Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Nat Commun ; 15(1): 3518, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664477

RESUMO

Vegetation dieback and recovery may be dependent on the interplay between infrequent acute disturbances and underlying chronic stresses. Coastal wetlands are vulnerable to the chronic stress of sea-level rise, which may affect their susceptibility to acute disturbance events. Here, we show that a large-scale vegetation dieback in the Mississippi River Delta was precipitated by salt-water incursion during an extreme drought in the summer of 2012 and was most severe in areas exposed to greater flooding. Using 16 years of data (2007-2022) from a coastwide network of monitoring stations, we show that the impacts of the dieback lasted five years and that recovery was only partial in areas exposed to greater inundation. Dieback marshes experienced an increase in percent time flooded from 43% in 2007 to 75% in 2022 and a decline in vegetation cover and species richness over the same period. Thus, while drought-induced high salinities and soil saturation triggered a significant dieback event, the chronic increase in inundation is causing a longer-term decline in cover, more widespread losses, and reduced capacity to recover from acute stressors. Overall, our findings point to the importance of mitigating the underlying stresses to foster resilience to both acute and persistent causes of vegetation loss.


Assuntos
Secas , Rios , Elevação do Nível do Mar , Áreas Alagadas , Inundações , Mississippi , Plantas , Biodiversidade , Ecossistema , Salinidade
3.
Nat Commun ; 15(1): 2209, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467636

RESUMO

Despite increasing risks from sea-level rise (SLR) and storms, US coastal communities continue to attract relatively high-income residents, and coastal property values continue to rise. To understand this seeming paradox and explore policy responses, we develop the Coastal Home Ownership Model (C-HOM) and analyze the long-term evolution of coastal real estate markets. C-HOM incorporates changing physical attributes of the coast, economic values of these attributes, and dynamic risks associated with storms and flooding. Resident owners, renters, and non-resident investors jointly determine coastal property values and the policy choices that influence the physical evolution of the coast. In the coupled system, we find that subsidies for coastal management, such as beach nourishment, tax advantages for high-income property owners, and stable or increasing property values outside the coastal zone all dampen the effects of SLR on coastal property values. The effects, however, are temporary and only delay precipitous declines as total inundation approaches. By removing subsidies, prices would more accurately reflect risks from SLR but also trigger more coastal gentrification, as relatively high-income owners enter the market and self-finance nourishment. Our results suggest a policy tradeoff between slowing demographic transitions in coastal communities and allowing property markets to adjust smoothly to risks from climate change.


Assuntos
Inundações , Elevação do Nível do Mar , Mudança Climática , Políticas
4.
Nature ; 627(8002): 108-115, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448695

RESUMO

The sea level along the US coastlines is projected to rise by 0.25-0.3 m by 2050, increasing the probability of more destructive flooding and inundation in major cities1-3. However, these impacts may be exacerbated by coastal subsidence-the sinking of coastal land areas4-a factor that is often underrepresented in coastal-management policies and long-term urban planning2,5. In this study, we combine high-resolution vertical land motion (that is, raising or lowering of land) and elevation datasets with projections of sea-level rise to quantify the potential inundated areas in 32 major US coastal cities. Here we show that, even when considering the current coastal-defence structures, further land area of between 1,006 and 1,389 km2 is threatened by relative sea-level rise by 2050, posing a threat to a population of 55,000-273,000 people and 31,000-171,000 properties. Our analysis shows that not accounting for spatially variable land subsidence within the cities may lead to inaccurate projections of expected exposure. These potential consequences show the scale of the adaptation challenge, which is not appreciated in most US coastal cities.


Assuntos
Altitude , Cidades , Planejamento de Cidades , Inundações , Movimento (Física) , Elevação do Nível do Mar , Cidades/estatística & dados numéricos , Planejamento de Cidades/métodos , Planejamento de Cidades/tendências , Inundações/prevenção & controle , Inundações/estatística & dados numéricos , Estados Unidos , Conjuntos de Dados como Assunto , Elevação do Nível do Mar/estatística & dados numéricos , Aclimatação
5.
PeerJ ; 12: e16738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390391

RESUMO

The existence of coastal ecosystems depends on their ability to gain sediment and keep pace with sea level rise. Similar to other coastal areas, Northeast Florida (United States) is experiencing rapid population growth, climate change, and shifting wetland communities. Rising seas and more severe storms, coupled with the intensification of human activities, can modify the biophysical environment, thereby increasing coastal exposure to storm-induced erosion and inundation. Using the Guana Tolomato Matanzas National Estuarine Research Reserve as a case study, we analyzed the distribution of coastal protection services-expressly, wave attenuation and sediment control-provided by estuarine habitats inside a dynamic Intracoastal waterway. We explored six coastal variables that contribute to coastal flooding and erosion-(a) relief, (b) geomorphology, (c) estuarine habitats, (d) wind exposure, (e) boat wake energy, and (f) storm surge potential-to assess physical exposure to coastal hazards. The highest levels of coastal exposure were found in the north and south sections of the Reserve (9% and 14%, respectively) compared to only 4% in the central, with exposure in the south driven by low wetland elevation, high surge potential, and shorelines composed of less stable sandy and muddy substrate. The most vulnerable areas of the central Reserve and main channel of the Intracoastal waterway were exposed to boat wakes from larger vessels frequently traveling at medium speeds (10-20 knots) and had shoreline segments oriented towards the prevailing winds (north-northeast). To guide management for the recently expanded Reserve into vulnerable areas near the City of Saint Augustine, we evaluated six sites of concern where the current distribution of estuarine habitats (mangroves, salt marshes, and oyster beds) likely play the greatest role in natural protection. Spatially explicit outputs also identified potential elevation maintenance strategies such as living shorelines, landform modification, and mangrove establishment for providing coastal risk-reduction and other ecosystem-service co-benefits. Salt marshes and mangroves in two sites of the central section (N-312 and S-312) were found to protect more than a one-quarter of their cross-shore length (27% and 73%, respectively) from transitioning to the highest exposure category. Proposed interventions for mangrove establishment and living shorelines could help maintain elevation in these sites of concern. This work sets the stage for additional research, education, and outreach about where mangroves, salt marshes, and oyster beds are most likely to reduce risk to wetland communities in the region.


Assuntos
Ecossistema , Áreas Alagadas , Humanos , Elevação do Nível do Mar , Mudança Climática , Florida
6.
PLoS One ; 19(2): e0297178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38416743

RESUMO

Climate change poses great risks to archaeological heritage, especially in coastal regions. Preparing to mitigate these challenges requires detailed and accurate assessments of how coastal heritage sites will be impacted by sea level rise (SLR) and storm surge, driven by increasingly severe storms in a warmer climate. However, inconsistency between modeled impacts of coastal erosion on archaeological sites and observed effects has thus far hindered our ability to accurately assess the vulnerability of sites. Modeling of coastal impacts has largely focused on medium-to-long term SLR, while observations of damage to sites have almost exclusively focused on the results of individual storm events. There is therefore a great need for desk-based modeling of the potential impacts of individual storm events to equip cultural heritage managers with the information they need to plan for and mitigate the impacts of storm surge in various future sea level scenarios. Here, we apply the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model to estimate the risks that storm surge events pose to archaeological sites along the coast of the US State of Georgia in four different SLR scenarios. Our results, shared with cultural heritage managers in the Georgia Historic Preservation Division to facilitate prioritization, documentation, and mitigation efforts, demonstrate that over 4200 archaeological sites in Georgia alone are at risk of inundation and erosion from hurricanes, more than ten times the number of sites that were previously estimated to be at risk by 2100 accounting for SLR alone. We hope that this work encourages necessary action toward conserving coastal physical cultural heritage in Georgia and beyond.


Assuntos
Tempestades Ciclônicas , Elevação do Nível do Mar , Georgia , Mudança Climática , Arqueologia
7.
Water Res ; 254: 121341, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38422693

RESUMO

Highly urban coastal communities in low lying areas and with high water tables are vulnerable to sea-level rise and to corresponding increases in coastal groundwater levels. Stormwater conveyance systems are under increased risk. Rising groundwater levels affect the hydraulics of the stormwater system thereby increasing contaminant transport, for example the fecal indicator bacteria enterococci, to coastal waters. This study offers a unique opportunity to evaluate the impacts of increased contaminant transport on marine coastal environments. Here we assessed historic and recent coastal water quality, stormwater sampling data, groundwater monitoring and tidal elevations near the coastline, in the context of altered hydraulics within the system. Two pathways of enterococci to marine waters were identified. Direct discharge of contaminated stormwater runoff via the stormwater outfalls and tidally driven contaminated groundwater discharge. As sea level continues to rise, we hypothesize that a diminished unsaturated zone coupled with altered hydraulic conditions at the coastal groundwater zone will facilitate the transport of enterococci from urban sediments to the study site (Park View Waterway in Miami Beach, FL USA). We recommend improvements to the stormwater conveyance system, and maintenance of the sanitary sewer system to mitigate these impacts and minimize transport of enterococci, and other stormwater pollutants to coastal waters. The results of this study can be useful to interpret high enterococci levels in low lying coastal areas where groundwater is influenced by rising sea water levels.


Assuntos
Poluentes Ambientais , Água Subterrânea , Enterococcus , Elevação do Nível do Mar , Monitoramento Ambiental
8.
Sci Rep ; 14(1): 3461, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38342949

RESUMO

Governments globally are adapting to sea level rise through a range of interventions to improve everyday lives of communities at risk. One prominent response is planned relocation, where people and communities are enabled to move from localities exposed to coastal erosion and inundation as a result of sea level rise. Managed retreat has significant social consequences including under-reported impacts on health, well-being and social identity. Here we adopt well-established measures of well-being and document the outcomes of planned relocation on well-being in the Volta Delta region of Ghana. Data from a bespoke survey for individuals (n = 505) in relocated and non-relocated communities demonstrate that planned relocation negatively impacts well-being and anxiety of those relocated when compared to a community that is equally exposed but has not moved. Individuals in the relocated community reported significantly lower levels of overall wellbeing, significantly higher levels of anxiety, and lower perceptions of safety, compared to non-relocated community members. These outcomes are explained as being related to the disruption of community connection, identities, and feelings of efficacy. Relocated community members reported significantly lower levels of attachment to the local area and home, significantly lower levels of community-based self-efficacy, and significantly lower levels of overall community-based identity. The results demonstrate that planned relocation to address sea level rise has multiple social consequences with outcomes for well-being that are not straightforwardly related to risk reduction.


Assuntos
Ansiedade , Elevação do Nível do Mar , Humanos , Gana
9.
Nature ; 626(7997): 111-118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297171

RESUMO

The recovery of top predators is thought to have cascading effects on vegetated ecosystems and their geomorphology1,2, but the evidence for this remains correlational and intensely debated3,4. Here we combine observational and experimental data to reveal that recolonization of sea otters in a US estuary generates a trophic cascade that facilitates coastal wetland plant biomass and suppresses the erosion of marsh edges-a process that otherwise leads to the severe loss of habitats and ecosystem services5,6. Monitoring of the Elkhorn Slough estuary over several decades suggested top-down control in the system, because the erosion of salt marsh edges has generally slowed with increasing sea otter abundance, despite the consistently increasing physical stress in the system (that is, nutrient loading, sea-level rise and tidal scour7-9). Predator-exclusion experiments in five marsh creeks revealed that sea otters suppress the abundance of burrowing crabs, a top-down effect that cascades to both increase marsh edge strength and reduce marsh erosion. Multi-creek surveys comparing marsh creeks pre- and post-sea otter colonization confirmed the presence of an interaction between the keystone sea otter, burrowing crabs and marsh creeks, demonstrating the spatial generality of predator control of ecosystem edge processes: densities of burrowing crabs and edge erosion have declined markedly in creeks that have high levels of sea otter recolonization. These results show that trophic downgrading could be a strong but underappreciated contributor to the loss of coastal wetlands, and suggest that restoring top predators can help to re-establish geomorphic stability.


Assuntos
Braquiúros , Estuários , Lontras , Comportamento Predatório , Erosão do Solo , Áreas Alagadas , Animais , Biomassa , Braquiúros/fisiologia , Lontras/fisiologia , Estados Unidos , Plantas , Elevação do Nível do Mar , Ondas de Maré , Nutrientes/metabolismo , Cadeia Alimentar
10.
Glob Chang Biol ; 30(1): e17081, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273570

RESUMO

Ghost forests consisting of dead trees adjacent to marshes are striking indicators of climate change, and marsh migration into retreating coastal forests is a primary mechanism for marsh survival in the face of global sea-level rise. Models of coastal transgression typically assume inundation of a static topography and instantaneous conversion of forest to marsh with rising seas. In contrast, here we use four decades of satellite observations to show that many low-elevation forests along the US mid-Atlantic coast have survived despite undergoing relative sea-level rise rates (RSLRR) that are among the fastest on Earth. Lateral forest retreat rates were strongly mediated by topography and seawater salinity, but not directly explained by spatial variability in RSLRR, climate, or disturbance. The elevation of coastal tree lines shifted upslope at rates correlated with, but far less than, contemporary RSLRR. Together, these findings suggest a multi-decadal lag between RSLRR and land conversion that implies coastal ecosystem resistance. Predictions based on instantaneous conversion of uplands to wetlands may therefore overestimate future land conversion in ways that challenge the timing of greenhouse gas fluxes and marsh creation, but also imply that the full effects of historical sea-level rise have yet to be realized.


Assuntos
Ecossistema , Elevação do Nível do Mar , Florestas , Áreas Alagadas , Mudança Climática , Árvores
11.
PLoS One ; 19(1): e0295172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38232061

RESUMO

BACKGROUND: Over 165,000,000 people live in Bangladesh; approximately 97% of Bangladeshis drink well water. Approximately 49% of Bangladesh's area has drinking well water with arsenic (As) concentrations that exceed the 10 micrograms per liter (µg/L) World Health Organization (WHO) guideline. This exposure to a potent carcinogen is a significant threat to public health. About 21% of Bangladesh is flooded each year during a typical monsoon season. As climate change progresses, sea levels will continue to rise, and the area and duration of these annual floods will increase. We hypothesize that these consequences of climate change can increase the release of arsenic from sediments into Bangladesh's drinking well water. METHODS: Drinking well water samples were collected during a national-scale survey in Bangladesh. The dissolved oxygen concentration, oxidation-reduction potential, specific conductance, pH, and temperature were measured at sampling with calibrated portable electronic sensors. The arsenic concentration was measured by the silver diethyldithiocarbamate method. RESULTS: As the concentration of dissolved oxygen decreases, the concentration of arsenic increases (p-value = 0.0028). Relatedly, as the oxidation-reduction potential decreases, the concentration of arsenic increases (p-value = 1.3×10-5). This suggests that arsenic is released from sediments into Bangladesh's drinking well drinking water by reduction. As the specific conductance increases, the concentration of arsenic increases (p-value = 0.023). This suggests that arsenic is also released from sediments into water by the salt effect. CONCLUSIONS: Rising sea levels can cause a decrease in the dissolved oxygen concentration and oxidation-reduction potential of the underlying aquifer; this should increase the dissolution of insoluble arsenate (H3-xAs(V)O4x-) in sediments by reduction. This, in turn, should release soluble arsenite (H3-xAs(III)O3x-) into the drinking well water. Rising sea levels can cause an increase in the salt concentration of the underlying aquifer; this should increase the release of arsenic from sediments into the drinking well water by the salt effect.


Assuntos
Arsênio , Água Potável , Poluentes Químicos da Água , Humanos , Arsênio/análise , Elevação do Nível do Mar , Mudança Climática , Bangladesh , Poluentes Químicos da Água/análise , Oxigênio
12.
Sci Rep ; 14(1): 2579, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296988

RESUMO

Secure archaeological evidence for human occupation on the eastern seaboard of Australia before ~ 25,000 years ago has proven elusive. This has prompted some researchers to argue that the coastal margins remained uninhabited prior to 25 ka. Here we show evidence for human occupation beginning between 30 ± 6 and 49 ± 8 ka at Wallen Wallen Creek (WWC), and at Middle Canalpin Creek (MCA20) between 38 ± 8 and 41 ± 8 ka. Both sites are located on the western side of Minjerribah (North Stradbroke Island), the second largest sand island in the world, isolated by rising sea levels in the early Holocene. The earliest occupation phase at both sites consists of charcoal and heavily retouched stone artefacts made from exotic raw materials. Heat-treatment of imported silcrete artefacts first appeared in sediment dated to ~ 30,000 years ago, making these amongst Australia's oldest dated heat-treated artefacts. An early human presence on Minjerribah is further suggested by palaeoenvironmental records of anthropogenic burning beginning by 45,000 years ago. These new chronologies from sites on a remnant portion of the continental margin confirm early human occupation along Sahul's now-drowned eastern continental shelf.


Assuntos
Ocupações , Elevação do Nível do Mar , Humanos , Austrália , Arqueologia , Areia , Fósseis
13.
Ann Rev Mar Sci ; 16: 81-103, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37540890

RESUMO

Sea-level rise (SLR) is influencing coastal groundwater by both elevating the water table and shifting salinity profiles landward, making the subsurface increasingly corrosive. Low-lying coastal municipalities worldwide (potentially 1,546, according to preliminary analysis) are vulnerable to an array of impacts spurred by these phenomena, which can occur decades before SLR-induced surface inundation. Damage is accumulating across a variety of infrastructure networks that extend partially and fully beneath the ground surface. Because the resulting damage is largely concealed and imperceptible, it is largely overlooked as part of infrastructure management and planning. Here, we provide an overview of SLR-influenced coastal groundwater and related processes that have the potential to damage societally critical infrastructure and mobilize urban contamination. In an effort to promote research efforts that can inform effective adaptation and management, we discuss various impacts to critical infrastructure and propose actions based on literature focused specifically on SLR-influenced coastal groundwater.


Assuntos
Água Subterrânea , Elevação do Nível do Mar , Salinidade
14.
Sci Total Environ ; 912: 169402, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38114033

RESUMO

Global deltaic marshes are currently facing a multitude of pressures, including insufficient sediment supply, rising sea levels, and habitat loss. Consequently, unraveling the internal regulatory mechanisms within deltaic marshes is of paramount importance. Here, we harness years of observational data and high-resolution numerical models to uncover depositional dynamics and vegetation succession in self-organizing processes of deltaic marshes. Our findings indicate that the colonization of salt marsh vegetation triggered a robust phase of growth in the initial stages of river deltas formation. However, as vertical accretion intensifies and inundation decreases, the delta is driven towards a state of critical slowing down due to insufficient sediment supply. We have captured a pivotal turning point in the evolution of deltaic marshes. In accordance with the critical submergence threshold we have established, when the inundation time of deltaic marshes exceeds 0.97 h/d, these salt marsh platforms sustain a higher annual growth rate. Conversely, when the inundation time of deltaic marshes falls below 0.97 h/d, the interannual accretion rate continues to decrease. Our research reveals that, in the absence of human disturbances, the deposition rate in deltaic marshes transitions from growth to decline. During this period, the delta undergoes an interesting succession of pioneer salt marshes (Suaeda salsa) and high-elevation salt marshes (Phragmites australis). Even without reductions in sediment input due to human activities, the vertical deposition rate within deltaic marshes will still shift from acceleration to deceleration under the influence of this internal negative feedback regulation. This adaptive capacity of marshes may foreshadow that when observing a slowdown in vertical accretion on deltaic marsh platforms, it cannot be solely attributed to reductions in sediment input caused by human activities.


Assuntos
Chenopodiaceae , Áreas Alagadas , Humanos , Ecossistema , Elevação do Nível do Mar , Rios
15.
Environ Monit Assess ; 195(12): 1487, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973636

RESUMO

Sea level rise (SLR) is the most significant climate change-related threat to coastal wetlands, driving major transformations in coastal regions through marsh migration. Landscape transformations due to marsh migration are manifested in terms of horizontal and vertical changes in land cover and elevation, respectively. These processes will have an impact on saltmarsh wave attenuation that is yet to be explored. This study stands as a comprehensive analysis of spatially distributed wave attenuation by vegetation in the context of a changing climate. Our results show that: i) changes in saltmarsh cover have little to no effect on the attenuation of floods, while ii) changes in elevation can significantly reduce flood extents and water depths; iii) overland wave heights are directly influenced by marsh migration, although iv) being indirectly attenuated by the water depth limiting effects of water depth attenuation driven by changes in elevation; v) the influence of saltmarsh accretion on wave attenuation is largely evident near the marsh edge, where the increasing elevations can drive major wave energy losses via wave breaking. Lastly, vi) considering the synergy between SLR, marsh migration, and changes in elevation results in significantly more wave attenuation than considering the eustatic effects of SLR and/or horizontal marsh migration alone, and therefore should be adopted in future studies.


Assuntos
Elevação do Nível do Mar , Áreas Alagadas , Monitoramento Ambiental , Mudança Climática , Água , Ecossistema
16.
Nat Commun ; 14(1): 7904, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036553

RESUMO

Within coastal communities, sea level rise (SLR) will result in widespread intermittent flooding and long-term inundation. Inundation effects will be evident, but isolation that arises from the loss of accessibility to critical services due to inundation of transportation networks may be less obvious. We examine who is most at risk of isolation due to SLR, which can inform community adaptation plans and help ensure that existing social vulnerabilities are not exacerbated. Combining socio-demographic data with an isolation metric, we identify social and economic disparities in risk of isolation under different SLR scenarios (1-10 ft) for the coastal U.S. We show that Black and Hispanic populations face a disproportionate risk of isolation at intermediate levels of SLR (4 ft and greater). Further, census tracts with higher rates of renters and older adults consistently face higher risk of isolation. These insights point to significant inequity in the burdens associated with SLR.


Assuntos
Inundações , Elevação do Nível do Mar , Estados Unidos , Meios de Transporte , Demografia
17.
PLoS One ; 18(11): e0293177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37930990

RESUMO

Tidal wetlands are critical but highly threatened ecosystems that provide vital services. Efficient stewardship of tidal wetlands requires robust comparative assessments of different marshes to understand their resilience to stressors, particularly in the face of relative sea level rise. Existing assessment frameworks aim to address tidal marsh resilience, but many are either too localized or too general, and few directly translate resilience evaluations to recommendations for management strategies. In response to the deficiencies in existing frameworks, we identified a set of metrics that influence overall marsh resilience that can be assessed at any spatial scale. We then developed a new comprehensive assessment framework to rank relative marsh resilience using these metrics, which are nested within three categories. We represent resilience as the sum of results across the three metric categories: current condition, adaptive capacity, and vulnerability. Users of this framework can add scores from each category to generate a total resilience score to compare across marshes or take the score from each category and refer to recommended management actions we developed based on expert elicitation for each combination of category results. We then applied the framework across the contiguous United States using publicly available data, and summarized results at multiple spatial scales, from regions to coastal states to National Estuarine Research Reserves to finer scale marsh units, to demonstrate the framework's value across these scales. Our national analysis allowed for comparison of tidal marsh resilience across geographies, which is valuable for determining where to prioritize management actions for desired future marsh conditions. In combination, the assessment framework and recommended management actions function as a broadly applicable decision-support tool that will enable resource managers to evaluate tidal marshes and select appropriate strategies for conservation, restoration, and other stewardship goals.


Assuntos
Ecossistema , Áreas Alagadas , Estados Unidos , Elevação do Nível do Mar , Geografia
18.
Nature ; 622(7983): 528-536, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37853149

RESUMO

Melting of the Greenland ice sheet (GrIS) in response to anthropogenic global warming poses a severe threat in terms of global sea-level rise (SLR)1. Modelling and palaeoclimate evidence suggest that rapidly increasing temperatures in the Arctic can trigger positive feedback mechanisms for the GrIS, leading to self-sustained melting2-4, and the GrIS has been shown to permit several stable states5. Critical transitions are expected when the global mean temperature (GMT) crosses specific thresholds, with substantial hysteresis between the stable states6. Here we use two independent ice-sheet models to investigate the impact of different overshoot scenarios with varying peak and convergence temperatures for a broad range of warming and subsequent cooling rates. Our results show that the maximum GMT and the time span of overshooting given GMT targets are critical in determining GrIS stability. We find a threshold GMT between 1.7 °C and 2.3 °C above preindustrial levels for an abrupt ice-sheet loss. GrIS loss can be substantially mitigated, even for maximum GMTs of 6 °C or more above preindustrial levels, if the GMT is subsequently reduced to less than 1.5 °C above preindustrial levels within a few centuries. However, our results also show that even temporarily overshooting the temperature threshold, without a transition to a new ice-sheet state, still leads to a peak in SLR of up to several metres.


Assuntos
Modelos Climáticos , Congelamento , Aquecimento Global , Camada de Gelo , Elevação do Nível do Mar , Temperatura , Aquecimento Global/estatística & dados numéricos , Groenlândia , Camada de Gelo/química , Fatores de Tempo
19.
Sci Total Environ ; 905: 167198, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37734619

RESUMO

Much is said about carbon dioxide (CO2) affecting climate; rising global temperatures, rising sea levels, and stagnating ocean currents being often cited results. Less is said about what CO2 does directly to human physiology should anthropogenic trends not abate. Past mass extinctions have been correlated to airborne CO2 levels rapidly rising above 1000 ppm (Ward, 2007); a value that may be seen by the end of this century. This study proposes as humankind confronts climate changes brought on by rising atmospheric CO2 concentration, as levels rise over 1000 ppm humans may also be inundated by the direct effects of CO2. While this has already been proposed by others, this study goes on to introduce a straight forward model for helping quantify the impact of airborne CO2 on human physiology which shows the onset of hypercapnic bloodstream pH levels in humans begin to appear when atmospheric CO2 levels approach 3000 ppm. However, upon examination of data from past submarine studies, a physiological response may occur in humans at much lower atmospheric CO2 levels due to a slow buildup of CO2 in the body over time. A casual link between atmospheric CO2 levels and the calcium balance in the human body is established providing rationale for the possibility of a greater occurrence of vascular calcification and concurrent bone demineralization in the greater general population when atmospheric CO2 levels rise. Noted is the likelihood of neurological effects at CO2 levels around 1000 ppm is suggested by several past studies. Note is also made of other organisms such as fish having much lower arterial pressures than humans making them more vulnerable to environmental CO2 changes as found by other studies. This study concludes CO2's direct impact to the human physiology as well as other life is not as benign as many like to suggest, and beyond climate change, appears as a mechanism for undermining human sustainability deserving closer scrutiny, and greater discussion.


Assuntos
Cálcio , Dióxido de Carbono , Animais , Humanos , Dióxido de Carbono/análise , Peixes , Mudança Climática , Elevação do Nível do Mar
20.
Environ Toxicol Chem ; 42(11): 2478-2489, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37727898

RESUMO

Sea levels across the planet are rising, particularly along the eastern coast of the United States. Climate-induced sea level rise can result in the inundation and intrusion of seawater into freshwater drainages. This would alter salinity regimes and lead to the salinization of coastal freshwater ecosystems. Increased salinity levels in freshwater can negatively affect freshwater-dependent species, including native mussels belonging to the order Unionida, which are highly sensitive to changes in water quality. Sea salt is largely made up of sodium and chloride ions, forming sodium chloride, a known toxicant to freshwater mussels. However, sea salt is a mixture that also contains other major ions, including potassium, sulfate, calcium, strontium, and magnesium, among others. Freshwater mussels exposed to sea salt would be exposed to each of the sea salt ions at the same time, resulting in a mixture toxicity effect. The mixture toxicity of these ions on early life stages of freshwater mussels is largely unknown because most research to date has evaluated individual salt ions in relative isolation. Therefore, we conducted acute toxicity tests on early life stages (glochidia and juvenile) of three freshwater mussel species that inhabit Atlantic Slope drainages (nonsalinity-adapted Atlanticoncha ochracea, salinity-adapted A. ochracea, Sagittunio nasutus, and Utterbackiana implicata). Glochidia and juveniles of each species were exposed to a control and six concentrations of Instant Ocean® Sea Salt (IOSS), a synthetic sea salt that closely resembles the ionic composition of natural sea salt. Exposure concentrations were 1 part(s) per thousand (ppt), 2 ppt, 8.5 ppt, 12.5 ppt, 17 ppt, and 34 ppt. We calculated the median effect concentration (EC50) for each of the eight acute toxicity tests and found that glochidia were more sensitive than juveniles to IOSS. At hour 24 EC50s for the glochidia ranged from 0.38 to 3.6 ppt, with the most sensitive freshwater mussel being the nonsalinity-adapted A. ochracea, exhibiting an EC50 of 0.38 ppt (95% confidence interval [CI] 0.33-0.44). Juvenile freshwater mussels exhibited EC50s at hour 96 ranging from 5.0 to 10.4 ppt, with the least sensitive freshwater mussel being the nonsalinity-adapted A. ochracea, exhibiting an EC50 of 10.4 ppt (95% CI 9.1-12.0). Our results show that acute exposure to sea salt adversely affects freshwater mussel viability, particularly glochidia. This information can be used to enhance freshwater mussel conservation strategies in regions that are or will be impacted by climate-induced sea level rise and associated freshwater salinization. Environ Toxicol Chem 2023;42:2478-2489. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Bivalves , Unionidae , Poluentes Químicos da Água , Animais , Ecossistema , Elevação do Nível do Mar , Água Doce/química , Cloreto de Sódio/toxicidade , Cloretos , Alimentos Marinhos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA