Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 547(7664): 468-471, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28678776

RESUMO

The cannabinoid receptor 1 (CB1) is the principal target of the psychoactive constituent of marijuana, the partial agonist Δ9-tetrahydrocannabinol (Δ9-THC). Here we report two agonist-bound crystal structures of human CB1 in complex with a tetrahydrocannabinol (AM11542) and a hexahydrocannabinol (AM841) at 2.80 Å and 2.95 Å resolution, respectively. The two CB1-agonist complexes reveal important conformational changes in the overall structure, relative to the antagonist-bound state, including a 53% reduction in the volume of the ligand-binding pocket and an increase in the surface area of the G-protein-binding region. In addition, a 'twin toggle switch' of Phe2003.36 and Trp3566.48 (superscripts denote Ballesteros-Weinstein numbering) is experimentally observed and appears to be essential for receptor activation. The structures reveal important insights into the activation mechanism of CB1 and provide a molecular basis for predicting the binding modes of Δ9-THC, and endogenous and synthetic cannabinoids. The plasticity of the binding pocket of CB1 seems to be a common feature among certain class A G-protein-coupled receptors. These findings should inspire the design of chemically diverse ligands with distinct pharmacological properties.


Assuntos
Agonistas de Receptores de Canabinoides/química , Dronabinol/análogos & derivados , Droperidol/análogos & derivados , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/química , Sítios de Ligação , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/farmacologia , Cristalografia por Raios X , Dronabinol/síntese química , Dronabinol/química , Dronabinol/farmacologia , Droperidol/síntese química , Droperidol/química , Droperidol/farmacologia , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo
2.
Anal Chim Acta ; 742: 10-6, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22884201

RESUMO

In this paper, extraction kinetics was investigated experimentally and theoretically in hollow fiber liquid-phase microextraction (HF-LPME) and electromembrane extraction (EME) with the basic drugs droperidol, haloperidol, nortriptyline, clomipramine, and clemastine as model analytes. In HF-LPME, the analytes were extracted by passive diffusion from an alkaline sample, through a (organic) supported liquid membrane (SLM) and into an acidic acceptor solution. In EME, the analytes were extracted by electrokinetic migration from an acidic sample, through the SLM, and into an acidic acceptor solution by application of an electrical potential across the SLM. In both HF-LPME and EME, the sample (donor solution) was found to be rapidly depleted for analyte. In HF-LPME, the mass transfer across the SLM was slow, and this was found to be the rate limiting step of HF-LPME. This finding is in contrast to earlier discussions in the literature suggesting that mass transfer across the boundary layer at the donor-SLM interface is the rate limiting step of HF-LPME. In EME, mass transfer across the SLM was much more rapid due to electrokinetic migration. Nevertheless, mass transfer across the SLM was rate limiting even in EME. Theoretical models were developed to describe the kinetics in HF-LPME, in agreement with the experimental findings. In HF-LPME, the extraction efficiency was found to be maintained even if pH in the donor solution was lowered from 10 to 7-8, which was below the pK(a)-value for several of the analytes. Similarly, in EME, the extraction efficiency was found to be maintained even if pH in the donor solution increased from 4 to 11, which was above the pK(a)-value for several of the analytes. The two latter experiments suggested that both techniques may be used to effectively extract analytes from samples in a broader pH range as compared to the pH range recommended in the literature.


Assuntos
Antipsicóticos/química , Droperidol/análogos & derivados , Droperidol/química , Cinética , Microextração em Fase Líquida/estatística & dados numéricos , Cromatografia Líquida de Alta Pressão , Difusão , Técnicas Eletroquímicas , Concentração de Íons de Hidrogênio , Membranas Artificiais , Modelos Químicos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA