Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.147
Filtrar
1.
Redox Biol ; 70: 103070, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359745

RESUMO

Although widely known as a tumor suppressor, the breast cancer 1 susceptibility protein (BRCA1) is also important in development, where it regulates fetal DNA repair pathways that protect against DNA damage caused by physiological and drug-enhanced levels of reactive oxygen species (ROS). We previously showed that conditional heterozygous (+/-) knockout (cKO) mouse embryos with a minor 28% BRCA1 deficiency developed normally in culture, but when exposed to the ROS-initiating drug, alcohol (ethanol, EtOH), exhibited embryopathies not evident in wild-type (+/+) littermates. Herein, we characterized a directBrca1 +/- knockout (KO) model with a 2-fold greater (58%) reduction in BRCA1 protein vs. the cKO model. We also characterized and compared learning & memory deficits in both the cKO and KO models. Even saline-exposed Brca1 +/- vs. +/+ KO progeny exhibited enhanced oxidative DNA damage and embryopathies in embryo culture and learning & memory deficits in females in vivo, which were not observed in the cKO model, revealing the potential pathogenicity of physiological ROS levels. The embryopathic EtOH concentration for cultured direct KO embryos was half that for cKO embryos, and EtOH affected Brca1 +/+ embryos only in the direct KO model. The spectrum and severity of EtOH embryopathies in culture were greater in both Brca1 +/- vs. +/+ embryos, and direct KO vs. cKO +/- embryos. Motor coordination deficits were evident in both male and female Brca1 +/- KO progeny exposed in utero to EtOH. The results in our direct KO model with a greater BRCA1 deficiency vs. cKO mice provide the first evidence for BRCA1 protein dose-dependent susceptibility to developmental disorders caused by physiological and drug-enhanced oxidative stress.


Assuntos
Doenças Fetais , Transtornos do Neurodesenvolvimento , Humanos , Masculino , Feminino , Camundongos , Animais , Etanol/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Camundongos Knockout , Estresse Oxidativo , Dano ao DNA , Doenças Fetais/metabolismo , Doenças Fetais/patologia , Transtornos do Neurodesenvolvimento/induzido quimicamente , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos da Memória/genética , Transtornos da Memória/metabolismo
2.
Nature ; 623(7988): 772-781, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968388

RESUMO

Mouse models are a critical tool for studying human diseases, particularly developmental disorders1. However, conventional approaches for phenotyping may fail to detect subtle defects throughout the developing mouse2. Here we set out to establish single-cell RNA sequencing of the whole embryo as a scalable platform for the systematic phenotyping of mouse genetic models. We applied combinatorial indexing-based single-cell RNA sequencing3 to profile 101 embryos of 22 mutant and 4 wild-type genotypes at embryonic day 13.5, altogether profiling more than 1.6 million nuclei. The 22 mutants represent a range of anticipated phenotypic severities, from established multisystem disorders to deletions of individual regulatory regions4,5. We developed and applied several analytical frameworks for detecting differences in composition and/or gene expression across 52 cell types or trajectories. Some mutants exhibit changes in dozens of trajectories whereas others exhibit changes in only a few cell types. We also identify differences between widely used wild-type strains, compare phenotyping of gain- versus loss-of-function mutants and characterize deletions of topological associating domain boundaries. Notably, some changes are shared among mutants, suggesting that developmental pleiotropy might be 'decomposable' through further scaling of this approach. Overall, our findings show how single-cell profiling of whole embryos can enable the systematic molecular and cellular phenotypic characterization of mouse mutants with unprecedented breadth and resolution.


Assuntos
Deficiências do Desenvolvimento , Embrião de Mamíferos , Mutação , Fenótipo , Análise da Expressão Gênica de Célula Única , Animais , Camundongos , Núcleo Celular/genética , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Mutação com Ganho de Função , Genótipo , Mutação com Perda de Função , Modelos Genéticos , Modelos Animais de Doenças
3.
J Dev Orig Health Dis ; 13(1): 61-67, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33843571

RESUMO

Intestinal atresia (IA), a common cause of neonatal intestinal obstruction, is a developmental defect, which disrupts the luminal continuity of the intestine. Here, we investigated (i) the process of lumen formation in human embryos; and (ii) how a defective lumen formation led to IA. We performed histological and histochemical study on 6-10 gestation week human embryos and on IA septal regions. To investigate the topology of embryonic intestine development, we conducted 3D reconstruction. We showed that a 6-7th gestation week embryonic gut has no lumen, but filled with mesenchyme cells and vacuoles of a monolayer of epithelial cells. A narrow gut lumen was formed by gestation week-9, the gut was filled with numerous vacuoles of different sizes, some vacuoles were merging with the developing embryonic gut wall. At gestation week-10, a prominent lumen was developed, only few vacuoles were present and were merging with the intestine wall. At IA septal regions, vacuoles were located in the submucous layer, covered by a single layer of epithelium without glandular structure, and surrounded with fibrous tissue. The mucosal epithelium was developed with lamina propria and basement membrane, but the submucosa and the longitudinal smooth muscle layers were not properly developed. Hence, the vacuoles in IA septum could represent a remnant of vacuoles of embryonic gut. In conclusion, the fusion of vacuoles with the developing intestine wall associates with the disappearance of vacuoles and gut lumen formation in human embryos, and perturbation of these developmental events could lead to IA.


Assuntos
Embrião de Mamíferos/anormalidades , Histologia/estatística & dados numéricos , Atresia Intestinal/etiologia , Embrião de Mamíferos/patologia , Embrião de Mamíferos/fisiopatologia , Histologia/instrumentação , Humanos , Atresia Intestinal/patologia , Atresia Intestinal/fisiopatologia , Intestinos/patologia
4.
Am J Physiol Lung Cell Mol Physiol ; 322(2): L204-L223, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34878944

RESUMO

During newborn lung injury, excessive activity of lysyl oxidases (LOXs) disrupts extracellular matrix (ECM) formation. Previous studies indicate that TGFß activation in the O2-injured mouse pup lung increases lysyl oxidase (LOX) expression. But how TGFß regulates this, and whether the LOXs generate excess pulmonary aldehydes are unknown. First, we determined that O2-mediated lung injury increases LOX protein expression in TGFß-stimulated pup lung interstitial fibroblasts. This regulation appeared to be direct; this is because TGFß treatment also increased LOX protein expression in isolated pup lung fibroblasts. Then using a fibroblast cell line, we determined that TGFß stimulates LOX expression at a transcriptional level via Smad2/3-dependent signaling. LOX is translated as a pro-protein that requires secretion and extracellular cleavage before assuming amine oxidase activity and, in some cells, reuptake with nuclear localization. We found that pro-LOX is processed in the newborn mouse pup lung. Also, O2-mediated injury was determined to increase pro-LOX secretion and nuclear LOX immunoreactivity particularly in areas populated with interstitial fibroblasts and exhibiting malformed ECM. Then, using molecular probes, we detected increased aldehyde levels in vivo in O2-injured pup lungs, which mapped to areas of increased pro-LOX secretion in lung sections. Increased activity of LOXs plays a critical role in the aldehyde generation; an inhibitor of LOXs prevented the elevation of aldehydes in the O2-injured pup lung. These results reveal new mechanisms of TGFß and LOX in newborn lung disease and suggest that aldehyde-reactive probes might have utility in sensing the activation of LOXs in vivo during lung injury.


Assuntos
Aldeídos/metabolismo , Lesão Pulmonar/metabolismo , Pulmão/enzimologia , Pulmão/patologia , Proteína-Lisina 6-Oxidase/metabolismo , Aldeídos/química , Animais , Animais Recém-Nascidos , Embrião de Mamíferos/patologia , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Regulação Enzimológica da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Sondas Moleculares/metabolismo , Células NIH 3T3 , Proteína-Lisina 6-Oxidase/genética , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Transdução de Sinais , Proteínas Smad/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta/metabolismo
5.
Biochem Biophys Res Commun ; 589: 173-179, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-34922199

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) are a family of often-concurrent diseases with various anatomical spectra. Null-mutant Gen1 mice frequently develop multiple urinary phenotypes, most commonly duplex kidneys, and are ideal subjects for research on ectopic budding in CAKUT development. The upper and lower kidney poles of the Gen1PB/PB mouse were examined by histology, immunofluorescence, and immunohistochemistry. The newborn Gen1PB/PB mouse lower poles were significantly more hypoplastic than the corresponding upper poles, with significantly fewer glomeruli. On embryonic day 14.5, immediately before first urine formation, the upper pole kidney was already larger than the lower pole kidney. In vivo and in vitro, embryonic kidney upper poles had more ureteric buds than lower poles. Gen1PB/PB embryos exhibited ectopic ureteric buds, usually near the original budding site, occasionally far away, or, rarely, derived from the primary budding site. Therefore, ectopia of the ureteric buds is the core of CAKUT formation. Further studies will be needed to investigate the regulatory roles of these genes in initial ureteric budding and subsequent ontogenesis during metanephros development.


Assuntos
Resolvases de Junção Holliday/metabolismo , Rim/anormalidades , Rim/embriologia , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Diferenciação Celular , Embrião de Mamíferos/patologia , Camundongos , Ureter/anormalidades , Ureter/embriologia
6.
Cells ; 10(12)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34943873

RESUMO

SMG6 is an endonuclease, which cleaves mRNAs during nonsense-mediated mRNA decay (NMD), thereby regulating gene expression and controling mRNA quality. SMG6 has been shown as a differentiation license factor of totipotent embryonic stem cells. To investigate whether it controls the differentiation of lineage-specific pluripotent progenitor cells, we inactivated Smg6 in murine embryonic neural stem cells. Nestin-Cre-mediated deletion of Smg6 in mouse neuroprogenitor cells (NPCs) caused perinatal lethality. Mutant mice brains showed normal structure at E14.5 but great reduction of the cortical NPCs and late-born cortical neurons during later stages of neurogenesis (i.e., E18.5). Smg6 inactivation led to dramatic cell death in ganglionic eminence (GE) and a reduction of interneurons at E14.5. Interestingly, neurosphere assays showed self-renewal defects specifically in interneuron progenitors but not in cortical NPCs. RT-qPCR analysis revealed that the interneuron differentiation regulators Dlx1 and Dlx2 were reduced after Smg6 deletion. Intriguingly, when Smg6 was deleted specifically in cortical and hippocampal progenitors, the mutant mice were viable and showed normal size and architecture of the cortex at E18.5. Thus, SMG6 regulates cell fate in a cell type-specific manner and is more important for neuroprogenitors originating from the GE than for progenitors from the cortex.


Assuntos
Endorribonucleases/metabolismo , Neurogênese , Ribonucleases/metabolismo , Telomerase/metabolismo , Animais , Animais Recém-Nascidos , Ciclo Celular , Diferenciação Celular , Autorrenovação Celular , Sobrevivência Celular , Sistema Nervoso Central/patologia , Reparo do DNA , Embrião de Mamíferos/patologia , Endorribonucleases/genética , Deleção de Genes , Camundongos , Modelos Biológicos , Mutação/genética , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Telomerase/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884582

RESUMO

T-cell intracellular antigen 1 (TIA1) is a multifunctional RNA-binding protein involved in regulating gene expression and splicing during development and in response to environmental stress, to maintain cell homeostasis and promote survival. Herein, we used TIA1-deficient murine embryonic fibroblasts (MEFs) to study their role in mitochondria homeostasis. We found that the loss of TIA1 was associated with changes in mitochondrial morphology, promoting the appearance of elongated mitochondria with heterogeneous cristae density and size. The proteomic patterns of TIA1-deficient MEFs were consistent with expression changes in molecular components related to mitochondrial dynamics/organization and respiration. Bioenergetics analysis illustrated that TIA1 deficiency enhances mitochondrial respiration. Overall, our findings shed light on the role of TIA1 in mitochondrial dynamics and highlight a point of crosstalk between potential pro-survival and pro-senescence pathways.


Assuntos
Respiração Celular , Embrião de Mamíferos/patologia , Metabolismo Energético , Fibroblastos/patologia , Mitocôndrias/patologia , Dinâmica Mitocondrial , Antígeno-1 Intracelular de Células T/fisiologia , Animais , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo
8.
Cells ; 10(11)2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34831221

RESUMO

There is no effective treatment for the total recovery of myocardial injury caused by an anticancer drug, doxorubicin (Dox). In this study, using a Dox-induced cardiac injury model, we compared the cardioprotective effects of ventricular cells harvested from 11.5-day old embryonic mice (E11.5) with those from E14.5 embryos. Our results indicate that tail-vein-infused E11.5 ventricular cells are more efficient at homing into the injured adult myocardium, and are more angiogenic, than E14.5 ventricular cells. In addition, E11.5 cells were shown to mitigate the cardiomyopathic effects of Dox. In vitro, E11.5 ventricular cells were more migratory than E14.5 cells, and RT-qPCR analysis revealed that they express significantly higher levels of cytokine receptors Fgfr1, Fgfr2, Pdgfra, Pdgfrb and Kit. Remarkably, mRNA levels for Fgf1, Fgf2, Pdgfa and Pdgfb were also found to be elevated in the Dox-injured adult heart, as were the FGF1 and PDGFB protein levels. Addition of exogenous FGF1 or PDGFB was able to enhance E11.5 ventricular cell migration in vitro, and, whereas their neutralizing antibodies decreased cell migration. These results indicate that therapies raising the levels of FGF1 and PDGFB receptors in donor cells and or corresponding ligands in an injured heart could improve the efficacy of cell-based interventions for myocardial repair.


Assuntos
Transplante de Células , Doxorrubicina/efeitos adversos , Fator 1 de Crescimento de Fibroblastos/metabolismo , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-sis/metabolismo , Envelhecimento/genética , Animais , Movimento Celular , Eletrocardiografia , Embrião de Mamíferos/patologia , Regulação da Expressão Gênica , Ventrículos do Coração/embriologia , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Ventrículos do Coração/transplante , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo
9.
Front Endocrinol (Lausanne) ; 12: 709648, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630326

RESUMO

Background: With the development of embryo freezing and warming technology, frozen-thawed embryo transfer (FET) has been widely utilized. However, studies investigating the association between cryopreservation duration and FET outcomes are limited and controversial, and previous studies did not conduct stratification analyses based on demographic or clinical characteristics. Methods: This multicenter retrospective study included 17,826 women who underwent their first FET following the freeze-all strategy during the period from January 2014 to December 2018. Duration of cryopreservation was categorized into five groups: 3-8 weeks, 8-12 weeks, 12-26 weeks, 26-52 weeks, and >52 weeks. Modified Poisson regression and multivariate logistic regression were used to assess the association between cryostorage time of vitrified embryos and transfer outcomes. Moreover, further stratification analyses were performed according to variables with p <0.05 in multivariate models. Results: In this large multicenter study, we observed that storage duration was inversely associated with the possibility of pregnancy and live birth (p <0.001), but not with the risk of ectopic pregnancy and miscarriage. Stratification analyses based on maternal age, the number of oocytes retrieved, and condition of embryo transferred indicated that the inverse correlation was significant in the subpopulation with characteristics: (1) less than 40 years old, (2) more than 3 oocytes retrieved, and (3) only high-quality blastocysts transferred. Conclusion: The results of this large, multicenter, retrospective study suggested that prolonged cryopreservation was inversely associated with the probability of pregnancy and live birth. Therefore, for patients who adopt a freeze-all strategy, early FET might achieve a better outcome.


Assuntos
Aborto Espontâneo/epidemiologia , Criopreservação/estatística & dados numéricos , Transferência Embrionária , Embrião de Mamíferos/patologia , Congelamento/efeitos adversos , Nascido Vivo/epidemiologia , Indução da Ovulação/métodos , Aborto Espontâneo/etiologia , Adulto , Coeficiente de Natalidade , China/epidemiologia , Técnicas de Cultura Embrionária , Feminino , Seguimentos , Humanos , Prognóstico , Estudos Retrospectivos , Vitrificação
11.
Biomed Res Int ; 2021: 9933389, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368361

RESUMO

Khat (Catha edulis Forsk) is a plant consumed by many people in Eastern Africa, including Ethiopia, and Southern Arabia to be stimulated. There are several human and animal studies on khat that provide information about its toxic effects. However, the potential toxic effects of khat on embryos and fetuses have not been elucidated. The aim of the present study was to investigate the embryotoxic and fetotoxic effects of khat exposure during the earliest period of gestation in rats. Pregnant Wistar albino rats were treated with khat extract at 250, 500, and 750 mg/kg doses from day 6 through day 12 of gestation. The treatment was delivered by gavage. Embryos and fetuses were recovered on gestational day 12 or day 20, respectively, and were quantitatively and qualitatively assessed for developmental anomalies. Placentae from the treatment and control groups were investigated for histopathological effects. Results of the present study showed that khat exposure during pregnancy had dose-dependent toxic effects in rat embryos and fetuses. Prenatal growth retardation such as reduced fetal weight and crown-rump length was observed in near-term fetuses, especially, in animals treated with the highest dose of khat (p < 0.05). Growth retardation and developmental anomalies were also observed in day 12 embryos of khat-treated rats. Maternal weight gain of the khat-treated group was also significantly lower than the control group. Cytolysis, decidual hypoplasia, and atrophy were observed in the placenta of the khat-treated rats. Findings of the present study revealed, for the first time, that exposure of pregnant rat to crude extract of khat causes embryotoxic and fetotoxic effects.


Assuntos
Catha/química , Embrião de Mamíferos/patologia , Feto/patologia , Testes de Toxicidade , Animais , Desenvolvimento Embrionário , Feminino , Feto/embriologia , Placenta/patologia , Gravidez , Resultado da Gravidez , Ratos Wistar
12.
Int J Mol Sci ; 22(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361119

RESUMO

Developmental arrest of the preimplantation embryo is a multifactorial condition, characterized by lack of cellular division for at least 24 hours, hindering the in vitro fertilization cycle outcome. This systematic review aims to present the molecular drivers of developmental arrest, focusing on embryonic and parental factors. A systematic search in PubMed/Medline, Embase and Cochrane-Central-Database was performed in January 2021. A total of 76 studies were included. The identified embryonic factors associated with arrest included gene variations, mitochondrial DNA copy number, methylation patterns, chromosomal abnormalities, metabolic profile and morphological features. Parental factors included, gene variation, protein expression levels and infertility etiology. A valuable conclusion emerging through critical analysis indicated that genetic origins of developmental arrest analyzed from the perspective of parental infertility etiology and the embryo itself, share common ground. This is a unique and long-overdue contribution to literature that for the first time presents an all-inclusive methodological report on the molecular drivers leading to preimplantation embryos' arrested development. The variety and heterogeneity of developmental arrest drivers, along with their inevitable intertwining relationships does not allow for prioritization on the factors playing a more definitive role in arrested development. This systematic review provides the basis for further research in the field.


Assuntos
Blastocisto/patologia , Embrião de Mamíferos/patologia , Desenvolvimento Embrionário , Fertilização in vitro , Humanos
13.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445470

RESUMO

In regular IVF, a portion of oocytes exhibit abnormal numbers of pronuclei (PN) that is considered as abnormal fertilization, and they are routinely discarded. However, it is known that abnormal ploidy still does not completely abandon embryo development and implantation. To explore the potential of cytoplasm from those abnormally fertilized oocytes, we developed a novel technique for the transfer of large cytoplasm between pronuclear-stage mouse embryos, and assessed its impact. A large volume of cytoplast could be efficiently transferred in the PN stage using a novel two-step method of pronuclear-stage cytoplasmic transfer (PNCT). PNCT revealed the difference in the cytoplasmic function among abnormally fertilized embryos where the cytoplasm of 3PN was developmentally more competent than 1PN, and the supplementing of fresh 3PN cytoplasm restored the impaired developmental potential of postovulatory "aged" oocytes. PNCT-derived embryos harbored significantly higher mitochondrial DNA copies, ATP content, oxygen consumption rate, and total cells. The difference in cytoplasmic function between 3PN and 1PN mouse oocytes probably attributed to the proper activation via sperm and may impact subsequent epigenetic events. These results imply that PNCT may serve as a potential alternative treatment to whole egg donation for patients with age-related recurrent IVF failure.


Assuntos
Núcleo Celular/patologia , Citoplasma/patologia , Embrião de Mamíferos/patologia , Desenvolvimento Embrionário , Fertilização in vitro/métodos , Zigoto/patologia , Animais , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Embrião de Mamíferos/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos ICR , Zigoto/metabolismo
14.
Clin Transl Med ; 11(7): e490, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34323405

RESUMO

BACKGROUND: In vitro fertilization (IVF) with preimplantation genetic testing (PGT) has markedly improved clinical pregnancy outcomes for carriers of gene mutations or chromosomal structural rearrangements by the selection of embryos free of disease-causing genes and chromosome abnormalities. However, for detecting whole or segmental chromosome aneuploidies, gene variants or balanced chromosome rearrangements in the same embryo require separate procedures, and none of the existing detection platforms is universal for all patients with different genetic disorders. METHODS: Here, we report a cost-effective, family-based haplotype phasing approach that can simultaneously evaluate multiple genetic variants, including monogenic disorders, aneuploidy, and balanced chromosome rearrangements in the same embryo with a single test. A total of 12 monogenic diseases carrier couples and either of them carried chromosomal rearrangements were enrolled simultaneously in this present study. Genome-wide genotyping was performed with single-nucleotide polymorphism (SNP)-array, and aneuploidies were analyzed through SNP allele frequency and Log R ratio. Parental haplotypes were phased by an available genotype from a close relative, and the embryonic genome-wide haplotypes were determined through family haplotype linkage analysis (FHLA). Disease-causing genes and chromosomal rearrangements were detected by haplotypes located within the 2 Mb region covering the targeted genes or breakpoint regions. RESULTS: Twelve blastocysts were thawed, and then transferred into the uterus of female patients. Nine pregnancies had reached the second trimester and five healthy babies have been born. Fetus validation results, performed with the amniotic fluid or umbilical cord blood samples, were consistent with those at the blastocyst stage diagnosed by PGT. CONCLUSIONS: We demonstrate that SNP-based FHLA enables the accurate genetic detection of a wide spectrum of monogenic diseases and chromosome abnormalities in embryos, preventing the transfer of parental genetic abnormalities to the fetus. This method can be implemented as a universal platform for embryo testing in patients with different genetic disorders.


Assuntos
Doenças Genéticas Inatas/diagnóstico , Testes Genéticos/métodos , Aneuploidia , Blastocisto/citologia , Blastocisto/metabolismo , Blastocisto/patologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/patologia , Feminino , Fertilização in vitro , Doenças Genéticas Inatas/genética , Haplótipos , Humanos , Cariotipagem , Masculino , Anamnese , Linhagem , Polimorfismo de Nucleotídeo Único , Diagnóstico Pré-Implantação
15.
Nat Commun ; 12(1): 3447, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103494

RESUMO

Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women.


Assuntos
Sistema Cardiovascular/embriologia , Embrião de Mamíferos/patologia , Deficiências de Ferro , Animais , Aorta Torácica/anormalidades , Biomarcadores/metabolismo , Diferenciação Celular , Vasos Coronários/embriologia , Vasos Coronários/patologia , Suplementos Nutricionais , Edema/patologia , Embrião de Mamíferos/anormalidades , Desenvolvimento Embrionário , Feminino , Perfilação da Expressão Gênica , Interação Gene-Ambiente , Proteínas de Fluorescência Verde/metabolismo , Ferro/metabolismo , Vasos Linfáticos/embriologia , Vasos Linfáticos/patologia , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Penetrância , Fenótipo , Gravidez , Transdução de Sinais , Células-Tronco/patologia , Transgenes , Tretinoína/metabolismo
16.
Nat Commun ; 12(1): 4026, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188052

RESUMO

Iron is essential for a healthy pregnancy, and iron supplementation is nearly universally recommended, regardless of maternal iron status. A signal of potential harm is the U-shaped association between maternal ferritin, a marker of iron stores, and risk of adverse pregnancy outcomes. However, ferritin is also induced by inflammation and may overestimate iron stores during inflammation or infection. In this study, we use mouse models to determine whether maternal iron loading, inflammation, or their interaction cause poor pregnancy outcomes. Only maternal exposure to both iron excess and inflammation, but not either condition alone, causes embryo malformations and demise. Maternal iron excess potentiates embryo injury during both LPS-induced acute inflammation and obesity-induced chronic mild inflammation. The adverse interaction depends on TNFα signaling, causes apoptosis of placental and embryo endothelium, and is prevented by anti-TNFα or antioxidant treatment. Our findings raise important questions about the safety of indiscriminate iron supplementation during pregnancy.


Assuntos
Apoptose/fisiologia , Ferritinas/análise , Ferro/metabolismo , Obesidade/patologia , Placenta/patologia , Animais , Células Cultivadas , Embrião de Mamíferos/patologia , Feminino , Hepcidinas/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Ferro/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Complicações na Gravidez , Fator de Necrose Tumoral alfa/metabolismo
17.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34172578

RESUMO

Job syndrome is a rare genetic disorder caused by STAT3 mutations and primarily characterized by immune dysfunction along with comorbid skeleton developmental abnormalities including osteopenia, recurrent fracture of long bones, and scoliosis. So far, there is no definitive cure for the skeletal defects in Job syndrome, and treatments are limited to management of clinical symptoms only. Here, we have investigated the molecular mechanism whereby Stat3 regulates skeletal development and osteoblast differentiation. We showed that removing Stat3 function in the developing limb mesenchyme or osteoprogenitor cells in mice resulted in shortened and bow limbs with multiple fractures in long bones that resembled the skeleton symptoms in the Job Syndrome. However, Stat3 loss did not alter chondrocyte differentiation and hypertrophy in embryonic development, while osteoblast differentiation was severely reduced. Genome-wide transcriptome analyses as well as biochemical and histological studies showed that Stat3 loss resulted in down-regulation of Wnt/ß-catenin signaling. Restoration of Wnt/ß-catenin signaling by injecting BIO, a small molecule inhibitor of GSK3, or crossing with a Lrp5 gain of function (GOF) allele, rescued the bone reduction phenotypes due to Stat3 loss to a great extent. These studies uncover the essential functions of Stat3 in maintaining Wnt/ß-catenin signaling in early mesenchymal or osteoprogenitor cells and provide evidence that bone defects in the Job Syndrome are likely caused by Wnt/ß-catenin signaling reduction due to reduced STAT3 activities in bone development. Enhancing Wnt/ß-catenin signaling could be a therapeutic approach to reduce bone symptoms of Job syndrome patients.


Assuntos
Osso e Ossos/patologia , Síndrome de Job/metabolismo , Síndrome de Job/patologia , Células-Tronco Mesenquimais/metabolismo , Fator de Transcrição STAT3/deficiência , Via de Sinalização Wnt , Alelos , Animais , Cartilagem/patologia , Diferenciação Celular , Embrião de Mamíferos/patologia , Extremidades/patologia , Deleção de Genes , Humanos , Integrases/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Células-Tronco Mesenquimais/patologia , Mesoderma/embriologia , Camundongos Transgênicos , Osteoblastos/patologia , Osteogênese
18.
Eur J Immunol ; 51(9): 2237-2250, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107067

RESUMO

Early embryonic hematopoiesis in mammals is defined by three successive waves of hematopoietic progenitors which exhibit a distinct hematopoietic potential and provide continuous support for the development of the embryo and adult organism. Although the functional importance of each of these waves has been analyzed, their spatio-temporal overlap and the lack of wave-specific markers hinders the accurate separation and assessment of their functional roles during early embryogenesis. We have recently shown that TLR2, in combination with c-kit, represents the earliest signature of emerging precursors of the second hematopoietic wave, erythro-myeloid precursors (EMPs). Since the onset of Tlr2 expression distinguishes EMPs from primitive progenitors which coexist in the yolk sac from E7.5, we generated a novel transgenic "knock in" mouse model, Tlr2Dtr , suitable for inducible targeted depletion of TLR2+ EMPs. In this model, the red fluorescent protein and diphtheria toxin receptor sequences are linked via a P2A sequence and inserted into the Tlr2 locus before its stop codon. We show that a timely controlled deletion of TLR2+ EMPs in Tlr2Dtr embryos results in a marked decrease in both erythroid as well as myeloid lineages and, consequently, in embryonic lethality peaking before E13.5. These findings validate the importance of EMPs in embryonic development.


Assuntos
Embrião de Mamíferos/patologia , Desenvolvimento Embrionário/genética , Hematopoese/genética , Células Progenitoras Mieloides/citologia , Receptor 2 Toll-Like/genética , Animais , Embrião de Mamíferos/embriologia , Eritrócitos/citologia , Hematopoese/fisiologia , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
19.
Reproduction ; 162(1): 61-72, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33955848

RESUMO

Obesity is a chronic disease that impairs female reproduction. When gestation is achieved, maternal obesity can cause offspring's health complications. We intended to evaluate the effects of maternal pre-conceptional obesity on uterine contractile activity, embryo implantation and offspring development. Using cafeteria diet-induced obesity as an animal model, we found that maternal obesity delays embryo transport from the oviduct to the uterus and alters the intrauterine embryo positioning. Adrenergic receptor (AR) signaling is involved in embryo positioning, so all AR isoforms were screened in the pre-implantation uteri. We found that the ß2AR is the dominant isoform in the rat uteri and that obesity causes its upregulation. Although ß2AR activation is known to induce uterine relaxation, higher spontaneous contractile activity was detected in obese dams. Uteri from obese dams showed a higher sensitivity to salbutamol (a selective agonist of ß2AR) than controls, consistent with the higher ß2AR levels detected in those animals. Despite this, in obese dams, some embryos were still in the oviduct at the predicted time of initial embryo attachment, embryo implantation is successfully carried out since the total number of fetuses on gd 18.5 were similar between control and obese dams. These findings show that obesity is modifying the implantation window. Moreover, we found that maternal obesity resulted in macrosomia in the offspring, which is an important predictor of fetal programming of postnatal health. Hence, our results show that maternal obesity prior to pregnancy not only disturbs the implantation process, but also affects offspring development.


Assuntos
Implantação do Embrião , Embrião de Mamíferos/patologia , Desenvolvimento Fetal , Obesidade/fisiopatologia , Receptores Adrenérgicos beta 2/metabolismo , Útero/patologia , Animais , Dieta , Embrião de Mamíferos/metabolismo , Feminino , Gravidez , Ratos , Ratos Wistar , Receptores Adrenérgicos beta 2/genética , Útero/metabolismo
20.
Methods Mol Biol ; 2262: 397-409, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33977491

RESUMO

Costello syndrome (CS), characterized by a developmental delay and a failure to thrive, is also associated with an impaired lipid and energy metabolism. White adipose tissue is a central sensor of whole-body energy homeostasis, and HRAS hyperactivation may affect adipocyte differentiation and mature adipocyte homeostasis. An extremely useful tool for delineating in vitro intrinsic cellular signaling leading to metabolic alterations during adipogenesis is mouse embryonic fibroblasts, known to differentiate into adipocytes in response to adipogenesis-stimulating factors. Here, we describe in detail the isolation and maintenance of CS HRAS G12V mouse embryonic fibroblasts, their differentiation into adipocytes, and an assessment of adipocyte differentiation.


Assuntos
Adipócitos/patologia , Diferenciação Celular , Síndrome de Costello/patologia , Modelos Animais de Doenças , Fibroblastos/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Adipócitos/metabolismo , Adipogenia , Animais , Síndrome de Costello/genética , Síndrome de Costello/metabolismo , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Feminino , Fibroblastos/metabolismo , Homeostase , Técnicas In Vitro , Masculino , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA