Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
BMC Biol ; 22(1): 99, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679734

RESUMO

BACKGROUND: TALE-derived DddA-based cytosine base editors (TALE-DdCBEs) can perform efficient base editing of mitochondria and chloroplast genomes. They use transcription activator-like effector (TALE) arrays as programmable DNA-binding domains and a split version of the double-strand DNA cytidine deaminase (DddA) to catalyze C•G-to-T•A editing. This technology has not been optimized for use in plant cells. RESULTS: To systematically investigate TALE-DdCBE architectures and editing rules, we established a ß-glucuronidase reporter for transient assays in Nicotiana benthamiana. We show that TALE-DdCBEs function with distinct spacer lengths between the DNA-binding sites of their two TALE parts. Compared to canonical DddA, TALE-DdCBEs containing evolved DddA variants (DddA6 or DddA11) showed a significant improvement in editing efficiency in Nicotiana benthamiana and rice. Moreover, TALE-DdCBEs containing DddA11 have broader sequence compatibility for non-TC target editing. We have successfully regenerated rice with C•G-to-T•A conversions in their chloroplast genome, as well as N. benthamiana with C•G-to-T•A editing in the nuclear genome using TALE-DdCBE. We also found that the spontaneous assembly of split DddA halves can cause undesired editing by TALE-DdCBEs in plants. CONCLUSIONS: Altogether, our results refined the targeting scope of TALE-DdCBEs and successfully applied them to target the chloroplast and nuclear genomes. Our study expands the base editing toolbox in plants and further defines parameters to optimize TALE-DdCBEs for high-fidelity crop improvement.


Assuntos
Edição de Genes , Nicotiana , Edição de Genes/métodos , Nicotiana/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Efetores Semelhantes a Ativadores de Transcrição/genética , Citidina Desaminase/metabolismo , Citidina Desaminase/genética , Citosina/metabolismo , Oryza/genética
2.
Cell ; 187(1): 95-109.e26, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181745

RESUMO

DddA-derived cytosine base editors (DdCBEs) and transcription activator-like effector (TALE)-linked deaminases (TALEDs) catalyze targeted base editing of mitochondrial DNA (mtDNA) in eukaryotic cells, a method useful for modeling of mitochondrial genetic disorders and developing novel therapeutic modalities. Here, we report that A-to-G-editing TALEDs but not C-to-T-editing DdCBEs induce tens of thousands of transcriptome-wide off-target edits in human cells. To avoid these unwanted RNA edits, we engineered the substrate-binding site in TadA8e, the deoxy-adenine deaminase in TALEDs, and created TALED variants with fine-tuned deaminase activity. Our engineered TALED variants not only reduced RNA off-target edits by >99% but also minimized off-target mtDNA mutations and bystander edits at a target site. Unlike wild-type versions, our TALED variants were not cytotoxic and did not cause developmental arrest of mouse embryos. As a result, we obtained mice with pathogenic mtDNA mutations, associated with Leigh syndrome, which showed reduced heart rates.


Assuntos
DNA Mitocondrial , Efetores Semelhantes a Ativadores de Transcrição , Animais , Humanos , Camundongos , Adenina , Citosina , DNA Mitocondrial/genética , Edição de Genes , RNA , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Engenharia de Proteínas
3.
Plant Commun ; 5(2): 100721, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37735868

RESUMO

Xanthomonas oryzae pv. oryzae (Xoo) secretes transcription activator-like effectors (TALEs) to activate rice susceptibility (S) genes, causing bacterial blight (BB), as well as resistance (R) genes, leading to defense against BB. This activation follows a gene-for-gene paradigm that results in an arms race between the TALE of the pathogen and effector-binding elements (EBEs) in the promoters of host genes. In this study, we characterized a novel TALE, designated Tal6b/AvrXa27A, that activates the rice S gene OsSWEET11a and the rice R gene Xa27. Tal6b/AvrXa27A is a member of the AvrXa27/TalAO class and contains 16 repeat variable diresidues (RVDs); one RVD is altered and one is deleted in Tal6b/AvrXa27A compared with AvrXa27, a known avirulence (avr) effector of Xa27. Tal6b/AvrXa27A can transcriptionally activate the expression of Xa27 and OsSWEET11a via EBEs in their corresponding promoters, leading to effector-triggered immunity and susceptibility, respectively. The 16 RVDs in Tal6b/AvrXa27A have no obvious similarity to the 24 RVDs in the effector PthXo1, but EBETal6b and EBEPthXo1 are overlapped in the OsSWEET11a promoter. Tal6b/AvrXa27A is prevalent among Asian Xoo isolates, but PthXo1 has only been reported in the Philippine strain PXO99A. Genome editing of EBETal6b in the OsSWEET11a promoter further confirmed the requirement for OsSWEET11a expression in Tal6b/AvrXa27A-dependent susceptibility to Xoo. Moreover, Tal6b/AvrXa27A resulted in higher transcription of Xa27 than of OsSWEET11a, which led to a strong, rapid resistance response that blocked disease development. These findings suggest that Tal6b/AvrXa27A has a dual function: triggering resistance by activating Xa27 gene expression as an avirulence factor and inducing transcription of the S gene OsSWEET11a, resulting in virulence. Intriguingly, Tal6b/AvrXa27A, but not AvrXa27, can bind to the promoter of OsSWEET11a. The underlying recognition mechanism for this binding remains unclear but appears to deviate from the currently accepted TALE code.


Assuntos
Oryza , Xanthomonas , Oryza/metabolismo , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Regiões Promotoras Genéticas/genética , Edição de Genes , Virulência , Xanthomonas/genética
4.
Plant Biotechnol J ; 21(10): 2019-2032, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37421233

RESUMO

Citrus bacterial canker (CBC), caused by Xanthomonas citri subsp. citri (Xcc), causes dramatic losses to the citrus industry worldwide. Transcription activator-like effectors (TALEs), which bind to effector binding elements (EBEs) in host promoters and activate transcription of downstream host genes, contribute significantly to Xcc virulence. The discovery of the biochemical context for the binding of TALEs to matching EBE motifs, an interaction commonly referred to as the TALE code, enabled the in silico prediction of EBEs for each TALE protein. Using the TALE code, we engineered a synthetic resistance (R) gene, called the Xcc-TALE-trap, in which 14 tandemly arranged EBEs, each capable of autonomously recognizing a particular Xcc TALE, drive the expression of Xanthomonas avrGf2, which encodes a bacterial effector that induces plant cell death. Analysis of a corresponding transgenic Duncan grapefruit showed that transcription of the cell death-inducing executor gene, avrGf2, was strictly TALE-dependent and could be activated by several different Xcc TALE proteins. Evaluation of Xcc strains from different continents showed that the Xcc-TALE-trap mediates resistance to this global panel of Xcc isolates. We also studied in planta-evolved TALEs (eTALEs) with novel DNA-binding domains and found that these eTALEs also activate the Xcc-TALE-trap, suggesting that the Xcc-TALE-trap is likely to confer durable resistance to Xcc. Finally, we show that the Xcc-TALE-trap confers resistance not only in laboratory infection assays but also in more agriculturally relevant field studies. In conclusion, transgenic plants containing the Xcc-TALE-trap offer a promising sustainable approach to control CBC.


Assuntos
Citrus , Xanthomonas , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Citrus/genética , Citrus/microbiologia , Xanthomonas/genética , Regiões Promotoras Genéticas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
5.
Plant Biotechnol J ; 21(7): 1454-1464, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37139586

RESUMO

Using genetic resistance against bacterial blight (BB) caused by Xanthomonas oryzae pathovar oryzae (Xoo) is a major objective in rice breeding programmes. Prime editing (PE) has the potential to create novel germplasm against Xoo. Here, we use an improved prime-editing system to implement two new strategies for BB resistance. Knock-in of TAL effector binding elements (EBE) derived from the BB susceptible gene SWEET14 into the promoter of a dysfunctional executor R gene xa23 reaches 47.2% with desired edits including biallelic editing at 18% in T0 generation that enables an inducible TALE-dependent BB resistance. Editing the transcription factor TFIIA gene TFIIAγ5 required for TAL effector-dependent BB susceptibility recapitulates the resistance of xa5 at an editing efficiency of 88.5% with biallelic editing rate of 30% in T0 generation. The engineered loci provided resistance against multiple Xoo strains in T1 generation. Whole-genome sequencing detected no OsMLH1dn-associated random mutations and no off-target editing demonstrating high specificity of this PE system. This is the first-ever report to use PE system to engineer resistance against biotic stress and to demonstrate knock-in of 30-nucleotides cis-regulatory element at high efficiency. The new strategies hold promises to fend rice off the evolving Xoo strains and protect it from epidemics.


Assuntos
Oryza , Xanthomonas , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Oryza/metabolismo , Melhoramento Vegetal , Regiões Promotoras Genéticas , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
6.
Phytopathology ; 113(6): 953-959, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36441870

RESUMO

Xanthomonas oryzae pv. oryzae (Xoo) is a major rice pathogen, and its genome harbors extensive inter-strain and inter-lineage variations. The emergence of highly virulent pathotypes of Xoo that can overcome major resistance (R) genes deployed in rice breeding programs is a grave threat to rice cultivation. The present study reports on a long-read Oxford nanopore-based complete genomic investigation of Xoo isolates from 11 pathotypes that are reported based on their reaction toward 10 R genes. The investigation revealed remarkable variation in the genome structure in the strains belonging to different pathotypes. Furthermore, transcription activator-like effector (TALE) proteins secreted by the type III secretion system display marked variation in content, genomic location, classes, and DNA-binding domain. We also found the association of tal genes in the vicinity of regions with genome structural variations. Furthermore, in silico analysis of the genome-wide rice targets of TALEs allowed us to understand the emergence of pathotypes compatible with major R genes. Long-read, cost-effective sequencing technologies such as nanopore can be a game changer in the surveillance of major and emerging pathotypes. The resource and findings will be invaluable in the management of Xoo and in appropriate deployment of R genes in rice breeding programs.


Assuntos
Oryza , Xanthomonas , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Doenças das Plantas/genética , Melhoramento Vegetal , Xanthomonas/genética , Oryza/genética
7.
Phytopathology ; 113(4): 651-666, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36449529

RESUMO

Transcription activator-like effectors (TALEs) are bacterial proteins that are injected into the eukaryotic nucleus to act as transcriptional factors and function as key virulence factors of the phytopathogen Xanthomonas. TALEs are translocated into plant host cells via the type III secretion system and induce the expression of host susceptibility (S) genes to facilitate disease. The unique modular DNA binding domains of TALEs comprise an array of nearly identical direct repeats that enable binding to DNA targets based on the recognition of a single nucleotide target per repeat. The very nature of TALE structure and function permits the proliferation of TALE genes and evolutionary adaptations in the host to counter TALE function, making the TALE-host interaction the most dynamic story in effector biology. The TALE genes appear to be a relatively young effector gene family, with a presence in all virulent members of some species and absent in others. Genome sequencing has revealed many TALE genes throughout the xanthomonads, and relatively few have been associated with a cognate S gene. Several species, including Xanthomonas oryzae pv. oryzae and X. citri pv. citri, have near absolute requirement for TALE gene function, while the genes appear to be just now entering the disease interactions with new fitness contributions to the pathogens of tomato and pepper among others. Deciphering the simple and effective DNA binding mechanism also has led to the development of DNA manipulation tools in fields of gene editing and transgenic research. In the three decades since their discovery, TALE research remains at the forefront of the study of bacterial evolution, plant-pathogen interactions, and synthetic biology. We also discuss critical questions that remain to be addressed regarding TALEs.


Assuntos
Oryza , Xanthomonas , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Virulência , Xanthomonas/genética , Oryza/microbiologia
8.
J Adv Res ; 42: 263-272, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36513417

RESUMO

INTRODUCTION: Xa23 as an executor mediates broad-spectrum resistance to Xanthomonas oryzae pv. oryzae (Xoo), which contains a matching avirulence gene avrXa23, in rice for bacterial leaf blight (BLB). avrXa23 encodes a transcription activator-like effector (TALE) protein which binds to the EBE (effector-binding element) of the Xa23 promoter. It is unclear whether the considerable pressure of Xa23 leads to an emerging Xoo strain that overcomes Xa23 resistance. OBJECTIVES: This study aimed to uncover new Xoo isolate(s) that overcome Xa23-mediated resistance and to investigate how the pathogen evades the resistance. METHODS: Totally 185 Xoo isolates were used to screen possibly compatible strain(s) with Xa23-containing rice CBB23 by pathogenicity test. Genome Sequencing, Southern blot, tal gene cloning, Western blot, qRT-PCR and electrophoretic mobility shift assays (EMSA) were conducted to determine the mechanism of one Xoo isolate being compatible with Xa23-containing rice. RESULTS: One isolate AH28 from Anhui province is compatible with CBB23. AH28 strain contains an ortholog of avrXa23, tal7b and has 17 tal genes. The 4th RVD (repeat-variable diresidue) in Tal7b are missed and the 5th and 8th RVDs changed from NG and NS to NS and S*, respectively. These alternations made Tal7b unable to bind to the EBE of Xa23 promoter to activate the expression of Xa23 in rice. The ectopic expression of tal7b in a tal-free mutant PH of PXO99A did not alter the virulence of the strain PH, whereas avrXa23 made AH28 from compatibility to incompatibility with Xa23 rice. CONCLUSION: Best to our knowledge, this is the first insight of a naturally-emerging Xoo isolate that overcomes the broad-spectrum resistance of Xa23 by the variable AvrXa23-like TALE Tal7b. The RVD alteration in AvrXa23 may be a common strategy for the pathogen evolution to avoid being "trapped" by the executor R gene.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
9.
Trends Genet ; 38(11): 1147-1169, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35853769

RESUMO

Genome editing continues to revolutionize biological research. Due to its simplicity and flexibility, CRISPR/Cas-based editing has become the preferred technology in most systems. Cas nucleases tolerate fusion to large protein domains, thus allowing combination of their DNA recognition properties with new enzymatic activities. Fusion to nucleoside deaminase or reverse transcriptase domains has produced base editors and prime editors that, instead of generating double-strand breaks in the target sequence, induce site-specific alterations of single (or a few adjacent) nucleotides. The availability of protein-only genome editing reagents based on transcription activator-like effectors has enabled the extension of base editing to the genomes of chloroplasts and mitochondria. In this review, we summarize currently available base editing methods for nuclear and organellar genomes. We highlight recent advances with improving precision, specificity, and efficiency and discuss current limitations and future challenges. We also provide a brief overview of applications in agricultural biotechnology and gene therapy.


Assuntos
Sistemas CRISPR-Cas , Nucleosídeo Desaminases , Sistemas CRISPR-Cas/genética , DNA/genética , Quebras de DNA de Cadeia Dupla , Edição de Genes/métodos , Nucleosídeo Desaminases/genética , Nucleosídeo Desaminases/metabolismo , Nucleotídeos , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo
10.
Int J Mol Sci ; 23(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35742990

RESUMO

Bacterial blight (BB) and bacterial leaf streak (BLS), caused by phytopathogenic bacteria Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), respectively, are the most serious bacterial diseases of rice, while blast, caused by Magnaporthe oryzae (M. oryzae), is the most devastating fungal disease in rice. Generating broad-spectrum resistance to these diseases is one of the key approaches for the sustainable production of rice. Executor (E) genes are a unique type of plant resistance (R) genes, which can specifically trap transcription activator-like effectors (TALEs) of pathogens and trigger an intense defense reaction characterized by a hypersensitive response in the host. This strong resistance is a result of programed cell death induced by the E gene expression that is only activated upon the binding of a TALE to the effector-binding element (EBE) located in the E gene promoter during the pathogen infection. Our previous studies revealed that the E gene Xa23 has the broadest and highest resistance to BB. To investigate whether the Xa23-mediated resistance is efficient against Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of BLS, we generated a new version of Xa23, designated as Xa23p1.0, to specifically trap the conserved TALEs from multiple Xoc strains. The results showed that the Xa23p1.0 confers broad resistance against both BB and BLS in rice. Moreover, our further experiment on the Xa23p1.0 transgenic plants firstly demonstrated that the E-gene-mediated defensive reaction is also effective against M. oryzae, the causal agent of the most devastating fungal disease in rice. Our current work provides a new strategy to exploit the full potential of the E-gene-mediated disease resistance in rice.


Assuntos
Oryza , Xanthomonas , Resistência à Doença/genética , Expressão Ectópica do Gene , Oryza/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Xanthomonas/genética
11.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628368

RESUMO

Xanthomonas oryzae pv. oryzae (Xoo) strains that cause bacterial leaf blight (BLB) limit rice (Oryza sativa) production and require breeding more resistant varieties. Transcription activator-like effectors (TALEs) activate transcription to promote leaf colonization by binding to specific plant host DNA sequences termed effector binding elements (EBEs). Xoo major TALEs universally target susceptibility genes of the SWEET transporter family. TALE-unresponsive alleles of clade III OsSWEET susceptibility gene promoter created with genome editing confer broad resistance on Asian Xoo strains. African Xoo strains rely primarily on the major TALE TalC, which targets OsSWEET14. Although the virulence of a talC mutant strain is severely impaired, abrogating OsSWEET14 induction with genome editing does not confer equivalent resistance on African Xoo. To address this contradiction, we postulated the existence of a TalC target susceptibility gene redundant with OsSWEET14. Bioinformatics analysis identified a rice locus named ATAC composed of the INCREASED LEAF INCLINATION 2 (ILI2) gene and a putative lncRNA that are shown to be bidirectionally upregulated in a TalC-dependent fashion. Gain-of-function approaches with designer TALEs inducing ATAC sequences did not complement the virulence of a Xoo strain defective for SWEET gene activation. While editing the TalC EBE at the ATAC loci compromised TalC-mediated induction, multiplex edited lines with mutations at the OsSWEET14 and ATAC loci remained essentially susceptible to African Xoo strains. Overall, this work indicates that ATAC is a probable TalC off-target locus but nonetheless documents the first example of divergent transcription activation by a native TALE during infection.


Assuntos
Oryza , Efetores Semelhantes a Ativadores de Transcrição , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Resistência à Doença/genética , Suscetibilidade a Doenças , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Talco/metabolismo , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Xanthomonas
12.
Plant Commun ; 3(3): 100318, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35576155

RESUMO

Xanthomonas species colonize many host plants and cause huge losses worldwide. Transcription activator-like effectors (TALEs) are secreted by Xanthomonas and translocated into host cells to manipulate the expression of target genes, especially by Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola, which cause bacterial blight and bacterial leaf streak, respectively, in rice. In this review, we summarize the progress of studies on the interaction between Xanthomonas and hosts, covering both rice and other plants. TALEs are not only key factors that make plants susceptible but are also essential components of plant resistance. Characterization of TALEs and TALE-like proteins has improved our understanding of TALE evolution and promoted the development of gene editing tools. In addition, the interactions between TALEs and hosts have also provided strategies and possibilities for genetic engineering in crop improvement.


Assuntos
Interações Hospedeiro-Patógeno , Oryza , Efetores Semelhantes a Ativadores de Transcrição , Xanthomonas , Interações Hospedeiro-Patógeno/genética , Oryza/metabolismo , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Xanthomonas/genética , Xanthomonas/metabolismo
13.
Curr Genet ; 68(3-4): 361-373, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35275250

RESUMO

The molecular mechanism of pomegranate susceptibility to bacterial blight, a serious threat to pomegranate production in India, is largely unknown. In the current study, we have used PacBio and Illumina sequencing of Xanthomonas citri pv. punicae (Xcp) strain 119 genome to identify tal genes and RNA-Seq analysis to identify putative host targets in the susceptible pomegranate variety Bhagwa challenged with Xcp119. Xcp119 genome encodes seven transcription activator-like effectors (TALEs), three of which are harbored by a plasmid. RVD-based phylogenetic analysis of TALEs of Xanthomonas citri pathovars indicate the TALEs of Xcp as evolutionarily and functionally close to Xanthomonas citri pv. malvacearum and Xanthomonas citri pv. glycines. Comparative RNA-Seq of Xcp and mock-inoculated leaf tissues revealed Xcp-induced pomegranate transcription modulation. The prediction of TALE binding elements (EBEs) in the promoters of up-regulated genes identified a set of TALE-targeted candidate genes in pomegranate-Xcp interaction. The predicted candidate susceptibility genes include two oxoglutarate-dependent dioxygenase gene, ethylene-responsive transcription factor and flavanone 3-hydroxylase-like gene, and the further characterization of these would enable blight resistance engineering in pomegranate.


Assuntos
Oryza , Punica granatum , Xanthomonas , Oryza/microbiologia , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Xanthomonas/genética , Xanthomonas/metabolismo
14.
World J Microbiol Biotechnol ; 38(4): 71, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258706

RESUMO

The present study aimed to evaluate transcriptional activator-like effector (TALE) genes in 86 Xanthomonas oryzae pv. oryzicola strains collected from 8 rice-growing regions in Yunnan, and to examine the relationship between TALE genotypes and virulence in 6 differential rice lines. Besides, the geographical areas, distribution of these genotypes were studied in detail. Genetic diversity was analyzed through the number and size of putative TALE genes based on TALE gene avrXa3 as a probe. We found that X. oryzae pv. oryzicola strains consist of variable number (13-27) of avrXa3-hybridizing fragments (putative TALE genes). Test strains were classified into 8 genotypes (G1-G8) with major genotypes G3 and G7 widely distributed in Yunnan. Pathogenicity of X. oryzae pv. oryzicola was evaluated by inoculating 6 differential rice lines with a single resistance gene into 9 pathotypes clusters (I-IX), the dominant Genotypes G3 and G7 consist of pathotypes I, II, and IV. Furthermore, we also detected the known TALE target genes expression in susceptible rice cultivar (cv. nipponbare) after inoculating 8 genotypes-representative X. oryzae pv. oryzicola strain. Correlation between the numbers of putative TALE genes of X. oryzae pv. oryzicola and relevant target genes in nipponbare confirmed up-regulation. Altogether, this study has given insights into the population structure of X. oryzae pv. oryzicola that may inform strategies to control BLS in rice.


Assuntos
Oryza , Xanthomonas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , China , DNA Bacteriano/genética , Oryza/genética , Doenças das Plantas , Folhas de Planta/metabolismo , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Virulência/genética , Xanthomonas/genética
15.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163443

RESUMO

Executor (E) genes comprise a new type of plant resistance (R) genes, identified from host-Xanthomonas interactions. The Xanthomonas-secreted transcription activation-like effectors (TALEs) usually function as major virulence factors, which activate the expression of the so-called "susceptibility" (S) genes for disease development. This activation is achieved via the binding of the TALEs to the effector-binding element (EBE) in the S gene promoter. However, host plants have evolved EBEs in the promoters of some otherwise silent R genes, whose expression directly causes a host cell death that is characterized by a hypersensitive response (HR). Such R genes are called E genes because they trap the pathogen TALEs in order to activate expression, and the resulting HR prevents pathogen growth and disease development. Currently, deploying E gene resistance is becoming a major component in disease resistance breeding, especially for rice bacterial blight resistance. Currently, the biochemical mechanisms, or the working pathways of the E proteins, are still fuzzy. There is no significant nucleotide sequence homology among E genes, although E proteins share some structural motifs that are probably associated with the signal transduction in the effector-triggered immunity. Here, we summarize the current knowledge regarding TALE-type avirulence proteins, E gene activation, the E protein structural traits, and the classification of E genes, in order to sharpen our understanding of the plant E genes.


Assuntos
Resistência à Doença , Proteínas de Plantas/genética , Plantas/microbiologia , Xanthomonas/patogenicidade , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica de Plantas , Imunidade Inata , Plantas/genética , Regiões Promotoras Genéticas , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Xanthomonas/metabolismo
16.
Plant Commun ; 3(1): 100249, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35059629

RESUMO

Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight in rice, delivers transcription activator-like effector (TALE) proteins into host cells to activate susceptibility or resistance (R) genes that promote disease or immunity, respectively. Nonhost plants serve as potential reservoirs of R genes; consequently, nonhost R genes may trap TALEs to trigger an immune response. In this study, we screened 17 Xoo TALEs for their ability to induce a hypersensitive response (HR) in the nonhost plant Nicotiana benthamiana (Nb); only AvrXa10 elicited an HR when transiently expressed in Nb. The HR generated by AvrXa10 required both the central repeat region and the activation domain, suggesting a specific interaction between AvrXa10 and a potential R-like gene in nonhost plants. Evans blue staining and ion leakage measurements confirmed that the AvrXa10-triggered HR was a form of cell death, and the transient expression of AvrXa10 in Nb induced immune responses. Genes targeted by AvrXa10 in the Nb genome were identified by transcriptome profiling and prediction of effector binding sites. Using several approaches (in vivo reporter assays, electrophoretic mobility-shift assays, targeted designer TALEs, and on-spot gene silencing), we confirmed that AvrXa10 targets NbZnFP1, a C2H2-type zinc finger protein that resides in the nucleus. Functional analysis indicated that overexpression of NbZnFP1 and its rice orthologs triggered cell death in rice protoplasts. An NbZnFP1 ortholog was also identified in tomato and was specifically activated by AvrXa10. These results demonstrate that NbZnFP1 is a nonhost R gene that traps AvrXa10 to promote plant immunity in Nb.


Assuntos
Efetores Semelhantes a Ativadores de Transcrição , Xanthomonas , Proteínas de Bactérias/genética , Doenças das Plantas/microbiologia , Plantas/metabolismo , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Xanthomonas/metabolismo
17.
Transgenic Res ; 31(1): 119-130, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748132

RESUMO

The hypersensitive response (HR) is a form of programmed cell death of plant cells occurring in the local region surrounding pathogen infection site to prevent the spread of infection by pathogens. Bax, a mammalian pro-apoptotic member of Bcl-2 family, triggers HR-like cell death when expressed in plants. However, constitutive expression of the Bax gene negatively affects plant growth and development. The Xa10 gene in rice (Oryza sativa) is an executor resistance (R) gene that confers race-specific disease resistance to Xanthomonas oryzae pv. oryzae strains harboring TAL effector gene AvrXa10. In this study, the Xa10 promoter was used to regulate heterologous expression of the Bax gene from mouse (Mus musculus) in Nicotiana benthamiana and rice. Cell death was induced in N. benthamiana after co-infiltration with the PXa10:Bax:TXa10 gene and the PPR1:AvrXa10:TNos gene. Transgenic rice plants carrying the PXa10:Bax:TXa10 gene conferred specific disease resistance to Xa10-incompatible X. oryzae pv. oryzae strain PXO99A(pHM1AvrXa10), but not to the Xa10-compatible strain PXO99A(pHM1). The resistance specificity was confirmed by the AvrXa10-dependent induction of the PXa10:Bax:TXa10 gene in transgenic rice. Our results demonstrated that the inducible expression of the Bax gene in transgenic rice was achieved through the control of the executor R gene promoter and the heterologous expression of the pro-apoptosis regulator gene in rice conferred disease resistance to X. oryzae pv. oryzae.


Assuntos
Oryza , Xanthomonas , Animais , Proteínas de Bactérias/genética , Resistência à Doença/genética , Expressão Gênica , Mamíferos/genética , Mamíferos/metabolismo , Camundongos , Oryza/genética , Oryza/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Xanthomonas/genética , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
18.
ACS Synth Biol ; 11(1): 116-124, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34931802

RESUMO

Here we describe TALE.Sense, a versatile platform for sensing DNA sequences in live mammalian cells enabling programmable generation of a customable response that discerns cells containing specified sequence targets. The platform is based on the programmable DNA binding of transcription activator-like effector (TALE) coupled to conditional intein-reconstitution producing a trans-spliced ON-switch for a response circuit. TALE.Sense shows higher efficiency and dynamic range when compared to the reported zinc-finger based DNA-sensor in detecting same DNA sequences. Swapping transcriptional activation modules and introducing SunTag-based amplification loops to TALE.Sense circuits augment detection efficiency of the DNA sensor. The TALE.Sense platform shows versatility when applied to a range of target sites, indicating its suitability for applications to identify live cell variants with anticipated DNA sequences. TALE.Sense could be integrated with other cellular or synthetic circuits by using specified DNA sequences as control-switches, thus expanding the scope in connecting inducible modules for synthetic biology.


Assuntos
DNA , Efetores Semelhantes a Ativadores de Transcrição , Animais , DNA/genética , DNA/metabolismo , Inteínas , Mamíferos/genética , Biologia Sintética , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Dedos de Zinco/genética
19.
Trends Plant Sci ; 27(6): 536-548, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34924289

RESUMO

Phytopathogenic bacteria inject effector proteins into plant host cells to promote disease. Plant resistance (R) genes encoding nucleotide-binding leucine-rich repeat (NLR) proteins mediate the recognition of functionally and structurally diverse microbial effectors, including transcription-activator like effectors (TALEs) from the bacterial genus Xanthomonas. TALEs bind to plant promoters and transcriptionally activate either disease-promoting host susceptibility (S) genes or cell death-inducing executor-type R genes. It is perplexing that plants contain TALE-perceiving executor-type R genes in addition to NLRs that also mediate the recognition of TALE-containing xanthomonads. We present recent findings on the evolvability of TALEs, which suggest that the native function of executors is not in plant immunity, but possibly in the regulation of developmentally controlled programmed cell death (PCD) processes.


Assuntos
Regulação da Expressão Gênica de Plantas , Xanthomonas , Proteínas de Bactérias/genética , Morte Celular/genética , Regulação da Expressão Gênica de Plantas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas/metabolismo , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Xanthomonas/metabolismo
20.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948428

RESUMO

Xanthomonas oryzae delivers transcription activator-like effectors (TALEs) into plant cells to facilitate infection. Following economic principles, the redundant TALEs are rarely identified in Xanthomonas. Previously, we identified the Tal2b, which activates the expression of the rice 2-oxoglutarate-dependent dioxygenase gene OsF3H03g to promote infection in the highly virulent strain of X. oryzae pv. oryzicola HGA4. Here, we reveal that another clustered TALE, Tal2c, also functioned as a virulence factor to target rice OsF3H04g, a homologue of OsF3H03g. Transferring Tal2c into RS105 induced expression of OsF3H04g to coincide with increased susceptibility in rice. Overexpressing OsF3H04g caused higher susceptibility and less salicylic acid (SA) production compared to wild-type plants. Moreover, CRISPR-Cas9 system-mediated editing of the effector-binding element in the promoters of OsF3H03g or OsF3H04g was found to specifically enhance resistance to Tal2b- or Tal2c-transferring strains, but had no effect on resistance to either RS105 or HGA4. Furthermore, transcriptome analysis revealed that several reported SA-related and defense-related genes commonly altered expression in OsF3H04g overexpression line compared with those identified in OsF3H03g overexpression line. Overall, our results reveal a functional redundancy mechanism of pathogenic virulence in Xoc in which tandem Tal2b and Tal2c specifically target homologues of host genes to interfere with rice immunity by reducing SA.


Assuntos
Resistência à Doença , Infecções por Bactérias Gram-Negativas , Oxigenases de Função Mista/genética , Oryza/metabolismo , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Xanthomonas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/fisiologia , Doenças das Plantas , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA