Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.425
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731859

RESUMO

Dolutegravir (DTG) is one of the most prescribed antiretroviral drugs for treating people with HIV infection, including women of child-bearing potential or pregnant. Nonetheless, neuropsychiatric symptoms are frequently reported. Early reports suggested that, probably in relation to folic acid (FA) shortage, DTG may induce neural tube defects in infants born to women taking the drug during pregnancy. Subsequent reports did not definitively confirm these findings. Recent studies in animal models have highlighted the association between DTG exposure in utero and congenital anomalies, and an increased risk of neurologic abnormalities in children exposed during in utero life has been reported. Underlying mechanisms for DTG-related neurologic symptoms and congenital anomalies are not fully understood. We aimed to deepen our knowledge on the neurodevelopmental effects of DTG exposure and further explore the protective role of FA by the use of zebrafish embryos. We treated embryos at 4 and up to 144 h post fertilization (hpf) with a subtherapeutic DTG concentration (1 µM) and observed the disruption of the anterior-posterior axis and several morphological malformations in the developing brain that were both prevented by pre-exposure (2 hpf) and rescued by post-exposure (10 hpf) with FA. By whole-mount in situ hybridization with riboprobes for genes that are crucial during the early phases of neurodevelopment (ntl, pax2a, ngn1, neurod1) and by in vivo visualization of the transgenic Tg(ngn1:EGFP) zebrafish line, we found that DTG induced severe neurodevelopmental defects over time in most regions of the nervous system (notochord, midbrain-hindbrain boundary, eye, forebrain, midbrain, hindbrain, spinal cord) that were mostly but not completely rescued by FA supplementation. Of note, we observed the disruption of ngn1 expression in the dopaminergic regions of the developing forebrain, spinal cord neurons and spinal motor neuron projections, with the depletion of the tyrosine hydroxylase (TH)+ dopaminergic neurons of the dorsal diencephalon and the strong reduction in larvae locomotion. Our study further supports previous evidence that DTG can interfere with FA pathways in the developing brain but also provides new insights regarding the mechanisms involved in the increased risk of DTG-associated fetal neurodevelopmental defects and adverse neurologic outcomes in in utero exposed children, suggesting the impairment of dopaminergic pathways.


Assuntos
Ácido Fólico , Compostos Heterocíclicos com 3 Anéis , Oxazinas , Piperazinas , Piridonas , Peixe-Zebra , Animais , Compostos Heterocíclicos com 3 Anéis/farmacologia , Ácido Fólico/metabolismo , Oxazinas/farmacologia , Piridonas/farmacologia , Piperazinas/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Defeitos do Tubo Neural/induzido quimicamente , Neurogênese/efeitos dos fármacos , Feminino
2.
Cell Death Dis ; 15(5): 305, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693109

RESUMO

Zebrafish is widely adopted as a grafting model for studying human development and diseases. Current zebrafish xenotransplantations are performed using embryo recipients, as the adaptive immune system, responsible for host versus graft rejection, only reaches maturity at juvenile stage. However, transplanted primary human hematopoietic stem/progenitor cells (HSC) rapidly disappear even in zebrafish embryos, suggesting that another barrier to transplantation exists before the onset of adaptive immunity. Here, using a labelled macrophage zebrafish line, we demonstrated that engraftment of human HSC induces a massive recruitment of macrophages which rapidly phagocyte transplanted cells. Macrophages depletion, by chemical or pharmacological treatments, significantly improved the uptake and survival of transplanted cells, demonstrating the crucial implication of these innate immune cells for the successful engraftment of human cells in zebrafish. Beyond identifying the reasons for human hematopoietic cell engraftment failure, this work images the fate of human cells in real time over several days in macrophage-depleted zebrafish embryos.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Macrófagos , Peixe-Zebra , Peixe-Zebra/embriologia , Animais , Macrófagos/metabolismo , Humanos , Células-Tronco Hematopoéticas/metabolismo , Transplante de Células-Tronco Hematopoéticas/métodos , Embrião não Mamífero/metabolismo , Transplante Heterólogo , Fagocitose
3.
Proc Natl Acad Sci U S A ; 121(19): e2311685121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683994

RESUMO

Neural crest cells exemplify cellular diversification from a multipotent progenitor population. However, the full sequence of early molecular choices orchestrating the emergence of neural crest heterogeneity from the embryonic ectoderm remains elusive. Gene-regulatory-networks (GRN) govern early development and cell specification toward definitive neural crest. Here, we combine ultradense single-cell transcriptomes with machine-learning and large-scale transcriptomic and epigenomic experimental validation of selected trajectories, to provide the general principles and highlight specific features of the GRN underlying neural crest fate diversification from induction to early migration stages using Xenopus frog embryos as a model. During gastrulation, a transient neural border zone state precedes the choice between neural crest and placodes which includes multiple converging gene programs. During neurulation, transcription factor connectome, and bifurcation analyses demonstrate the early emergence of neural crest fates at the neural plate stage, alongside an unbiased multipotent-like lineage persisting until epithelial-mesenchymal transition stage. We also decipher circuits driving cranial and vagal neural crest formation and provide a broadly applicable high-throughput validation strategy for investigating single-cell transcriptomes in vertebrate GRNs in development, evolution, and disease.


Assuntos
Crista Neural , Análise de Célula Única , Xenopus laevis , Animais , Crista Neural/citologia , Crista Neural/metabolismo , Análise de Célula Única/métodos , Xenopus laevis/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Movimento Celular , Redes Reguladoras de Genes , Transcriptoma , Gastrulação , Placa Neural/metabolismo , Placa Neural/embriologia , Placa Neural/citologia , Transição Epitelial-Mesenquimal/genética , Embrião não Mamífero/metabolismo , Embrião não Mamífero/citologia , Neurulação/genética , Neurulação/fisiologia , Diferenciação Celular
4.
Zebrafish ; 21(2): 128-136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621212

RESUMO

Coordinated signaling pathway activity directs early patterning to set up the vertebrate body plan. Perturbations in the timing or location of signal molecule expression impacts embryo morphology and organ formation. In this study, we present a laboratory course to use zebrafish for studying the role of Wnt signaling in specifying the early embryonic axes. Students are exposed to basic techniques in molecular and developmental biology, including embryo manipulation, fluorescence microscopy, image processing, and data analysis. Furthermore, this course incorporates student-designed experiments to stimulate independent inquiry and improve scientific learning, providing an experience resembling graduate-level laboratory research. Students appreciated following vertebrate development in real-time, and principles of embryogenesis were reinforced by observing the morphological changes that arise due to signaling alterations. Scientific and research skills were enhanced through practice in experimental design, interpretation, and presentation.


Assuntos
Via de Sinalização Wnt , Peixe-Zebra , Humanos , Animais , Peixe-Zebra/genética , Padronização Corporal , Desenvolvimento Embrionário , Proteínas de Peixe-Zebra/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Embrião não Mamífero/metabolismo
5.
Evol Dev ; 26(3): e12476, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38654704

RESUMO

Tardigrades, commonly known as water bears, are enigmatic organisms characterized by their remarkable resilience to extreme environments despite their simple and compact body structure. To date, there is still much to understand about their evolutionary and developmental features contributing to their special body plan and abilities. This research provides preliminary insights on the conserved and specific gene expression patterns during embryonic development of water bears, focusing on the species Hypsibius exemplaris. The developmental dynamic expression analysis of the genes with various evolutionary age grades indicated that the mid-conserved stage of H. exemplaris corresponds to the period of ganglia and midgut development, with the late embryonic stage showing a transition from non-conserved to conserved state. Additionally, a comparison with Drosophila melanogaster highlighted the absence of certain pathway nodes in development-related pathways, such as Maml and Hairless, which are respectively the transcriptional co-activator and co-repressor of NOTCH regulated genes. We also employed Weighted Gene Co-expression Network Analysis (WGCNA) to investigate the expression patterns of tardigrade-specific genes during embryo development. Our findings indicated that the module containing the highest proportion of tardigrade-specific genes (TSGs) exhibits high expression levels before the mid-conserved stage, potentially playing a role in glutathione and lipid metabolism. These functions may be associated to the ecdysone synthesis and storage cell formation, which is unique to tardigrades.


Assuntos
Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Tardígrados , Animais , Tardígrados/genética , Tardígrados/embriologia , Desenvolvimento Embrionário/genética , Embrião não Mamífero/metabolismo
6.
Dev Biol ; 511: 63-75, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38621649

RESUMO

Loss of function variations in the dual specificity tyrosine-phosphorylation-regulated kinase 1 A (DYRK1A) gene are associated with craniofacial malformations in humans. Here we characterized the effects of deficient DYRK1A in craniofacial development using a developmental model, Xenopus laevis. Dyrk1a mRNA and protein were expressed throughout the developing head and both were enriched in the branchial arches which contribute to the face and jaw. Consistently, reduced Dyrk1a function, using dyrk1a morpholinos and pharmacological inhibitors, resulted in orofacial malformations including hypotelorism, altered mouth shape, slanted eyes, and narrower face accompanied by smaller jaw cartilage and muscle. Inhibition of Dyrk1a function resulted in misexpression of key craniofacial regulators including transcription factors and members of the retinoic acid signaling pathway. Two such regulators, sox9 and pax3 are required for neural crest development and their decreased expression corresponds with smaller neural crest domains within the branchial arches. Finally, we determined that the smaller size of the faces, jaw elements and neural crest domains in embryos deficient in Dyrk1a could be explained by increased cell death and decreased proliferation. This study is the first to provide insight into why craniofacial birth defects might arise in humans with variants of DYRK1A.


Assuntos
Quinases Dyrk , Regulação da Expressão Gênica no Desenvolvimento , Crista Neural , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Proteínas de Xenopus , Xenopus laevis , Animais , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Crista Neural/embriologia , Crista Neural/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , Transdução de Sinais , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/embriologia , Anormalidades Craniofaciais/metabolismo , Região Branquial/embriologia , Região Branquial/metabolismo , Embrião não Mamífero/metabolismo , Embrião não Mamífero/embriologia
7.
Curr Biol ; 34(9): 1853-1865.e6, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38604167

RESUMO

Different signaling mechanisms concur to ensure robust tissue patterning and cell fate instruction during animal development. Most of these mechanisms rely on signaling proteins that are produced, transported, and detected. The spatiotemporal dynamics of signaling molecules are largely unknown, yet they determine signal activity's spatial range and time frame. Here, we use the Caenorhabditis elegans embryo to study how Wnt ligands, an evolutionarily conserved family of signaling proteins, dynamically organize to establish cell polarity in a developing tissue. We identify how Wnt ligands, produced in the posterior half of the embryos, spread extracellularly to transmit information to distant target cells in the anterior half. With quantitative live imaging and fluorescence correlation spectroscopy, we show that Wnt ligands diffuse through the embryo over a timescale shorter than the cell cycle, in the intercellular space, and outside the tissue below the eggshell. We extracted diffusion coefficients of Wnt ligands and their receptor Frizzled and characterized their co-localization. Integrating our different measurements and observations in a simple computational framework, we show how fast diffusion in the embryo can polarize individual cells through a time integration of the arrival of the ligands at the target cells. The polarity established at the tissue level by a posterior Wnt source can be transferred to the cellular level. Our results support a diffusion-based long-range Wnt signaling, which is consistent with the dynamics of developing processes.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Polaridade Celular , Embrião não Mamífero , Proteínas Wnt , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Embrião não Mamífero/metabolismo , Embrião não Mamífero/embriologia , Ligantes , Via de Sinalização Wnt , Difusão
8.
Sci Rep ; 14(1): 9407, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688940

RESUMO

The cladoceran crustacean Daphnia exhibits phenotypic plasticity, a phenomenon that leads to diverse phenotypes from one genome. Alternative usage of gene isoforms has been considered a key gene regulation mechanism for controlling different phenotypes. However, to understand the phenotypic plasticity of Daphnia, gene isoforms have not been comprehensively analyzed. Here we identified 25,654 transcripts derived from the 9710 genes expressed during environmental sex determination of Daphnia magna using the long-read RNA-Seq with PacBio Iso-Seq. We found that 14,924 transcripts were previously unidentified and 5713 genes produced two or more isoforms. By a combination of Illumina short-read RNA-Seq, we detected 824 genes that implemented switching of the highest expressed isoform between females and males. Among the 824 genes, we found isoform switching of an ortholog of CREB-regulated transcription coactivator, a major regulator of carbohydrate metabolism in animals, and a correlation of this switching event with the sexually dimorphic expression of carbohydrate metabolic genes. These results suggest that a comprehensive catalog of isoforms may lead to understanding the molecular basis for environmental sex determination of Daphnia. We also infer the applicability of the full-length isoform analyses to the elucidation of phenotypic plasticity in Daphnia.


Assuntos
Daphnia , Isoformas de Proteínas , Animais , Daphnia/genética , Daphnia/fisiologia , Daphnia/embriologia , Feminino , Masculino , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processos de Determinação Sexual/genética , Partenogênese/genética , Regulação da Expressão Gênica no Desenvolvimento , Embrião não Mamífero/metabolismo , Daphnia magna
9.
Chem Biol Interact ; 392: 110925, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452846

RESUMO

In recent years, carbon nanotubes (CNTs) have become one of the most promising materials for the technology industry. However, due to the extensive usage of these materials, they may be released into the environment, and cause toxicities to the organism. Here, their acute toxicities in zebrafish embryos and larvae were evaluated by using various assessments that may provide us with a novel perspective on their effects on aquatic animals. Before conducting the toxicity assessments, the CNTs were characterized as multiwall carbon nanotubes (MWCNTs) functionalized with hydroxyl and carboxyl groups, which improved their solubility and dispersibility. Based on the results, abnormalities in zebrafish behaviors were observed in the exposed groups, indicated by a reduction in tail coiling frequency and alterations in the locomotion as the response toward photo and vibration stimuli that might be due to the disruption in the neuromodulatory system and the formation of reactive oxygen species (ROS) by MWCNTs. Next, based on the respiratory rate assay, exposed larvae consumed more oxygen, which may be due to the injuries in the larval gill by the MWCNTs. Finally, even though no irregularity was observed in the exposed larval cardiac rhythm, abnormalities were shown in their cardiac physiology and blood flow with significant downregulation in several cardiac development-related gene expressions. To sum up, although the following studies are necessary to understand the exact mechanism of their toxicity, the current study demonstrated the environmental implications of MWCNTs in particularly low concentrations and short-term exposure, especially to aquatic organisms.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Nanotubos de Carbono/toxicidade , Larva , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Embrião não Mamífero/metabolismo , Poluentes Químicos da Água/toxicidade
10.
Biochim Biophys Acta Gen Subj ; 1868(6): 130603, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521470

RESUMO

BACKGROUND: Redox control seems to be indispensable for proper embryonic development. The ratio between glutathione (GSH) and its oxidized disulfide (GSSG) is the most abundant cellular redox circuit. METHODS: We used zebrafish harboring the glutaredoxin 1-redox sensitive green fluorescent protein (Grx1-roGFP) probe either in mitochondria or cytosol to test the hypothesis that the GSH:GSSG ratio is strictly regulated through zebrafish embryogenesis to sustain the different developmental processes of the embryo. RESULTS: Following the GSSG:GSH ratio as a proxy for the GSH-dependent reduction potential (EhGSH) revealed increasing mitochondrial and cytosolic EhGSH during cleavage and gastrulation. During organogenesis, cytosolic EhGSH decreased, while that of mitochondria remained high. The similarity between EhGSH in brain and muscle suggests a central regulation. Modulation of GSH metabolism had only modest effects on the GSSG:GSH ratios of newly hatched larvae. However, inhibition of GSH reductase directly after fertilization led to dead embryos already 10 h later. Exposure to the emerging environmental pollutant Perfluorooctane Sulfonate (PFOS) disturbed the apparent regulated EhGSH as well. CONCLUSIONS: Mitochondrial and cytosolic GSSG:GSH ratios are almost identical in different organs during zebrafish development indicating that the EhGSH might follow H2O2 levels and rather indirectly affect specific enzymatic activities needed for proper embryogenesis. GENERAL SIGNIFICANCE: Our data confirm that vertebrate embryogenesis depends on strictly regulated redox homeostasis. Disturbance of the GSSG:GSH circuit, e.g. induced by environmental pollution, leads to malformation and death.


Assuntos
Citosol , Glutationa , Mitocôndrias , Oxirredução , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Glutationa/metabolismo , Mitocôndrias/metabolismo , Citosol/metabolismo , Desenvolvimento Embrionário , Dissulfeto de Glutationa/metabolismo , Embrião não Mamífero/metabolismo
11.
Dev Cell ; 59(8): 1058-1074.e11, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38460509

RESUMO

During oocyte maturation and early embryogenesis, changes in mRNA poly(A)-tail lengths strongly influence translation, but how these tail-length changes are orchestrated has been unclear. Here, we performed tail-length and translational profiling of mRNA reporter libraries (each with millions of 3' UTR sequence variants) in frog oocytes and embryos and in fish embryos. Contrasting to previously proposed cytoplasmic polyadenylation elements (CPEs), we found that a shorter element, UUUUA, together with the polyadenylation signal (PAS), specify cytoplasmic polyadenylation, and we identified contextual features that modulate the activity of both elements. In maturing oocytes, this tail lengthening occurs against a backdrop of global deadenylation and the action of C-rich elements that specify tail-length-independent translational repression. In embryos, cytoplasmic polyadenylation becomes more permissive, and additional elements specify waves of stage-specific deadenylation. Together, these findings largely explain the complex tapestry of tail-length changes observed in early frog and fish development, with strong evidence of conservation in both mice and humans.


Assuntos
Regiões 3' não Traduzidas , Oócitos , Poli A , Poliadenilação , Biossíntese de Proteínas , RNA Mensageiro , Animais , Oócitos/metabolismo , Oócitos/citologia , Poli A/metabolismo , Poli A/genética , Regiões 3' não Traduzidas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Humanos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Xenopus laevis/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/genética , Citoplasma/metabolismo
12.
Cell Stress Chaperones ; 29(2): 285-299, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428516

RESUMO

Females of the extremophile crustacean, Artemia franciscana, either release motile nauplii via the ovoviviparous pathway or encysted embryos (cysts) via the oviparous pathway. Cysts contain an abundant amount of the ATP-independent small heat shock protein that contributes to stress tolerance and embryo development, however, little is known of the role of ATP-dependent molecular chaperone, heat shock protein 90 (Hsp90) in the two processes. In this study, a hsp90 was cloned from A. franciscana. Characteristic domains of ArHsp90 were simulated from the deduced amino acid sequence, and 3D structures of ArHsp90 and Hsp90s of organisms from different groups were aligned. RNA interference was then employed to characterize ArHsp90 in A. franciscana nauplii and cysts. The partial knockdown of ArHsp90 slowed the development of nauplius-destined, but not cyst-destined embryos. ArHsp90 knockdown also reduced the survival and stress tolerance of nauplii newly released from A. franciscana females. Although the reduction of ArHsp90 had no effect on the development of diapause-destined embryos, the resulting cysts displayed reduced tolerance to desiccation and low temperature, two stresses normally encountered by A. franciscana in its natural environment. The results reveal that Hsp90 contributes to the development, growth, and stress tolerance of A. franciscana, an organism of practical importance as a feed source in aquaculture.


Assuntos
Artemia , Cistos , Animais , Feminino , Artemia/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Desenvolvimento Embrionário , Embrião não Mamífero/metabolismo , Cistos/metabolismo , Trifosfato de Adenosina/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-38522711

RESUMO

Carbendazim is a widely used fungicide to protect agricultural and horticultural crops against a wide array of fungal species. Published reports have shown that the wide usage of carbendazim resulted in reprotoxicity, carcinogenicity, immunotoxicity, and developmental toxicity in mammalian models. However, studies related to the developmental toxicity of carbendazim in aquatic organisms are not clear. To address this gap, an attempt was made by exposing zebrafish embryos to carbendazim (800 µg/L) and assessing the phenotypic and transcriptomic profile at different developmental stages [24 hour post fertilization (hpf), 48 hpf, 72 hpf and 96 hpf). At 48 hpf, phenotypic abnormalities such as delay in hatching rate, deformed spinal axial curvature, and pericardial edema were observed in zebrafish larvae over its respective controls. At 72 hpf, exposure of zebrafish embryos exposed to carbendazim resulted in scoliosis; however, unexposed larvae did not exhibit signs of scoliosis. Interestingly, the transcriptomic analysis revealed a total of 1253 DEGs were observed at selected time points, while unique genes at 24 hpf, 48 hpf, 72 hpf and 96 hpf was found to be 76.54 %, 61.14 %, 92.98 %, and 68.28 %, respectively. Functional profiling of downregulated genes revealed altered transcriptomic markers associated with phototransduction (24 hpf and 72 hpf), immune system (48 hpf), and SNARE interactions in the vesicular pathway (96 hpf). Whereas functional profiling of upregulated genes revealed altered transcriptomic markers associated with riboflavin metabolism (24 hpf), basal transcription factors (48 hpf), insulin signaling pathway (72 hpf), and primary bile acid biosynthesis (96 hpf). Taken together, carbendazim-induced developmental toxicity could be ascribed to pleiotropic responses at the molecular level, which in turn might reflect phenotypic abnormalities.


Assuntos
Benzimidazóis , Carbamatos , Escoliose , Poluentes Químicos da Água , Animais , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Larva , Escoliose/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
14.
Development ; 151(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488018

RESUMO

During asymmetric cell division, cell polarity is coordinated with the cell cycle to allow proper inheritance of cell fate determinants and the generation of cellular diversity. In the Caenorhabditis elegans zygote, polarity is governed by evolutionarily conserved Partitioning-defective (PAR) proteins that segregate to opposing cortical domains to specify asymmetric cell fates. Timely establishment of PAR domains requires a cell cycle kinase, Aurora A (AIR-1 in C. elegans). Aurora A depletion by RNAi causes a spectrum of phenotypes including reversed polarity, excess posterior domains and no posterior domain. How depletion of a single kinase can cause seemingly opposite phenotypes remains obscure. Using an auxin-inducible degradation system and drug treatments, we found that AIR-1 regulates polarity differently at different times of the cell cycle. During meiosis I, AIR-1 acts to prevent later formation of bipolar domains, whereas in meiosis II, AIR-1 is necessary to recruit PAR-2 onto the membrane. Together, these data clarify the origin of multiple polarization phenotypes in RNAi experiments and reveal multiple roles of AIR-1 in coordinating PAR protein localization with cell cycle progression.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Zigoto/metabolismo , Ciclo Celular/genética , Polaridade Celular/genética , Embrião não Mamífero/metabolismo
15.
J Transl Med ; 22(1): 253, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459561

RESUMO

Tobacco pollutants are prevalent in the environment, leading to inadvertent exposure of pregnant females. Studies of these pollutants' toxic effects on embryonic development have not fully elucidated the potential underlying mechanisms. Therefore, in this study, we aimed to investigate the developmental toxicity induced by cigarette smoke extract (CSE) at concentrations of 0.25, 1, and 2.5% using a zebrafish embryo toxicity test and integrated transcriptomic analysis of microRNA (miRNA) and messenger RNA (mRNA). The findings revealed that CSE caused developmental toxicity, including increased mortality and decreased incubation rate, in a dose-dependent manner. Moreover, CSE induced malformations and apoptosis, specifically in the head and heart of zebrafish larvae. We used mRNA and miRNA sequencing analyses to compare changes in the expression of genes and miRNAs in zebrafish larvae. The bioinformatics analysis indicates that the mechanism underlying CSE-induced developmental toxicity was associated with compromised genetic material damage repair, deregulated apoptosis, and disturbed lipid metabolism. The enrichment analysis and RT-qPCR show that the ctsba gene plays a crucial function in embryo developmental apoptosis, and the fads2 gene mainly regulates lipid metabolic toxicity. The results of this study improve the understanding of CSE-induced developmental toxicity in zebrafish embryos and contribute insights into the formulation of novel preventive strategies against tobacco pollutants during early embryonic development.


Assuntos
Poluentes Ambientais , MicroRNAs , Animais , Feminino , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Embrião não Mamífero/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Poluentes Ambientais/metabolismo , Poluentes Ambientais/farmacologia
16.
Environ Sci Technol ; 58(14): 6128-6137, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38530926

RESUMO

High-throughput transcriptomics (HTTr) is increasingly applied to zebrafish embryos to survey the toxicological effects of environmental chemicals. Before the adoption of this approach in regulatory testing, it is essential to characterize background noise in order to guide experimental designs. We thus empirically quantified the HTTr false discovery rate (FDR) across different embryo pool sizes, sample sizes, and concentration groups for toxicology studies. We exposed zebrafish embryos to 0.1% dimethyl sulfoxide (DMSO) for 5 days. Pools of 1, 5, 10, and 20 embryos were created (n = 24 samples for each pool size). Samples were sequenced on the TempO-Seq platform and then randomly assigned to mock treatment groups before differentially expressed gene (DEG), pathway, and benchmark concentration (BMC) analyses. Given that all samples were treated with DMSO, any significant DEGs, pathways, or BMCs are false positives. As expected, we found decreasing FDRs for DEG and pathway analyses with increasing pool and sample sizes. Similarly, FDRs for BMC analyses decreased with increasing pool size and concentration groups, with more stringent BMC premodel filtering reducing BMC FDRs. Our study provides foundational data for determining appropriate experiment designs for regulatory toxicity testing with HTTr in zebrafish embryos.


Assuntos
Dimetil Sulfóxido , Peixe-Zebra , Animais , Peixe-Zebra/genética , Dimetil Sulfóxido/farmacologia , Dimetil Sulfóxido/toxicidade , Benchmarking , Perfilação da Expressão Gênica , Transcriptoma , Embrião não Mamífero/metabolismo
17.
G3 (Bethesda) ; 14(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38366558

RESUMO

In Drosophila, the signaling pathway activated by the ligand Folded gastrulation (Fog) is among the few known G protein-coupled receptor (GPCR) pathways to regulate cell shape change with a well-characterized role in gastrulation. However, an understanding of the spectrum of morphogenetic events regulated by Fog signaling is still lacking. Here, we present an analysis of the expression pattern and regulation of fog using a genome-engineered Fog::sfGFP line. We show that Fog expression is widespread and in tissues previously not associated with the signaling pathway including germ cells, trachea, and amnioserosa. In the central nervous system (CNS), we find that the ligand is expressed in multiple types of glia indicating a prominent role in the development of these cells. Consistent with this, we have identified 3 intronic enhancers whose expression in the CNS overlaps with Fog::sfGFP. Further, we show that enhancer-1, (fogintenh-1) located proximal to the coding exon is responsive to AbdA. Supporting this, we find that fog expression is downregulated in abdA mutants. Together, our study highlights the broad scope of Fog-GPCR signaling during embryogenesis and identifies Hox gene AbdA as a novel regulator of fog expression.


Assuntos
Proteínas de Drosophila , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Gastrulação/genética , Transdução de Sinais , Morfogênese/genética , Elementos Facilitadores Genéticos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Drosophila melanogaster/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/embriologia , Embrião não Mamífero/metabolismo
18.
Nucleic Acids Res ; 52(7): 3682-3701, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38321954

RESUMO

Retinoic acid (RA) is the ligand of RA receptors (RARs), transcription factors that bind to RA response elements. RA signaling is required for multiple processes during embryonic development, including body axis extension, hindbrain antero-posterior patterning and forelimb bud initiation. Although some RA target genes have been identified, little is known about the genome-wide effects of RA signaling during in vivo embryonic development. Here, we stimulate the RA pathway by treating zebrafish embryos with all-trans-RA (atRA) and use a combination of RNA-seq, ATAC-seq, ChIP-seq and HiChIP to gain insight into the molecular mechanisms by which exogenously induced RA signaling controls gene expression. We find that RA signaling is involved in anterior/posterior patterning, central nervous system development, and the transition from pluripotency to differentiation. AtRA treatment also alters chromatin accessibility during early development and promotes chromatin binding of RARαa and the RA targets Hoxb1b, Meis2b and Sox3, which cooperate in central nervous system development. Finally, we show that exogenous RA induces a rewiring of chromatin architecture, with alterations in chromatin 3D interactions involving target genes. Altogether, our findings identify genome-wide targets of RA signaling and provide a molecular mechanism by which developmental signaling pathways regulate target gene expression by altering chromatin topology.


Assuntos
Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Tretinoína , Animais , Cromatina/metabolismo , Embrião não Mamífero/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/efeitos dos fármacos , Epigenoma , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tretinoína/farmacologia , Tretinoína/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
Nucleic Acids Res ; 52(6): 3106-3120, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38364856

RESUMO

Chromatin accessibility plays a critical role in the regulation of cell fate decisions. Although gene expression changes have been extensively profiled at the single-cell level during early embryogenesis, the dynamics of chromatin accessibility at cis-regulatory elements remain poorly studied. Here, we used a plate-based single-cell ATAC-seq method to profile the chromatin accessibility dynamics of over 10 000 nuclei from zebrafish embryos. We investigated several important time points immediately after zygotic genome activation (ZGA), covering key developmental stages up to dome. The results revealed key chromatin signatures in the first cell fate specifications when cells start to differentiate into enveloping layer (EVL) and yolk syncytial layer (YSL) cells. Finally, we uncovered many potential cell-type specific enhancers and transcription factor motifs that are important for the cell fate specifications.


Assuntos
Cromatina , Desenvolvimento Embrionário , Peixe-Zebra , Animais , Cromatina/genética , Cromatina/metabolismo , Gema de Ovo/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Análise de Célula Única , Domínios e Motivos de Interação entre Proteínas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-38423198

RESUMO

Hexaconazole is a highly effective triazole fungicide that is frequently applied in various countries to elevate crop productivity. Given its long half-life and high water solubility, this fungicide is frequently detected in the environment, including water sources. Moreover, hexaconazole exerts hazardous effects on nontarget organisms. However, little is known about the toxic effects of hexaconazole on animal development. Thus, this study aimed to investigate the developmental toxicity of hexaconazole to zebrafish, a valuable animal model for toxicological studies, and elucidate the underlying mechanisms. Results showed that hexaconazole affected the viability and hatching rate of zebrafish at 96 h postfertilization. Hexaconazole-treated zebrafish showed phenotypic defects, such as reduced size of head and eyes and enlarged pericardiac edema. Moreover, hexaconazole induced apoptosis, DNA fragmentation, and inflammation in developing zebrafish. Various organ defects, including neurotoxicity, cardiovascular toxicity, and hepatotoxicity, were observed in transgenic zebrafish models olig2:dsRed, fli1:eGFP, and l-fabp:dsRed. Furthermore, hexaconazole treatment altered the Akt and MAPK signaling pathways, which possibly triggered the organ defects and other toxic mechanisms. This study demonstrated the developmental toxicity of hexaconazole to zebrafish and elucidated the underlying mechanisms.


Assuntos
Fungicidas Industriais , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Fungicidas Industriais/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Triazóis/toxicidade , Inflamação/induzido quimicamente , Apoptose , Água/metabolismo , Embrião não Mamífero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA