RESUMO
Activation of the STAT5 transcription factor downstream of the Interleukin-2 receptor (IL-2R) induces expression of Foxp3, a critical step in the differentiation of regulatory T (Treg) cells. Due to the pleiotropic effects of IL-2R signaling, it is unclear how STAT5 acts directly on the Foxp3 locus to promote its expression. Here, we report that IL-2 - STAT5 signaling converged on an enhancer (CNS0) during Foxp3 induction. CNS0 facilitated the IL-2 dependent CD25+Foxp3- precursor to Treg cell transition in the thymus. Its deficiency resulted in impaired Treg cell generation in neonates, which was partially mitigated with age. While the thymic Treg cell paucity caused by CNS0 deficiency did not result in autoimmunity on its own, it exacerbated autoimmune manifestations caused by disruption of the Aire gene. Thus, CNS0 enhancer activity ensures robust Treg cell differentiation early in postnatal life and cooperatively with other tolerance mechanisms minimizes autoimmunity.
Assuntos
Linhagem da Célula/imunologia , Fatores de Transcrição Forkhead/imunologia , Tolerância Imunológica/imunologia , Interleucina-2/imunologia , Linfócitos T Reguladores/imunologia , Animais , Autoimunidade/imunologia , Diferenciação Celular/imunologia , Elementos Facilitadores Genéticos/imunologia , Feminino , Humanos , Subunidade alfa de Receptor de Interleucina-2/imunologia , Masculino , Camundongos , Receptores de Interleucina-2/imunologia , Fator de Transcrição STAT5/imunologia , Transdução de Sinais/imunologiaRESUMO
The transcription factor Foxp3 plays crucial roles for Treg cell development and function. Conserved non-coding sequences (CNSs) at the Foxp3 locus control Foxp3 transcription, but how they developmentally contribute to Treg cell lineage specification remains obscure. Here, we show that among Foxp3 CNSs, the promoter-upstream CNS0 and the intergenic CNS3, which bind distinct transcription factors, were activated at early stages of thymocyte differentiation prior to Foxp3 promoter activation, with sequential genomic looping bridging these regions and the promoter. While deletion of either CNS0 or CNS3 partially compromised thymic Treg cell generation, deletion of both completely abrogated the generation and impaired the stability of Foxp3 expression in residual Treg cells. As a result, CNS0 and CNS3 double-deleted mice succumbed to lethal systemic autoimmunity and inflammation. Thus, hierarchical and coordinated activation of Foxp3 CNS0 and CNS3 initiates and stabilizes Foxp3 gene expression, thereby crucially controlling Treg cell development, maintenance, and consequently immunological self-tolerance.
Assuntos
Elementos Facilitadores Genéticos/imunologia , Fatores de Transcrição Forkhead/imunologia , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Regulação da Expressão Gênica/imunologia , Humanos , Tolerância Imunológica/imunologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/imunologia , Tolerância a Antígenos Próprios/imunologiaRESUMO
Glucocorticoids (GCs) are effective anti-inflammatory drugs; yet, their mechanisms of action are poorly understood. GCs bind to the glucocorticoid receptor (GR), a ligand-gated transcription factor controlling gene expression in numerous cell types. Here, we characterize GR's protein interactome and find the SETD1A (SET domain containing 1A)/COMPASS (complex of proteins associated with Set1) histone H3 lysine 4 (H3K4) methyltransferase complex highly enriched in activated mouse macrophages. We show that SETD1A/COMPASS is recruited by GR to specific cis-regulatory elements, coinciding with H3K4 methylation dynamics at subsets of sites, upon treatment with lipopolysaccharide (LPS) and GCs. By chromatin immunoprecipitation sequencing (ChIP-seq) and RNA-seq, we identify subsets of GR target loci that display SETD1A occupancy, H3K4 mono-, di-, or tri-methylation patterns, and transcriptional changes. However, our data on methylation status and COMPASS recruitment suggest that SETD1A has additional transcriptional functions. Setd1a loss-of-function studies reveal that SETD1A/COMPASS is required for GR-controlled transcription of subsets of macrophage target genes. We demonstrate that the SETD1A/COMPASS complex cooperates with GR to mediate anti-inflammatory effects.
Assuntos
Elementos Facilitadores Genéticos/imunologia , Macrófagos/imunologia , Complexos Multiproteicos , RNA-Seq , Receptores de Glucocorticoides , Transcrição Gênica/imunologia , Animais , Inflamação/genética , Inflamação/imunologia , Camundongos , Complexos Multiproteicos/genética , Complexos Multiproteicos/imunologia , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/imunologiaRESUMO
The adaptive immune response in vertebrates depends on the expression of antigen-specific receptors in lymphocytes. T-cell receptor (TCR) gene expression is exquisitely regulated during thymocyte development to drive the generation of αß and γδ T lymphocytes. The TCRα, TCRß, TCRγ, and TCRδ genes exist in two different configurations, unrearranged and rearranged. A correctly rearranged configuration is required for expression of a functional TCR chain. TCRs can take the form of one of three possible heterodimers, pre-TCR, TCRαß, or TCRγδ which drive thymocyte maturation into αß or γδ T lymphocytes. To pass from an unrearranged to a rearranged configuration, global and local three dimensional (3D) chromatin changes must occur during thymocyte development to regulate gene segment accessibility for V(D)J recombination. During this process, enhancers play a critical role by modifying the chromatin conformation and triggering noncoding germline transcription that promotes the recruitment of the recombination machinery. The different signaling that thymocytes receive during their development controls enhancer activity. Here, we summarize the dynamics of long-distance interactions established through chromatin regulatory elements that drive transcription and V(D)J recombination and how different signaling pathways are orchestrated to regulate the activity of enhancers to precisely control TCR gene expression during T-cell maturation.
Assuntos
Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/genética , Genes Codificadores dos Receptores de Linfócitos T/genética , Linfócitos T/imunologia , Animais , Cromatina/genética , Cromatina/imunologia , Elementos Facilitadores Genéticos/imunologia , Regulação da Expressão Gênica/imunologia , Genes Codificadores dos Receptores de Linfócitos T/imunologia , Humanos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transcrição Gênica/genética , Transcrição Gênica/imunologia , Recombinação V(D)J/genética , Recombinação V(D)J/imunologiaRESUMO
Innate immune responses rely on rapid and precise gene regulation mediated by accessibility of regulatory regions to transcription factors (TFs). In natural killer (NK) cells and other innate lymphoid cells, competent enhancers are primed during lineage acquisition, and formation of de novo enhancers characterizes the acquisition of innate memory in activated NK cells and macrophages. Here, we investigated how primed and de novo enhancers coordinate to facilitate high-magnitude gene induction during acute activation. Epigenomic and transcriptomic analyses of regions near highly induced genes (HIGs) in NK cells both in vitro and in a model of Toxoplasma gondii infection revealed de novo chromatin accessibility and enhancer remodeling controlled by signal-regulated TFs STATs. Acute NK cell activation redeployed the lineage-determining TF T-bet to de novo enhancers, independent of DNA-sequence-specific motif recognition. Thus, acute stimulation reshapes enhancer function through the combinatorial usage and repurposing of both lineage-determining and signal-regulated TFs to ensure an effective response.
Assuntos
Elementos Facilitadores Genéticos/genética , Elementos Facilitadores Genéticos/imunologia , Células Matadoras Naturais/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Animais , Cromatina/genética , Cromatina/imunologia , Feminino , Expressão Gênica/genética , Expressão Gênica/imunologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Toxoplasma/imunologia , Toxoplasmose/genética , Toxoplasmose/imunologiaRESUMO
Transposable elements (TEs) compose nearly half of mammalian genomes and provide building blocks for cis-regulatory elements. Using high-throughput sequencing, we show that 84 TE subfamilies are overrepresented, and distributed in a lineage-specific fashion in core and boundary domains of CD8+ T cell enhancers. Endogenous retroviruses are most significantly enriched in core domains with accessible chromatin, and bear recognition motifs for immune-related transcription factors. In contrast, short interspersed elements (SINEs) are preferentially overrepresented in nucleosome-containing boundaries. A substantial proportion of these SINEs harbor a high density of the enhancer-specific histone mark H3K4me1 and carry sequences that match enhancer boundary nucleotide composition. Motifs with regulatory features are better preserved within enhancer-enriched TE copies compared to their subfamily equivalents located in gene deserts. TE-rich and TE-poor enhancers associate with both shared and unique gene groups and are enriched in overlapping functions related to lymphocyte and leukocyte biology. The majority of T cell enhancers are shared with other immune lineages and are accessible in common hematopoietic progenitors. A higher proportion of immune tissue-specific enhancers are TE-rich compared to enhancers specific to other tissues, correlating with higher TE occurrence in immune gene-associated genomic regions. Our results suggest that during evolution, TEs abundant in these regions and carrying motifs potentially beneficial for enhancer architecture and immune functions were particularly frequently incorporated by evolving enhancers. Their putative selection and regulatory cooption may have accelerated the evolution of immune regulatory networks.
Assuntos
Elementos de DNA Transponíveis/genética , Elementos Facilitadores Genéticos/genética , Evolução Molecular , Linfócitos T/imunologia , Animais , Cromatina/genética , Cromatina/imunologia , Elementos de DNA Transponíveis/imunologia , Retrovirus Endógenos/genética , Retrovirus Endógenos/imunologia , Elementos Facilitadores Genéticos/imunologia , Redes Reguladoras de Genes/genética , Genoma Humano/genética , Genoma Humano/imunologia , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Elementos Nucleotídeos Curtos e Dispersos/genética , Elementos Nucleotídeos Curtos e Dispersos/imunologiaRESUMO
B cell isotype switching plays an important role in modulating adaptive immune responses. It occurs in response to specific signals that often induce different isotype (I) promoters driving transcription of switch regions, located upstream of the Ig heavy chain (IgH) constant genes. The transcribed switch regions can recombine, leading to a change of the constant gene and, consequently, of antibody isotype. Switch transcription is controlled by the superenhancer 3' regulatory region (3'RR) that establishes long-range chromatin cis-interactions with I promoters. Most stimuli induce more than one I promoter, and switch transcription can occur on both chromosomes. Therefore, it is presently unknown whether induced I promoters compete for the 3'RR on the same chromosome. Here we performed single-chromosome RT-qPCR assays to examine switch transcription monoallelically in the endogenous context. We show that there are two modes of 3'RR-mediated activation of I promoters: coactivation and competition. The nature of the inducing signal plays a pivotal role in determining the mode of activation. Furthermore, we provide evidence that, in its endogenous setting, the 3'RR has a bidirectional activity. We propose that the coactivation and competition modes mediated by the 3'RR may have evolved to cope with the different kinetics of primary immune responses.
Assuntos
Imunidade Adaptativa , Linfócitos B/imunologia , Elementos Facilitadores Genéticos/genética , Switching de Imunoglobulina/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Regiões 3' não Traduzidas/genética , Alelos , Animais , Linfócitos B/metabolismo , Células Cultivadas , Elementos Facilitadores Genéticos/imunologia , Feminino , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/metabolismo , Masculino , Camundongos , Cultura Primária de Células , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Gênica/imunologiaRESUMO
During thymic negative selection, autoreactive thymocytes carrying T cell receptor (TCR) with overtly strong affinity to self-MHC/self-peptide are removed by Bim-dependent apoptosis, but how Bim is specifically regulated to link TCR activation and apoptosis induction is unclear. Here we identify a murine T cell-specific genomic enhancer EBAB (Bub1-Acoxl-Bim), whose deletion leads to accumulation of thymocytes expressing high affinity TCRs. Consistently, EBAB knockout mice have defective negative selection and fail to delete autoreactive thymocytes in various settings, with this defect accompanied by reduced Bim expression and apoptosis induction. By contrast, EBAB is dispensable for maintaining peripheral T cell homeostasis via Bim-dependent pathways. Our data thus implicate EBAB as an important, developmental stage-specific regulator of Bim expression and apoptosis induction to enforce thymic negative selection and suppress autoimmunity. Our study unravels a part of genomic enhancer codes that underlie complex and context-dependent gene regulation in TCR signaling.
Assuntos
Autoimunidade/genética , Proteína 11 Semelhante a Bcl-2/genética , Elementos Facilitadores Genéticos/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Timócitos/fisiologia , Animais , Apoptose/genética , Apoptose/imunologia , Autoimunidade/imunologia , Proteína 11 Semelhante a Bcl-2/metabolismo , Sistemas CRISPR-Cas/genética , Elementos Facilitadores Genéticos/genética , Feminino , Regulação da Expressão Gênica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Timo/citologia , Timo/imunologiaRESUMO
Tcrd and Tcrg display identical developmental programs that depend on the activity of the enhancers Eδ and Eγ being "on" in pre-ß-selection thymocytes to activate transcription and V(D)J recombination of the unrearranged genes and "off" in post-ß-selection CD4+CD8+ double-positive thymocytes to inhibit transcription of the rearranged genes and avoid the expression of TCR δ- and TCR γ-chains in αß T lymphocytes. Eδ and Eγ activity depends on transcription factor binding to essential Runx and Myb sites and parallels that of Notch signaling. We performed Notch gain- and loss-of-function experiments and found that Notch signaling activates Tcrd and Tcrg transcription by favoring the recruitment of RUNX1 and MYB to the enhancers. Our results suggest that the dissociation of RUNX1 and MYB from Eδ and Eγ chromatin in double-positive thymocytes, which results in enhancer inactivation, is caused by decreased Notch signaling triggered by pre-TCR signaling, thereby deciphering the molecular mechanism of Tcrd and Tcrg silencing during ß-selection. These findings reveal a novel molecular mechanism for gene regulation via Notch signaling through the recruitment of RUNX1 and MYB to enhancer chromatin during thymocyte development.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/imunologia , Elementos Facilitadores Genéticos/imunologia , Proteínas Proto-Oncogênicas c-myb/imunologia , Receptores Notch/imunologia , Transdução de Sinais/imunologia , Timócitos/imunologia , Transcrição Gênica/imunologia , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Humanos , Células Jurkat , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-myb/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores Notch/genética , Transdução de Sinais/genéticaRESUMO
MHCII in antigen-presenting cells (APCs) is a key regulator of adaptive immune responses. Expression of MHCII genes is controlled by the transcription coactivator CIITA, itself regulated through cell type-specific promoters. Here we show that the transcription factor NFAT5 is needed for expression of Ciita and MHCII in macrophages, but not in dendritic cells and other APCs. NFAT5-deficient macrophages showed defective activation of MHCII-dependent responses in CD4+ T lymphocytes and attenuated capacity to elicit graft rejection in vivo. Ultrasequencing analysis of NFAT5-immunoprecipitated chromatin uncovered an NFAT5-regulated region distally upstream of Ciita This region was required for CIITA and hence MHCII expression, exhibited NFAT5-dependent characteristics of active enhancers such as H3K27 acetylation marks, and required NFAT5 to interact with Ciita myeloid promoter I. Our results uncover an NFAT5-regulated mechanism that maintains CIITA and MHCII expression in macrophages and thus modulates their T lymphocyte priming capacity.
Assuntos
Elementos Facilitadores Genéticos/imunologia , Regulação da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Macrófagos/imunologia , Proteínas Nucleares/imunologia , Transativadores/imunologia , Fatores de Transcrição/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Rearranjo Gênico/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Macrófagos/citologia , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Transativadores/genética , Fatores de Transcrição/genéticaRESUMO
Members of the NR4A subfamily of nuclear receptors have complex, overlapping roles during hematopoietic cell development and also function as tumor suppressors of hematologic malignancies. We previously identified NR4A1 and NR4A3 (NR4A1/3) as functionally redundant suppressors of acute myeloid leukemia (AML) development. However, their role in hematopoietic stem cell (HSC) homeostasis remains to be disclosed. Using a conditional Nr4a1/Nr4a3 knockout mouse (CDKO), we show that codepletion of NR4A1/3 promotes acute changes in HSC homeostasis including loss of HSC quiescence, accumulation of oxidative stress, and DNA damage while maintaining stem cell regenerative and differentiation capacity. Molecular profiling of CDKO HSCs revealed widespread upregulation of genetic programs governing cell cycle and inflammation and an aberrant activation of the interferon and NF-κB signaling pathways in the absence of stimuli. Mechanistically, we demonstrate that NR4A1/3 restrict HSC proliferation in part through activation of a C/EBPα-driven antiproliferative network by directly binding to a hematopoietic-specific Cebpa enhancer and activating Cebpa transcription. In addition, NR4A1/3 occupy the regulatory regions of NF-κB-regulated inflammatory cytokines, antagonizing the activation of NF-κB signaling. Taken together, our results reveal a novel coordinate control of HSC quiescence by NR4A1/3 through direct activation of C/EBPα and suppression of activation of NF-κB-driven proliferative inflammatory responses.
Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/imunologia , Proliferação de Células , Proteínas de Ligação a DNA/imunologia , Células-Tronco Hematopoéticas/imunologia , Proteínas do Tecido Nervoso/imunologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/imunologia , Receptores de Esteroides/imunologia , Receptores dos Hormônios Tireóideos/imunologia , Transdução de Sinais/imunologia , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Dano ao DNA , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos/imunologia , Células-Tronco Hematopoéticas/patologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Estresse Oxidativo/genética , Estresse Oxidativo/imunologia , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética , Transdução de Sinais/genética , Transcrição Gênica/imunologiaRESUMO
The immune system including antigen-specific CD8 T cells, which are cytotoxic T lymphocytes (CTLs), can acquire the potential for more effective elimination of the pathogen at re-infection. As memory CTLs could exert protective immunity after the next response, we aimed to elucidate the substantial change of repetitively infected memory CTLs. Currently, DNA methylation status in repetitively infected memory CTLs is unknown, so we performed next-generation sequencing to evaluate methylation status and transcriptional regulation of naive, primary and secondary memory CD8 T cells on the basis of transcription start sites (TSS). Notably, total CpG sites in the entire regions of all genes were significantly unmethylated in primary memory CTLs (young memory CTLs) and even more unmethylated in secondary memory CTLs (old memory CTLs). However, total proximal regions from TSS, which cover transcriptional promoters, were steadily methylated with repeated infections. In contrast, distal regions from TSS, which are the majority of entire regions and include transcriptional enhancers, were extensively unmethylated by infections. In association between transcriptional and methylation changes, accompanied by genes characteristic of the immune response, natural killer cell signature genes, known to be expressed in senescent CD8 T cells, were transcriptionally up-regulated and unmethylated in young memory CTLs, and more so in old memory CTLs, whereas ribosomal proteins were transcriptionally down-regulated and methylated in proximal region from the TSS by infections. Our results suggest that epigenetically augmented enhancers and suppressed promoters, which could consequently lead to global decline of transcription and translation, could represent the senescence of memory CTLs.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Senescência Celular/imunologia , Metilação de DNA/imunologia , Elementos Facilitadores Genéticos/imunologia , Memória Imunológica , Sítio de Iniciação de Transcrição , Transcrição Gênica/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Senescência Celular/genética , Metilação de DNA/genética , Regulação para Baixo/imunologia , Estudo de Associação Genômica Ampla , Memória Imunológica/imunologia , Camundongos , Camundongos TransgênicosRESUMO
Enhancer RNAs (eRNAs) are a novel class of non-coding RNA (ncRNA) molecules transcribed from the DNA sequences of enhancer regions. Despite extensive efforts devoted to revealing the potential functions and underlying mechanisms of eRNAs, it remains an open question whether eRNAs are mere transcriptional noise or relevant biologically functional species. Here, we identified a catalogue of eRNAs in a broad range of human cell/tissue types and extended our understanding of eRNAs by demonstrating their multi-omic signatures. Gene Ontology (GO) analysis revealed that eRNAs play key roles in human cell identity. Furthermore, we detected numerous known and novel functional RNA structures within eRNA regions. To better characterize the cis-regulatory effects of non-coding variation in these structural ncRNAs, we performed a comprehensive analysis of the genetic variants of structural ncRNAs in eRNA regions that are associated with inflammatory autoimmune diseases. Disease-associated variants of the structural ncRNAs were disproportionately enriched in immune-specific cell types. We also identified riboSNitches in lymphoid eRNAs and investigated the potential pathogenic mechanisms by which eRNAs might function in autoimmune diseases. Collectively, our findings offer valuable insights into the function of eRNAs and suggest that eRNAs might be effective diagnostic and therapeutic targets for human diseases.
Assuntos
Doenças Autoimunes/genética , Elementos Facilitadores Genéticos/imunologia , RNA não Traduzido/genética , Transcrição Gênica/imunologia , Ativação Transcricional/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Pareamento de Bases , Biologia Computacional , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Ontologia Genética , Genoma Humano , Humanos , Linfócitos/imunologia , Linfócitos/patologia , Anotação de Sequência Molecular , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA não Traduzido/classificação , RNA não Traduzido/imunologiaRESUMO
Chromosome conformation capture (3C) technology has revolutionized our knowledge on chromatin folding and nuclear organization. This cis-loop detection approach can be used to identify candidate regulatory elements interacting with target gene of interest. This chapter introduces the application of 3C technique to investigate a dynamic alteration in the chromosome folding structure or genomic architecture resulting from interaction changes between the enhancer and its target gene. Innate antiviral immunity is one of the well-known gene induction systems, involving rapid first-line response to virus or pathogen to trigger gene expression changes in order to protect cells and to limit further infection. Thus, the 3C technique can be a powerful tool for exploring how enhancers control expression of immunity genes during virus infection. 3C assay consists of four major steps: Cross-linking with formaldehyde, restriction enzyme digestion, ligation of cross-linked DNA fragments, and quantitative data analysis. Here, we discuss in detail the design, application, and data analysis of a 3C experiment.
Assuntos
Cromossomos Humanos , Elementos Facilitadores Genéticos/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Viroses , Fenômenos Fisiológicos Virais , Vírus , Animais , Cromossomos Humanos/química , Cromossomos Humanos/genética , Cromossomos Humanos/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Viroses/genética , Viroses/imunologia , Vírus/genética , Vírus/imunologiaAssuntos
Artrite Reumatoide/genética , Doenças Autoimunes/genética , Elementos Facilitadores Genéticos/imunologia , Polimorfismo de Nucleotídeo Único/imunologia , Artrite Reumatoide/imunologia , Doenças Autoimunes/imunologia , Elementos Facilitadores Genéticos/genética , Humanos , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Cis-regulatory elements feature clustered sites for transcription factors, defining core enhancers and have inter-species homology. The mouse IgH 3Î regulatory region (3'RR), a major B-cell super-enhancer, consists of four of such core enhancers, scattered throughout more than 25 kb of packaging 'junk DNA', the sequence of which is not conserved but follows a unique palindromic architecture which is conserved in all mammalian species. The 3'RR promotes long-range interactions and potential IgH loops with upstream promoters, controlling class switch recombination (CSR) and somatic hypermutation (SHM). It was thus of interest to determine whether this functional architecture also involves the specific functional structure of the super-enhancer itself, potentially promoted by its symmetric DNA shell. Since many transgenic 3'RR models simply linked core enhancers without this shell, it was also important to compare such a 'core 3'RR' (c3'RR) with the intact full-length super-enhancer in an actual endogenous IgH context. Packaging DNA between 3'RR core enhancers proved in fact to be necessary for optimal SHM, CSR and IgH locus expression in plasma cells. This reveals that packaging DNA can matter in the functional anatomy of a super-enhancer, and that precise evaluation of such elements requires full consideration of their global architecture.
Assuntos
Regiões 3' não Traduzidas/imunologia , Elementos Facilitadores Genéticos/imunologia , Switching de Imunoglobulina/genética , Cadeias Pesadas de Imunoglobulinas/genética , Regiões Promotoras Genéticas/imunologia , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , DNA/genética , DNA/imunologia , Loci Gênicos , Cadeias Pesadas de Imunoglobulinas/classificação , Cadeias Pesadas de Imunoglobulinas/imunologia , Camundongos , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/imunologia , Hipermutação Somática de Imunoglobulina/genéticaRESUMO
Differentiation of effector and memory CD8+ T cells is accompanied by extensive changes in the transcriptome and histone modifications at gene promoters; however, the enhancer repertoire and associated gene regulatory networks are poorly defined. Using histone mark chromatin immunoprecipitation coupled with deep sequencing, we mapped the enhancer and super-enhancer landscapes in antigen-specific naive, differentiated effector, and central memory CD8+ T cells during LCMV infection. Epigenomics-based annotation revealed a highly dynamic repertoire of enhancers, which were inherited, de novo activated, decommissioned and re-activated during CD8+ T cell responses. We employed a computational algorithm to pair enhancers with target gene promoters. On average, each enhancer targeted three promoters and each promoter was regulated by two enhancers. By identifying enriched transcription factor motifs in enhancers, we defined transcriptional regulatory circuitry at each CD8+ T cell response stage. These multi-dimensional datasets provide a blueprint for delineating molecular mechanisms underlying functional differentiation of CD8+ T cells.
Assuntos
Infecções por Arenaviridae/imunologia , Linfócitos T CD8-Positivos/imunologia , Elementos Facilitadores Genéticos/imunologia , Regulação da Expressão Gênica/imunologia , Ativação Linfocitária/imunologia , Algoritmos , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Imunoprecipitação da Cromatina , Biologia Computacional/métodos , Modelos Animais de Doenças , Elementos Facilitadores Genéticos/genética , Epigenômica/métodos , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Ativação Linfocitária/genética , Vírus da Coriomeningite Linfocítica , Camundongos , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/imunologiaRESUMO
P-selectin ligands (P-ligs) support the recruitment of lymphocytes into inflamed tissues. Binding to P-selectin is mediated by oligosaccharide groups synthesized by means of several glycosyltransferases including core 2 ß1,6-N-acetylglucosaminyltransferase-I (C2GlcNAcT-I), encoded by the gene Gcnt1. Using Gcnt1(-/-) Th1 cells, we show that C2GlcNAcT-I is crucial for inflammatory T cell homing in vivo. To understand the molecular regulation of Gcnt1 in CD4(+) T helper cells, we performed ChIP-on-chip experiments across the Gcnt1 locus assessing the chromatin structure in P-lig-expressing versus non-expressing CD4(+) T cells. This identified a distal region about 20kb upstream of the promoter where the presence of a H3K27me3 mark correlated with Gcnt1 repression. This region possessed IL-12-dependent enhancer activity in reporter assays, in accordance with preferential IL-12-dependent induction of Gcnt1 in vitro. STAT4 and T-bet cooperated in control of the enhancer activity. Deficiency in either one resulted in drastically reduced Gcnt1 mRNA expression in differentiated Th1 cells. While both STAT4 and T-bet were bound to the enhancer early after activation only T-bet binding persisted throughout the expansion phase after TCR signal cessation. This suggests sequential action of STAT4 and T-bet at the enhancer. In summary, we show that Gcnt1 transcription and subsequent P-lig induction in Th1 cells is governed by binding of STAT4 and T-bet to a distal enhancer and further regulated by epigenetic marks such as H3K27me3.
Assuntos
Quimiotaxia de Leucócito/imunologia , Regulação da Expressão Gênica/imunologia , N-Acetilglucosaminiltransferases/biossíntese , Células Th1/metabolismo , Animais , Separação Celular , Imunoprecipitação da Cromatina , Elementos Facilitadores Genéticos/imunologia , Citometria de Fluxo , Técnicas de Inativação de Genes , Ativação Linfocitária/imunologia , Glicoproteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Fator de Transcrição STAT4/imunologia , Fator de Transcrição STAT4/metabolismo , Proteínas com Domínio T/imunologia , Proteínas com Domínio T/metabolismo , Células Th1/imunologiaRESUMO
E2A is an essential regulator of early B cell development. Here, we have demonstrated that E2A together with E2-2 controlled germinal center (GC) B cell and plasma cell development. As shown by the identification of regulated E2A,E2-2 target genes in activated B cells, these E-proteins directly activated genes with important functions in GC B cells and plasma cells by inducing and maintaining DNase I hypersensitive sites. Through binding to multiple enhancers in the Igh 3' regulatory region and Aicda locus, E-proteins regulated class switch recombination by inducing both Igh germline transcription and AID expression. By regulating 3' Igk and Igh enhancers and a distal element at the Prdm1 (Blimp1) locus, E-proteins contributed to Igk, Igh, and Prdm1 activation in plasmablasts. Together, these data identified E2A and E2-2 as central regulators of B cell immunity.
Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Centro Germinativo/imunologia , Plasmócitos/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Citidina Desaminase/genética , Citidina Desaminase/imunologia , Elementos Facilitadores Genéticos/imunologia , Centro Germinativo/citologia , Switching de Imunoglobulina/imunologia , Camundongos , Camundongos Knockout , Plasmócitos/citologia , Fator de Transcrição 4RESUMO
HLA-G, a nonclassical HLA molecule uniquely expressed in the placenta, is a central component of fetus-induced immune tolerance during pregnancy. The tissue-specific expression of HLA-G, however, remains poorly understood. Here, systematic interrogation of the HLA-G locus using massively parallel reporter assay (MPRA) uncovered a previously unidentified cis-regulatory element 12 kb upstream of HLA-G with enhancer activity, Enhancer L Strikingly, clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas9-mediated deletion of this enhancer resulted in ablation of HLA-G expression in JEG3 cells and in primary human trophoblasts isolated from placenta. RNA-seq analysis demonstrated that Enhancer L specifically controls HLA-G expression. Moreover, DNase-seq and chromatin conformation capture (3C) defined Enhancer L as a cell type-specific enhancer that loops into the HLA-G promoter. Interestingly, MPRA-based saturation mutagenesis of Enhancer L identified motifs for transcription factors of the CEBP and GATA families essential for placentation. These factors associate with Enhancer L and regulate HLA-G expression. Our findings identify long-range chromatin looping mediated by core trophoblast transcription factors as the mechanism controlling tissue-specific HLA-G expression at the maternal-fetal interface. More broadly, these results establish the combination of MPRA and CRISPR/Cas9 deletion as a powerful strategy to investigate human immune gene regulation.