It represents a substantial burden to patients and is associated with anxiety, depression, reductions in quality of life, and impaired social functioning, as well as increased direct and indirect health care costs to society. Unfortunately, the diagnosis and treatment of chronic visceral pain is difficult, in part because our understanding of the underlying pathophysiologic basis is incomplete. In this review, we highlight recent advances in peripheral pain signaling and specific physiologic and pathophysiologic preclinical mechanisms that result in the sensitization of peripheral pain pathways. We focus on preclinical mechanisms that have been translated into treatment approaches and summarize the current evidence base for directing treatment toward these mechanisms of chronic visceral pain derived from clinical trials. The effective management of chronic visceral pain remains of critical importance for the quality of life of suffers. A deeper understanding of peripheral pain mechanisms is necessary and may provide the basis for novel therapeutic interventions.
Assuntos
Dor Crônica , Dor Visceral , Humanos , Dor Visceral/fisiopatologia , Dor Visceral/terapia , Dor Visceral/diagnóstico , Dor Visceral/etiologia , Dor Crônica/terapia , Dor Crônica/fisiopatologia , Dor Crônica/diagnóstico , Dor Crônica/psicologia , Animais , Qualidade de Vida , Transdução de SinaisRESUMO
Gastrointestinal (GI) discomfort is a hallmark of most gut disorders and represents an important component of chronic visceral pain1. For the growing population afflicted by irritable bowel syndrome, GI hypersensitivity and pain persist long after tissue injury has resolved2. Irritable bowel syndrome also exhibits a strong sex bias, afflicting women three times more than men1. Here, we focus on enterochromaffin (EC) cells, which are rare excitable, serotonergic neuroendocrine cells in the gut epithelium3-5. EC cells detect and transduce noxious stimuli to nearby mucosal nerve endings3,6 but involvement of this signalling pathway in visceral pain and attendant sex differences has not been assessed. By enhancing or suppressing EC cell function in vivo, we show that these cells are sufficient to elicit hypersensitivity to gut distension and necessary for the sensitizing actions of isovalerate, a bacterial short-chain fatty acid associated with GI inflammation7,8. Remarkably, prolonged EC cell activation produced persistent visceral hypersensitivity, even in the absence of an instigating inflammatory episode. Furthermore, perturbing EC cell activity promoted anxiety-like behaviours which normalized after blockade of serotonergic signalling. Sex differences were noted across a range of paradigms, indicating that the EC cell-mucosal afferent circuit is tonically engaged in females. Our findings validate a critical role for EC cell-mucosal afferent signalling in acute and persistent GI pain, in addition to highlighting genetic models for studying visceral hypersensitivity and the sex bias of gut pain.
Assuntos
Ansiedade , Células Enterocromafins , Dor Visceral , Feminino , Humanos , Masculino , Ansiedade/complicações , Ansiedade/fisiopatologia , Sistema Digestório/inervação , Sistema Digestório/fisiopatologia , Células Enterocromafins/metabolismo , Síndrome do Intestino Irritável/complicações , Síndrome do Intestino Irritável/fisiopatologia , Síndrome do Intestino Irritável/psicologia , Caracteres Sexuais , Dor Visceral/complicações , Dor Visceral/fisiopatologia , Dor Visceral/psicologia , Inflamação/complicações , Inflamação/fisiopatologia , Serotonina/metabolismo , Reprodutibilidade dos TestesRESUMO
BACKGROUND: Irritable bowel syndrome and bladder pain syndrome often overlap and are both characterized by visceral hypersensitivity. Since pelvic organs share common sensory pathways, it is likely that those syndromes involve a cross-sensitization of the bladder and the colon. The precise pathophysiology remains poorly understood. AIM: To develop a model of chronic bladder-colon cross-sensitization and to investigate the mech-anisms involved. METHODS: Chronic cross-organ visceral sensitization was obtained in C57BL/6 mice using ultrasound-guided intravesical injections of acetic acid under brief isoflurane anesthesia. Colorectal sensitivity was assessed in conscious mice by measuring intracolonic pressure during isobaric colorectal distensions. Myeloperoxidase, used as a marker of colorectal inflammation, was measured in the colon, and colorectal permeability was measured using chambers. c-Fos protein expression, used as a marker of neuronal activation, was assessed in the spinal cord (L6-S1 level) using immunohistochemistry. Green fluorescent protein on the fractalkine receptor-positive mice were used to identify and count microglia cells in the L6-S1 dorsal horn of the spinal cord. The expression of NK1 receptors and MAPK-p38 were quantified in the spinal cord using western blot. RESULTS: Visceral hypersensitivity to colorectal distension was observed after the intravesical injection of acetic acid vs saline (P < 0.0001). This effect started 1 h post-injection and lasted up to 7 d post-injection. No increased permeability or inflammation was shown in the bladder or colon 7 d post-injection. Visceral hypersensitivity was associated with the increased expression of c-Fos protein in the spinal cord (P < 0.0001). In green fluorescent protein on the fractalkine receptor-positive mice, intravesical acetic acid injection resulted in an increased number of microglia cells in the L6-S1 dorsal horn of the spinal cord (P < 0.0001). NK1 receptor and MAPK-p38 levels were increased in the spinal cord up to 7 d after injection (P = 0.007 and 0.023 respectively). Colorectal sensitization was prevented by intrathecal or intracerebroventricular injections of minocycline, a microglia inhibitor, by intracerebroventricular injection of CP-99994 dihydrochloride, a NK1 antagonist, and by intracerebroventricular injection of SB203580, a MAPK-p38 inhibitor. CONCLUSION: We describe a new model of cross-organ visceral sensitization between the bladder and the colon in mice. Intravesical injections of acetic acid induced a long-lasting colorectal hypersensitivity to distension, mediated by neuroglial interactions, MAPK-p38 phosphorylation and the NK1 receptor.
Assuntos
Dor Crônica , Colo , Hiperalgesia , Microglia , Bexiga Urinária , Dor Visceral , Animais , Masculino , Camundongos , Ratos , Receptor 1 de Quimiocina CX3C/metabolismo , Proteínas de Fluorescência Verde , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/farmacologia , Ratos Sprague-Dawley , Medula Espinal/fisiopatologia , Bexiga Urinária/inervação , Bexiga Urinária/fisiopatologia , Dor Visceral/fisiopatologia , Colo/inervação , Colo/fisiopatologia , Hiperalgesia/fisiopatologia , Dor Crônica/fisiopatologia , Microglia/fisiologiaRESUMO
BACKGROUND: Visceral and parietal peritoneum layers have different sensory innervations. Most visceral peritoneum sensory information is conveyed via the vagus nerve to the nucleus of the solitary tract (NTS). We already showed in animal models that intramuscular (i.m.) injection of local anesthetics decreases acute somatic and visceral pain and general inflammation induced by aseptic peritonitis. The goal of the study was to compare the effects of parietal block, i.m. bupivacaine, and vagotomy on spinal cord and NTS stimulation induced by a chemical peritonitis. METHODS: We induced peritonitis in rats using carrageenan and measured cellular activation in spinal cord and NTS under the following conditions, that is, a parietal nerve block with bupivacaine, a chemical right vagotomy, and i.m. microspheres loaded with bupivacaine. Proto-oncogene c-Fos (c-Fos), cluster of differentiation protein 11b (CD11b), and tumor necrosis factor alpha (TNF-α) expression in cord and NTS were studied. RESULTS: c-Fos activation in the cord was inhibited by nerve block 2 hours after peritoneal insult. Vagotomy and i.m. bupivacaine similarly inhibited c-Fos activation in NTS. Forty-eight hours after peritoneal insult, the number of cells expressing CD11b significantly increased in the cord (P = .010). The median difference in the effect of peritonitis compared to control was 30 cells (CI95, 13.5-55). TNF-α colocalized with CD11b. Vagotomy inhibited this microglial activation in the NTS, but not in the cord. This activation was inhibited by i.m. bupivacaine both in cord and in NTS. The median difference in the effect of i.m. bupivacaine added to peritonitis was 29 cells (80% increase) in the cord and 18 cells (75% increase) in the NTS. Our study underlines the role of the vagus nerve in the transmission of an acute visceral pain message and confirmed that systemic bupivacaine prevents noxious stimuli by inhibiting c-Fos and microglia activation. CONCLUSIONS: In rats receiving intraperitoneal carrageenan, i.m. bupivacaine similarly inhibited c-Fos and microglial activation both in cord and in the NTS. Vagal block inhibited activation only in the NTS. Our study underlines the role of the vagus nerve in the transmission of an acute visceral pain message and confirmed that systemic bupivacaine prevents noxious stimuli. This emphasizes the effects of systemic local anesthetics on inflammation and visceral pain.
Assuntos
Dor Aguda/prevenção & controle , Anestésicos Locais/administração & dosagem , Bupivacaína/administração & dosagem , Manejo da Dor , Núcleo Solitário/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Vagotomia , Nervo Vago/cirurgia , Dor Visceral/prevenção & controle , Dor Aguda/induzido quimicamente , Dor Aguda/metabolismo , Dor Aguda/fisiopatologia , Animais , Antígeno CD11b/metabolismo , Carragenina , Modelos Animais de Doenças , Injeções Intramusculares , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Peritonite/induzido quimicamente , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Núcleo Solitário/metabolismo , Núcleo Solitário/fisiopatologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Fator de Necrose Tumoral alfa/metabolismo , Nervo Vago/fisiopatologia , Dor Visceral/induzido quimicamente , Dor Visceral/metabolismo , Dor Visceral/fisiopatologiaRESUMO
The relevance of contextual factors in shaping neural mechanisms underlying visceral pain-related fear learning remains elusive. However, benign interoceptive sensations, which shape patients' clinical reality, may context-dependently become conditioned predictors of impending visceral pain. In a novel context-dependent interoceptive conditioning paradigm, we elucidated the putative role of the central fear network in the acquisition and extinction of pain-related fear induced by interoceptive cues and pain-predictive contexts. In this fMRI study involving rectal distensions as a clinically-relevant model of visceroception, N = 27 healthy men and women underwent differential conditioning. During acquisition training, visceral sensations of low intensity as conditioned stimuli (CS) predicted visceral pain as unconditioned stimulus (US) in one context (Con+), or safety from pain in another context (Con-). During extinction training, interoceptive CS remained unpaired in both contexts, which were operationalized as images of different rooms presented in the MRI scanner. Successful contextual conditioning was supported by increased negative valence of Con+ compared to Con- after acquisition training, which resolved after extinction training. Although interoceptive CS were perceived as comparatively pleasant, they induced significantly greater neural activation of the amygdala, ventromedial PFC, and hippocampus when presented in Con+, while contexts alone did not elicit differential responses. During extinction training, a shift from CS to context differentiation was observed, with enhanced responses in the amygdala, ventromedial, and ventrolateral PFC to Con+ relative to Con-, whereas no CS-induced differential activation emerged. Context-dependent interoceptive conditioning can turn benign interoceptive cues into predictors of visceral pain that recruit key regions of the fear network. This first evidence expands knowledge about learning and memory mechanisms underlying interoceptive hypervigilance and maladaptive avoidance behavior, with implications for disorders of the gut-brain axis.
Assuntos
Condicionamento Clássico/fisiologia , Medo/fisiologia , Rede Nervosa/fisiologia , Reto/fisiologia , Dor Visceral/fisiopatologia , Adulto , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia , Sinais (Psicologia) , Extinção Psicológica/fisiologia , Medo/psicologia , Feminino , Neuroimagem Funcional , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Percepção da Dor/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Estresse Mecânico , Dor Visceral/psicologia , Escala Visual Analógica , Adulto JovemRESUMO
The formation and persistence of negative pain-related expectations by classical conditioning remain incompletely understood. We elucidated behavioural and neural correlates involved in the acquisition and extinction of negative expectations towards different threats across sensory modalities. In two complementary functional magnetic resonance imaging studies in healthy humans, differential conditioning paradigms combined interoceptive visceral pain with somatic pain (study 1) and aversive tone (study 2) as exteroceptive threats. Conditioned responses to interoceptive threat predictors were enhanced in both studies, consistently involving the insula and cingulate cortex. Interoceptive threats had a greater impact on extinction efficacy, resulting in disruption of ongoing extinction (study 1), and selective resurgence of interoceptive CS-US associations after complete extinction (study 2). In the face of multiple threats, we preferentially learn, store, and remember interoceptive danger signals. As key mediators of nocebo effects, conditioned responses may be particularly relevant to clinical conditions involving disturbed interoception and chronic visceral pain.
Assuntos
Extinção Psicológica/fisiologia , Aprendizagem/fisiologia , Dor/fisiopatologia , Adulto , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Dor Nociceptiva/fisiopatologia , Dor Visceral/fisiopatologiaRESUMO
Chronic Overlapping Pain Conditions, including irritable bowel syndrome (IBS) and temporomandibular disorder (TMD), represent a group of idiopathic pain conditions that likely have peripheral and central mechanisms contributing to their pathology, but are poorly understood. These conditions are exacerbated by stress and have a female predominance. The presence of one condition predicts the presence or development of additional conditions, making this a significant pain management problem. The current study was designed to determine if the duration and magnitude of peripheral sensitization and spinal central sensitization differs between restraint stress-induced visceral hypersensitivity (SIH) and chronic comorbid pain hypersensitivity (CPH; stress during pre-existing orofacial pain). SIH in female rats, as determined by the visceromotor response, persisted at least four but resolved by seven weeks. In contrast, CPH persisted at least seven weeks. Surprisingly, colonic afferents in both SIH and CPH rats were sensitized at seven weeks. CPH rats also had referred pain through seven weeks, but locally anesthetizing the colon only attenuated the referred pain through four weeks, suggesting a transition to colonic afferent independent central sensitization. Different phenotypes of dorsal horn neurons were sensitized in the CPH rats seven weeks post stress compared to four weeks or SIH rats. The current study suggests differential processing of colonic afferent input to the lumbosacral spinal cord contributes to visceral hypersensitivity during comorbid chronic pain conditions. PERSPECTIVE: Chronic Overlapping Pain Conditions represent a unique challenge in pain management. The diverse nature of peripheral organs hinders a clear understanding of underlying mechanisms accounting for the comorbidity. This study highlights a mismatch between the condition-dependent behavior and peripheral and spinal mechanisms that contribute to visceral pain hypersensitivity.
Assuntos
Dor Crônica/fisiopatologia , Colo/inervação , Dor Facial/fisiopatologia , Hiperalgesia/fisiopatologia , Dor Referida/fisiopatologia , Células do Corno Posterior/fisiologia , Células Receptoras Sensoriais/fisiologia , Estresse Psicológico/fisiopatologia , Dor Visceral/fisiopatologia , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Feminino , Hiperalgesia/etiologia , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/complicações , Dor Visceral/etiologiaRESUMO
The current study aimed to investigate the effects of sodium butyrate on the level of colonic protein IRAK1 (interleukin-1 receptor-associated kinase 1) in irritable bowel syndrome (IBS) models as well as revealing the relationship between IRAKI level and visceral sensitivity during the progression of IBS. IBS symptoms were induced using TNBS (2,4,6-trinitrobenzene sulfonic acid) in mice and using IL-33 in HT-29 cells, which were then hanlded with sodium butyrate (100 mM for each mice and 0.05 M for HT-29 cells). The threshold of visceral pain and the expression of IRAKI in mice, and the level of IRAKI in HT-29 cells were detected. The data showed that the level of IRAK1 in IBS mice was higher than that in the control group, while the pre-treatment with sodium butyrate could solidy suppressed the level of IRAK1. Morevoer, it was found that the level of IRAK1 was negatively correlated with the pain threshold. In in vitro assays, the level of IRAK1 was firstly induced by IL-33 stimulation and then suppressed by sodium butyrate pretreatment. Collectively, the level of IRAKI showed an obvioulty positive relation with visceral hypersensitivity in IBS models, and the treatment with sodium butyrate could alleviate visceral hypersensitivity by inhibiting the expression of IRAKI.
Assuntos
Ácido Butírico/farmacologia , Quinases Associadas a Receptores de Interleucina-1 , Síndrome do Intestino Irritável , Animais , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Células HT29 , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/patologia , Síndrome do Intestino Irritável/fisiopatologia , Masculino , Camundongos , Transdução de Sinais/efeitos dos fármacos , Dor Visceral/metabolismo , Dor Visceral/fisiopatologiaRESUMO
Irritable bowel syndrome (IBS) is one of the most common challenging diseases for clinical treatment. The aim of this study is to investigate whether transcranial direct current stimulation (tDCS) has analgesic effect on visceral hypersensitivity (VH) in an animal model of IBS as well as the underlying mechanism. As the activation of GluN2B in anterior cingulate cortex (ACC) takes part in VH, we examined whether and how GluN2B in ACC takes part in the effect of tDCS. Neonatal maternal deprivation (NMD), a valuable experimental model to study the IBS pathophysiology, was used to induce visceral hypersensitivity of rats. We quantified VH as colorectal distention threshold and performed patch-clamp recordings of ACC neurons. The expression of GluN2B were determined by RT-qPCR and Western blotting. The GluN2B antagonist Ro 25-6981 was microinjected into the rostral and caudal ACC. tDCS was performed for 7 consecutive days. It was found that NMD decreased expression of GluN2B, which could be obviously reversed by tDCS. Injection of Ro 25-6981 into rostral and caudal ACC of normal rats induced VH and also reversed the analgesic effect of tDCS. Our data sheds light on the nonpharmacological therapy for chronic VH in pathological states such as IBS.NEW & NOTEWORTHY Irritable bowel syndrome (IBS) is a gastrointestinal disease characterized by visceral hypersensitivity. This study showed a decrease of GluN2B expression and neural activity in ACC of IBS-model rats, which could be obviously reversed by tDCS. In addition, blockade of GluN2B in rostral and caudal ACC induced VH of normal rats. Furthermore, analgesic effect of tDCS on NMD rats was reversed by GluN2B antagonist.
Assuntos
Giro do Cíngulo/metabolismo , Giro do Cíngulo/fisiopatologia , Hiperalgesia/terapia , Síndrome do Intestino Irritável/terapia , Receptores de N-Metil-D-Aspartato/metabolismo , Estimulação Transcraniana por Corrente Contínua , Dor Visceral/terapia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/farmacologia , Giro do Cíngulo/efeitos dos fármacos , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Técnicas de Patch-Clamp , Fenóis/farmacologia , Piperidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Dor Visceral/metabolismo , Dor Visceral/fisiopatologiaRESUMO
Visceral pain is a highly complex experience and is the most common pathological feature in patients suffering from inflammatory gastrointestinal disorders. Whilst it is increasingly recognized that aberrant neural processing within the gut-brain axis plays a key role in development of neurological symptoms, the underlying mechanisms remain largely unknown. Here, we investigated the cortical activation patterns and effects of non-invasive chemogenetic suppression of cortical activity on visceral hypersensitivity and anxiety-related phenotypes in a well-characterized mouse model of acute colitis induced by dextran sulfate sodium (DSS). We found that within the widespread cortical network, the mid-cingulate cortex (MCC) was consistently highly activated in response to innocuous and noxious mechanical stimulation of the colon. Furthermore, during acute experimental colitis, impairing the activity of the MCC successfully alleviated visceral hypersensitivity, anxiety-like behaviors and visceromotor responses to colorectal distensions (CRDs) via downregulating the excitability of the posterior insula (PI), somatosensory and the rostral anterior cingulate cortices (rACC), but not the prefrontal or anterior insula cortices. These results provide a mechanistic insight into the central cortical circuits underlying painful visceral manifestations and implicate MCC plasticity as a putative target in cingulate-mediated therapies for bowel disorders.
Assuntos
Transtornos de Ansiedade/fisiopatologia , Colite/fisiopatologia , Modelos Animais de Doenças , Giro do Cíngulo/fisiopatologia , Dor Visceral/fisiopatologia , Animais , Encéfalo/fisiopatologia , Colite/induzido quimicamente , Colo/fisiopatologia , Sulfato de Dextrana , Humanos , Masculino , Camundongos Endogâmicos C57BLRESUMO
Visceral pain may be influenced by many factors. The aim of this study was to analyze the impact of sex and quality of intracolonic mechanical stimulus on the behavioral manifestations of visceral pain in a preclinical model. Male and female young adult Wistar rats were sedated, and a 5 cm long latex balloon was inserted into the colon. Sedation was reverted and behavior was recorded. The pressure of the intracolonic balloon was gradually increased using a sphygmomanometer. Visceral sensitivity was measured as abdominal contractions in response to mechanical intracolonic stimulation. Two different types of stimulation were used: tonic and phasic. Phasic stimulation consisted of repeating several times (3x) the same short stimulus (20 s) within a 5 min interval allowing a 1 min break between individual stimuli. For tonic stimulation the stimulus was maintained throughout the whole 5 min interval. Both phasic and tonic stimulation produced a pressure-dependent increase of abdominal contractions. The abdominal response was more intense under phasic than under tonic stimulation, but with differences depending on the sex of the animals: females exhibited more contractions than males and of similar duration at all pressures, whereas duration of contractions pressure-dependently increased in males. The duration of tonically stimulated contractions was lower and not sex- or pressure-dependent. In the rat, responses to colonic distension depend on the quality of the stimulus, which also produces sex-dependent differences that must be taken into account in the development of models of pathology and visceral pain treatments.
Assuntos
Estado de Consciência/fisiologia , Modelos Animais de Doenças , Nociceptividade/fisiologia , Medição da Dor/métodos , Caracteres Sexuais , Dor Visceral/fisiopatologia , Animais , Feminino , Masculino , Medição da Dor/psicologia , Estimulação Física/efeitos adversos , Ratos , Ratos Wistar , Dor Visceral/psicologiaRESUMO
BACKGROUND: The nociceptive receptive field of the vagus nerves in animals includes virtually the entire thoracic, abdominal and laryngopharyngeal regions. However, the role of the vagus nerves in the transmission of visceral pain in humans, with the exception of pain from coronary artery diseases, is believed to be insignificant. AIM: The purpose of this report is to map out the clinical visceral pain receptive field of the vagus nerves relative to its nociceptive counterpart in animals. MATERIALS AND METHODS: The PubMed database and PMC were searched for case reports of patients with orofacial pain believed by the author(s) of the article to be referred from underlying non-cardiac thoracic, laryngopharyngeal or abdominal diseases. Reports of diseases for which non-neural explanations for the orofacial spread of pain were suggested were excluded. RESULTS: A total of 52 case reports of jaw pain and/or otalgia referred from laryngopharyngeal and noncardiac thoracic sources were discovered. In addition, a multicenter prospective study found that 25.8% of more than 3,000 patients with thoracic aortic dissection experienced pain in the head and neck region. In stark contrast, no case reports of orofacially referred pain from abdominal diseases were found. DISCUSSION: The results indicate that the laryngopharyngeal and thoracic portions of the vagal receptive field are capable of referring pain orofacially while the abdominal portion is not. The roles of the somatotopic organization of the trigeminal sub nucleus caudalis and neuromodulation in this referral of pain were discussed. CONCLUSION: Referred orofacial pain can lead to delayed diagnosis and poorer outcome in visceral diseases.