Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Biochem Soc Trans ; 50(1): 95-105, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35076655

RESUMO

Viruses can be enveloped or non-enveloped, and require a host cell to replicate and package their genomes into new virions to infect new cells. To accomplish this task, viruses hijack the host-cell machinery to facilitate their replication by subverting and manipulating normal host cell function. Enveloped viruses can have severe consequences for human health, causing various diseases such as acquired immunodeficiency syndrome (AIDS), seasonal influenza, COVID-19, and Ebola virus disease. The complex arrangement and pleomorphic architecture of many enveloped viruses pose a challenge for the more widely used structural biology techniques, such as X-ray crystallography. Cryo-electron tomography (cryo-ET), however, is a particularly well-suited tool for overcoming the limitations associated with visualizing the irregular shapes and morphology enveloped viruses possess at macromolecular resolution. The purpose of this review is to explore the latest structural insights that cryo-ET has revealed about enveloped viruses, with particular attention given to their architectures, mechanisms of entry, replication, assembly, maturation and egress during infection. Cryo-ET is unique in its ability to visualize cellular landscapes at 3-5 nanometer resolution. Therefore, it is the most suited technique to study asymmetric elements and structural rearrangements of enveloped viruses during infection in their native cellular context.


Assuntos
Vírus/ultraestrutura , Microscopia Crioeletrônica , Ebolavirus/metabolismo , Ebolavirus/ultraestrutura , Tomografia com Microscopia Eletrônica , HIV-1/metabolismo , HIV-1/ultraestrutura , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/ultraestrutura , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/ultraestrutura , Vírus/metabolismo
2.
Cell ; 184(22): 5593-5607.e18, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34715022

RESUMO

Ebolaviruses cause a severe and often fatal illness with the potential for global spread. Monoclonal antibody-based treatments that have become available recently have a narrow therapeutic spectrum and are ineffective against ebolaviruses other than Ebola virus (EBOV), including medically important Bundibugyo (BDBV) and Sudan (SUDV) viruses. Here, we report the development of a therapeutic cocktail comprising two broadly neutralizing human antibodies, rEBOV-515 and rEBOV-442, that recognize non-overlapping sites on the ebolavirus glycoprotein (GP). Antibodies in the cocktail exhibited synergistic neutralizing activity, resisted viral escape, and possessed differing requirements for their Fc-regions for optimal in vivo activities. The cocktail protected non-human primates from ebolavirus disease caused by EBOV, BDBV, or SUDV with high therapeutic effectiveness. High-resolution structures of the cocktail antibodies in complex with GP revealed the molecular determinants for neutralization breadth and potency. This study provides advanced preclinical data to support clinical development of this cocktail for pan-ebolavirus therapy.


Assuntos
Anticorpos Antivirais/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Linhagem Celular , Microscopia Crioeletrônica , Ebolavirus/ultraestrutura , Epitopos/imunologia , Feminino , Glicoproteínas/química , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/virologia , Humanos , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos BALB C , Modelos Moleculares , Primatas , Receptores Fc/metabolismo , Proteínas Recombinantes/imunologia , Viremia/imunologia
3.
J Struct Biol ; 213(2): 107742, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33971285

RESUMO

Cryo-electron tomography (cryo-ET) is a pivotal imaging technique for studying the structure of pleomorphic enveloped viruses and their interactions with the host at native conditions. Owing to the limited tilting range of samples with a slab geometry, electron tomograms suffer from so-called missing wedge information in Fourier space. In dual-axis cryo-ET, two tomograms reconstructed from orthogonally oriented tilt series are combined into a tomogram with improved resolution as the missing wedge information is reduced to a pyramid. Volta phase plate (VPP) allows to perform in-focus cryo-ET with high contrast transfer at low-resolution frequencies and thus its application may improve the quality of dual-axis tomograms. Here, we compare dual-axis cryo-ET with and without VPP on Ebola virus-like particles to visualize and segment viral and host cell proteins within the membrane-enveloped filamentous particles. Dual-axis VPP cryo-ET reduces the missing wedge information and ray artifacts arising from the weighted back-projection during tomogram reconstruction, thereby minimizing ambiguity in the analysis of crowded environments and facilitating 3D segmentation. We show that dual-axis VPP tomograms provide a comprehensive description of macromolecular organizations such as nucleocapsid assembly states, the distribution of glycoproteins on the viral envelope and asymmetric arrangements of the VP40 layer in non-filamentous regions of virus-like particles. Our data reveal actin filaments within virus-like particles in close proximity to the viral VP40 scaffold, suggesting a direct interaction between VP40 and actin filaments. Dual-axis VPP cryo-ET provides more complete 3D information at high contrast and allows for better interpretation of macromolecule interactions and pleomorphic organizations.


Assuntos
Actinas/química , Microscopia Crioeletrônica/métodos , Ebolavirus/química , Proteínas da Matriz Viral/química , Actinas/metabolismo , Membrana Celular , Ebolavirus/metabolismo , Ebolavirus/ultraestrutura , Tomografia com Microscopia Eletrônica/métodos , Células HEK293 , Doença pelo Vírus Ebola/patologia , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno , Humanos , Imageamento Tridimensional , Nucleocapsídeo/química , Proteínas da Matriz Viral/metabolismo
4.
Viruses ; 11(12)2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810353

RESUMO

Ebola virus (EBOV) causes severe hemorrhagic fever with high mortality rates. EBOV can infect many types of cells. During severe EBOV infection, polarized epithelial and endothelial cells are damaged, which promotes vascular instability and dysregulation. However, the mechanism causing these symptoms is largely unknown. Here, we studied virus infection in polarized Vero C1008 cells grown on semipermeable Transwell by using EGFP-labeled Ebola virus-like particles (VLPs). Our results showed that Ebola VLPs preferred to enter polarized Vero cells from the apical cell surface. Furthermore, we showed that the EBOV receptors TIM-1 and Axl were distributed apically, which could be responsible for mediating efficient apical viral entry. Macropinocytosis and intracellular receptor Niemann-Pick type C1 (NPC1) had no polarized distribution, although they played roles in virus entry. This study provides a new view of EBOV uptake and cell polarization, which facilitates a further understanding of EBOV infection and pathogenesis.


Assuntos
Polaridade Celular , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno , Internalização do Vírus , Animais , Linhagem Celular , Chlorocebus aethiops , Ebolavirus/ultraestrutura , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Doença pelo Vírus Ebola/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , Pinocitose , Células Vero
5.
Nature ; 563(7729): 137-140, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30333622

RESUMO

Ebola virus causes haemorrhagic fever with a high fatality rate in humans and non-human primates. It belongs to the family Filoviridae in the order Mononegavirales, which are viruses that contain linear, non-segmented, negative-sense, single-stranded genomic RNA1,2. The enveloped, filamentous virion contains the nucleocapsid, consisting of the helical nucleoprotein-RNA complex, VP24, VP30, VP35 and viral polymerase1,3. The nucleoprotein-RNA complex acts as a scaffold for nucleocapsid formation and as a template for RNA replication and transcription by condensing RNA into the virion4,5. RNA binding and nucleoprotein oligomerization are synergistic and do not readily occur independently6. Although recent cryo-electron tomography studies have revealed the overall architecture of the nucleocapsid core4,5, there has been no high-resolution reconstruction of the nucleocapsid. Here we report the structure of a recombinant Ebola virus nucleoprotein-RNA complex expressed in mammalian cells without chemical fixation, at near-atomic resolution using single-particle cryo-electron microscopy. Our structure reveals how the Ebola virus nucleocapsid core encapsidates its viral genome, its sequence-independent coordination with RNA by nucleoprotein, and the dynamic transition between the RNA-free and RNA-bound states. It provides direct structural evidence for the role of the N terminus of nucleoprotein in subunit oligomerization, and for the hydrophobic and electrostatic interactions that lead to the formation of the helical assembly. The structure is validated as representative of the native biological assembly of the nucleocapsid core by consistent dimensions and symmetry with the full virion5. The atomic model provides a detailed mechanistic basis for understanding nucleocapsid assembly and highlights key structural features that may serve as targets for anti-viral drug development.


Assuntos
Microscopia Crioeletrônica , Ebolavirus/química , Ebolavirus/ultraestrutura , Nucleocapsídeo/química , RNA Viral/química , Células HEK293 , Humanos , Modelos Moleculares , Nucleocapsídeo/ultraestrutura , RNA Viral/ultraestrutura
6.
J Virol Methods ; 261: 156-159, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30145180

RESUMO

In this study, we generated recombinant virus-like particles (VLPs) against family Filoviridae, genus Ebolavirus, species Zaire ebolavirus, strain Makona (EBOV) in Drosophila melanogaster Schneider 2 (S2) cells using the EBOV Makona. S2 cells were cotransfected with four viral plasmids encoding EBOV Makona proteins and protein expression was analyzed by immunoblotting. We confirmed that EBOV Makona proteins were successfully expressed in S2 cells. Additionally, we further examined the formation of intracellular and extracellular VLPs by electron microscopy. eVLPs were produced by sucrose gradient ultracentrifugation of S2 cells transfected with EBOV Makona genes, and production of VLPs was confirmed by immunoblot analysis. Collectively, our findings showed that the S2 cell system could be a promising tool for efficient production of eVLPs.


Assuntos
Ebolavirus/genética , Recombinação Genética , Virossomos/genética , Virossomos/metabolismo , Animais , Linhagem Celular , Centrifugação com Gradiente de Concentração , Drosophila melanogaster , Ebolavirus/ultraestrutura , Expressão Gênica , Immunoblotting , Microscopia Eletrônica , Transfecção , Proteínas Virais/análise , Virossomos/isolamento & purificação , Virossomos/ultraestrutura
8.
Int J Mol Sci ; 19(5)2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29772717

RESUMO

MicroRNAs (miRNAs) may become efficient antiviral agents against the Ebola virus (EBOV) targeting viral genomic RNAs or transcripts. We previously conducted a genome-wide search for differentially expressed miRNAs during viral replication and transcription. In this study, we established a rapid screen for miRNAs with inhibitory effects against EBOV using a tetracistronic transcription- and replication-competent virus-like particle (trVLP) system. This system uses a minigenome comprising an EBOV leader region, luciferase reporter, VP40, GP, VP24, EBOV trailer region, and three noncoding regions from the EBOV genome and can be used to model the life cycle of EBOV under biosafety level (BSL) 2 conditions. Informatic analysis was performed to select up-regulated miRNAs targeting the coding regions of the minigenome with the highest binding energy to perform inhibitory effect screening. Among these miRNAs, miR-150-3p had the most significant inhibitory effect. Reverse transcription polymerase chain reaction (RT-PCR), Western blot, and double fluorescence reporter experiments demonstrated that miR-150-3p inhibited the reproduction of trVLPs via the regulation of GP and VP40 expression by directly targeting the coding regions of GP and VP40. This novel, rapid, and convenient screening method will efficiently facilitate the exploration of miRNAs against EBOV under BSL-2 conditions.


Assuntos
Ebolavirus/fisiologia , Regulação da Expressão Gênica , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , Linhagem Celular , Ebolavirus/ultraestrutura , Humanos , Replicação Viral/genética
9.
Viruses ; 10(3)2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29533988

RESUMO

Complete inactivation of infectious Ebola virus (EBOV) is required before a sample may be removed from a Biosafety Level 4 laboratory. The United States Federal Select Agent Program regulations require that procedures used to demonstrate chemical inactivation must be validated in-house to confirm complete inactivation. The objective of this study was to develop a method for validating chemical inactivation of EBOV and then demonstrate the effectiveness of several commonly-used inactivation methods. Samples containing infectious EBOV (Zaire ebolavirus) in different matrices were treated, and the sample was diluted to limit the cytopathic effect of the inactivant. The presence of infectious virus was determined by assessing the cytopathic effect in Vero E6 cells. Crucially, this method did not result in a loss of infectivity in control samples, and we were able to detect less than five infectious units of EBOV (Zaire ebolavirus). We found that TRIzol LS reagent and RNA-Bee inactivated EBOV in serum; TRIzol LS reagent inactivated EBOV in clarified cell culture media; TRIzol reagent inactivated EBOV in tissue and infected Vero E6 cells; 10% neutral buffered formalin inactivated EBOV in tissue; and osmium tetroxide vapors inactivated EBOV on transmission electron microscopy grids. The methods described herein are easily performed and can be adapted to validate inactivation of viruses in various matrices and by various chemical methods.


Assuntos
Antivirais/farmacologia , Desinfetantes/farmacologia , Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Testes de Sensibilidade Microbiana , Inativação de Vírus/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Efeito Citopatogênico Viral/efeitos dos fármacos , Ebolavirus/ultraestrutura , Doença pelo Vírus Ebola/virologia , Humanos , Testes de Sensibilidade Microbiana/métodos , Sensibilidade e Especificidade , Células Vero
10.
Cell ; 172(5): 966-978.e12, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474922

RESUMO

Ebola virus nucleoprotein (eNP) assembles into higher-ordered structures that form the viral nucleocapsid (NC) and serve as the scaffold for viral RNA synthesis. However, molecular insights into the NC assembly process are lacking. Using a hybrid approach, we characterized the NC-like assembly of eNP, identified novel regulatory elements, and described how these elements impact function. We generated a three-dimensional structure of the eNP NC-like assembly at 5.8 Å using electron cryo-microscopy and identified a new regulatory role for eNP helices α22-α23. Biochemical, biophysical, and mutational analyses revealed that inter-eNP contacts within α22-α23 are critical for viral NC assembly and regulate viral RNA synthesis. These observations suggest that the N terminus and α22-α23 of eNP function as context-dependent regulatory modules (CDRMs). Our current study provides a framework for a structural mechanism for NC-like assembly and a new therapeutic target.


Assuntos
Microscopia Crioeletrônica , Ebolavirus/fisiologia , Ebolavirus/ultraestrutura , Nucleocapsídeo/ultraestrutura , Nucleoproteínas/ultraestrutura , Montagem de Vírus , Modelos Biológicos , Proteínas Mutantes/química , Mutação/genética , Nucleoproteínas/química , Multimerização Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Viral/biossíntese , RNA Viral/química , RNA Viral/metabolismo
11.
Nature ; 551(7680): 394-397, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144446

RESUMO

Ebola and Marburg viruses are filoviruses: filamentous, enveloped viruses that cause haemorrhagic fever. Filoviruses are within the order Mononegavirales, which also includes rabies virus, measles virus, and respiratory syncytial virus. Mononegaviruses have non-segmented, single-stranded negative-sense RNA genomes that are encapsidated by nucleoprotein and other viral proteins to form a helical nucleocapsid. The nucleocapsid acts as a scaffold for virus assembly and as a template for genome transcription and replication. Insights into nucleoprotein-nucleoprotein interactions have been derived from structural studies of oligomerized, RNA-encapsidating nucleoprotein, and cryo-electron microscopy of nucleocapsid or nucleocapsid-like structures. There have been no high-resolution reconstructions of complete mononegavirus nucleocapsids. Here we apply cryo-electron tomography and subtomogram averaging to determine the structure of Ebola virus nucleocapsid within intact viruses and recombinant nucleocapsid-like assemblies. These structures reveal the identity and arrangement of the nucleocapsid components, and suggest that the formation of an extended α-helix from the disordered carboxy-terminal region of nucleoprotein-core links nucleoprotein oligomerization, nucleocapsid condensation, RNA encapsidation, and accessory protein recruitment.


Assuntos
Microscopia Crioeletrônica , Ebolavirus/química , Ebolavirus/ultraestrutura , Tomografia com Microscopia Eletrônica , Proteínas do Nucleocapsídeo/ultraestrutura , Nucleocapsídeo/química , Nucleocapsídeo/ultraestrutura , Animais , Chlorocebus aethiops , Células HEK293 , Humanos , Marburgvirus/química , Modelos Moleculares , Conformação Molecular , Proteínas do Nucleocapsídeo/química , RNA Viral/química , RNA Viral/ultraestrutura , Células Vero
12.
PLoS One ; 12(6): e0179728, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28651016

RESUMO

Light microscopy is a powerful tool in the detection and analysis of parasites, fungi, and prokaryotes, but has been challenging to use for the detection of individual virus particles. Unlabeled virus particles are too small to be visualized using standard visible light microscopy. Characterization of virus particles is typically performed using higher resolution approaches such as electron microscopy or atomic force microscopy. These approaches require purification of virions away from their normal millieu, requiring significant levels of expertise, and can only enumerate small numbers of particles per field of view. Here, we utilize a visible light imaging approach called Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS) that allows automated counting and sizing of thousands of individual virions. Virions are captured directly from complex solutions onto a silicon chip and then detected using a reflectance interference imaging modality. We show that the use of different imaging wavelengths allows the visualization of a multitude of virus particles. Using Violet/UV illumination, the SP-IRIS technique is able to detect individual flavivirus particles (~40 nm), while green light illumination is capable of identifying and discriminating between vesicular stomatitis virus and vaccinia virus (~360 nm). Strikingly, the technology allows the clear identification of filamentous infectious ebolavirus particles and virus-like particles. The ability to differentiate and quantify unlabeled virus particles extends the usefulness of traditional light microscopy and can be embodied in a straightforward benchtop approach allowing widespread applications ranging from rapid detection in biological fluids to analysis of virus-like particles for vaccine development and production.


Assuntos
Ebolavirus/ultraestrutura , Microscopia de Interferência/métodos , Microscopia Ultravioleta/métodos , Vírion/ultraestrutura , Zika virus/ultraestrutura , Animais , Desenho de Equipamento , Humanos , Microscopia Eletrônica de Varredura , Microscopia de Interferência/instrumentação , Microscopia Ultravioleta/instrumentação , Vaccinia virus/ultraestrutura , Vesiculovirus/ultraestrutura
13.
Methods Mol Biol ; 1628: 243-250, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28573625

RESUMO

Ebola virus (EBOV) replicates in host cells, where both viral and cellular components show morphological changes during the process of viral replication from entry to budding. These steps in the replication cycle can be studied using electron microscopy (EM), including transmission electron microscopy (TEM) and scanning electron microscopy (SEM), which is one of the most useful methods for visualizing EBOV particles and EBOV-infected cells at the ultrastructural level. This chapter describes conventional methods for EM sample preparation of cultured cells infected with EBOV.


Assuntos
Ebolavirus/ultraestrutura , Doença pelo Vírus Ebola/diagnóstico por imagem , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão/métodos , Linhagem Celular , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Replicação Viral/genética
14.
J Virol Methods ; 238: 70-76, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27751950

RESUMO

Transmission electron microscopy can be used to observe the ultrastructure of viruses and other microbial pathogens with nanometer resolution. In a transmission electron microscope (TEM), the image is created by passing an electron beam through a specimen with contrast generated by electron scattering from dense elements in the specimen. Viruses do not normally contain dense elements, so a negative stain that places dense heavy metal salts around the sample is added to create a dark border. To prepare a virus sample for a negative stain transmission electron microscopy, a virus suspension is applied to a TEM grid specimen support, which is a 3mm diameter fragile specimen screen coated with a few nanometers of plastic film. Then, deionized (dI) water rinses and a negative stain solution are applied to the grid. All infectious viruses must be handled in a biosafety cabinet (BSC) and many require a biocontainment laboratory environment. Staining viruses in biosafety levels (BSL) 3 and 4 is especially challenging because the support grids are small, fragile, and easily moved by air currents. In this study we evaluated a new device for negative staining viruses called mPrep/g capsule. It is a capsule that holds up to two TEM grids during all processing steps and for storage after staining is complete. This study reports that the mPrep/g capsule method is valid and effective to negative stain virus specimens, especially in high containment laboratory environments.


Assuntos
Contenção de Riscos Biológicos , Microscopia Eletrônica de Transmissão/métodos , Coloração Negativa/métodos , Manejo de Espécimes/métodos , Vírus/ultraestrutura , Vírus Chikungunya/ultraestrutura , Contenção de Riscos Biológicos/métodos , Ebolavirus/ultraestrutura , Microscopia Eletrônica de Transmissão/instrumentação , Microscopia Eletrônica de Transmissão/normas , Vírus/isolamento & purificação
15.
Biochem Biophys Res Commun ; 479(2): 245-252, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27638305

RESUMO

A direct acting anti-Ebola agent is needed. VP40, a conserved protein across Ebolavirus (EBOV) species has several pivotal roles in the virus life cycle. Inhibition of VP40 functions would lessen the virion integrity and interfere with the viral assembly, budding, and spread. In this study, cell penetrable human scFvs (HuscFvs) that bound to EBOV VP40 were produced by phage display technology. Gene sequences coding for VP40-bound-HuscFvs were subcloned from phagemids into protein expression plasmids downstream to a gene of cell penetrating peptide, i.e., nonaarginine (R9). By electron microscopy, transbodies from three clones effectively inhibited egress of the Ebola virus-like particles from human hepatic cells transduced with pseudo-typed-Lentivirus particles carrying EBOV VP40 and GP genes. Computerized simulation indicated that the effective HuscFvs bound to multiple basic residues in the cationic patch of VP40 C-terminal domain which are important in membrane-binding for viral matrix assembly and virus budding. The transbodies bound also to VP40 N-terminal domain and L domain peptide encompassed the PTAPPEY (WW binding) motif, suggesting that they might confer VP40 function inhibition through additional mechanism(s). The generated transbodies are worthwhile tested with authentic EBOV before developing to direct acting anti-Ebola agent for preclinical and clinical trials.


Assuntos
Ebolavirus/efeitos dos fármacos , Anticorpos de Cadeia Única/farmacologia , Proteínas da Matriz Viral/imunologia , Liberação de Vírus/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/ultraestrutura , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Ebolavirus/fisiologia , Ebolavirus/ultraestrutura , Interações Hospedeiro-Patógeno , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/ultraestrutura , Neoplasias Hepáticas/virologia , Microscopia Eletrônica de Varredura , Modelos Moleculares , Biblioteca de Peptídeos , Ligação Proteica , Domínios Proteicos , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/imunologia , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Vírion/efeitos dos fármacos , Vírion/fisiologia , Vírion/ultraestrutura , Liberação de Vírus/fisiologia
16.
J Infect Dis ; 214(suppl 3): S93-S101, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27357339

RESUMO

BACKGROUND: In 1976, the first cases of Ebola virus disease in northern Democratic Republic of the Congo (then referred to as Zaire) were reported. This article addresses who was responsible for recognizing the disease; recovering, identifying, and naming the virus; and describing the epidemic. Key scientific approaches used in 1976 and their relevance to the 3-country (Guinea, Sierra Leone, and Liberia) West African epidemic during 2013-2016 are presented. METHODS: Field and laboratory investigations started soon after notification, in mid-September 1976, and included virus cell culture, electron microscopy (EM), immunofluorescence antibody (IFA) testing of sera, case tracing, containment, and epidemiological surveys. In 2013-2016, medical care and public health work were delayed for months until the Ebola virus disease epidemic was officially declared an emergency by World Health Organization, but research in pathogenesis, clinical presentation, including sequelae, treatment, and prevention, has increased more recently. RESULTS: Filoviruses were cultured and observed by EM in Antwerp, Belgium (Institute of Tropical Medicine); Porton Down, United Kingdom (Microbiological Research Establishment); and Atlanta, Georgia (Centers for Disease Control and Prevention). In Atlanta, serological testing identified a new virus. The 1976 outbreak (280 deaths among 318 cases) stopped in <11 weeks, and basic clinical and epidemiological features were defined. The recent massive epidemic during 2013-2016 (11 310 deaths among 28 616 cases) has virtually stopped after >2 years. Transmission indices (R0) are higher in all 3 countries than in 1976. CONCLUSIONS: An international commission working harmoniously in laboratories and with local communities was essential for rapid success in 1976. Control and understanding of the recent West African outbreak were delayed because of late recognition and because authorities were overwhelmed by many patients and poor community involvement. Despite obstacles, research was a priority in 1976 and recently.


Assuntos
Surtos de Doenças/prevenção & controle , Ebolavirus/isolamento & purificação , Epidemias/prevenção & controle , Doença pelo Vírus Ebola/epidemiologia , Bélgica , Centers for Disease Control and Prevention, U.S. , República Democrática do Congo/epidemiologia , Ebolavirus/imunologia , Ebolavirus/ultraestrutura , Feminino , Georgia , Guiné/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/transmissão , Doença pelo Vírus Ebola/virologia , Humanos , Libéria/epidemiologia , Masculino , Saúde Pública , Serra Leoa/epidemiologia , Reino Unido , Estados Unidos , Organização Mundial da Saúde
17.
Sci Rep ; 6: 26516, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27212232

RESUMO

Despite being an excellent tool for investigating ultrastructure, scanning electron microscopy (SEM) is less frequently used than transmission electron microscopy for microbes such as viruses or bacteria. Here we describe rapid methods that allow SEM imaging of fully hydrated, unfixed microbes without using conventional sample preparation methods. We demonstrate improved ultrastructural preservation, with greatly reduced dehydration and shrinkage, for specimens including bacteria and viruses such as Ebola virus using infiltration with ionic liquid on conducting filter substrates for SEM.


Assuntos
Doenças Transmissíveis/diagnóstico , Microscopia Eletrônica de Varredura/métodos , Vírus/ultraestrutura , Animais , Linhagem Celular , Doenças Transmissíveis/virologia , Ebolavirus/ultraestrutura , Humanos , Líquidos Iônicos , Manejo de Espécimes/instrumentação , Vaccinia virus/ultraestrutura
20.
J Virol ; 88(18): 10958-62, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25008940

RESUMO

The Ebola virus glycoprotein mucin-like domain (MLD) is implicated in Ebola virus cell entry and immune evasion. Using cryo-electron tomography of Ebola virus-like particles, we determined a three-dimensional structure for the full-length glycoprotein in a near-native state and compared it to that of a glycoprotein lacking the MLD. Our results, which show that the MLD is located at the apex and the sides of each glycoprotein monomer, provide a structural template for analysis of MLD function.


Assuntos
Ebolavirus/metabolismo , Doença pelo Vírus Ebola/virologia , Proteínas do Envelope Viral/química , Microscopia Crioeletrônica , Ebolavirus/química , Ebolavirus/genética , Ebolavirus/ultraestrutura , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA