Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(15): e2100361119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394876

RESUMO

As a midsized gene family conserved more by lineage than function, the typical plant terpene synthases (TPSs) could be a valuable tool to examine plant evolution. TPSs are pivotal in biosynthesis of gibberellins and related phytohormones as well as in formation of the extensive arsenal of specialized plant metabolites mediating ecological interactions whose production is often lineage specific. Yet the origin and early evolution of the TPS family is not well understood. Systematic analysis of an array of transcriptomes and sequenced genomes indicated that the TPS family originated after the divergence of land plants from charophytic algae. Phylogenetic and biochemical analyses support the hypothesis that the ancestral TPS gene encoded a bifunctional class I and II diterpene synthase producing the ent-kaurene required for phytohormone production in all extant lineages of land plants. Moreover, the ancestral TPS gene likely underwent duplication at least twice early in land plant evolution. Together these two gave rise to three TPS lineages leading to the extant TPS-c, TPS-e/f, and the remaining TPS (h/d/a/b/g) subfamilies, with the latter dedicated to secondary rather than primary metabolism while the former two contain those genes involved in ent-kaurene production. Nevertheless, parallel evolution from the ent-kaurene­producing class I and class II diterpene synthases has led to roles for TPS-e/f and -c subfamily members in secondary metabolism as well. These results clarify TPS evolutionary history and provide context for the role of these genes in producing the vast diversity of terpenoid natural products observed today in various land plant lineages.


Assuntos
Alquil e Aril Transferases , Embriófitas , Evolução Molecular , Proteínas de Plantas , Alquil e Aril Transferases/classificação , Alquil e Aril Transferases/genética , Embriófitas/enzimologia , Embriófitas/genética , Duplicação Gênica , Filogenia , Reguladores de Crescimento de Plantas , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Terpenos/metabolismo
2.
Plant J ; 109(1): 92-111, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34713507

RESUMO

Plants need to rapidly and flexibly adjust their metabolism to changes of their immediate environment. Since this necessity results from the sessile lifestyle of land plants, key mechanisms for orchestrating central metabolic acclimation are likely to have evolved early. Here, we explore the role of lysine acetylation as a post-translational modification to directly modulate metabolic function. We generated a lysine acetylome of the moss Physcomitrium patens and identified 638 lysine acetylation sites, mostly found in mitochondrial and plastidial proteins. A comparison with available angiosperm data pinpointed lysine acetylation as a conserved regulatory strategy in land plants. Focusing on mitochondrial central metabolism, we functionally analyzed acetylation of mitochondrial malate dehydrogenase (mMDH), which acts as a hub of plant metabolic flexibility. In P. patens mMDH1, we detected a single acetylated lysine located next to one of the four acetylation sites detected in Arabidopsis thaliana mMDH1. We assessed the kinetic behavior of recombinant A. thaliana and P. patens mMDH1 with site-specifically incorporated acetyl-lysines. Acetylation of A. thaliana mMDH1 at K169, K170, and K334 decreases its oxaloacetate reduction activity, while acetylation of P. patens mMDH1 at K172 increases this activity. We found modulation of the malate oxidation activity only in A. thaliana mMDH1, where acetylation of K334 strongly activated it. Comparative homology modeling of MDH proteins revealed that evolutionarily conserved lysines serve as hotspots of acetylation. Our combined analyses indicate lysine acetylation as a common strategy to fine-tune the activity of central metabolic enzymes with likely impact on plant acclimation capacity.


Assuntos
Embriófitas/enzimologia , Malato Desidrogenase/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Embriófitas/genética , Lisina/metabolismo , Malato Desidrogenase/genética , Mitocôndrias/enzimologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant J ; 108(6): 1565-1584, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34628690

RESUMO

Glutamine synthetase (GS; E.C.6.3.1.2) is a key enzyme in higher plants with two isozymes, cytosolic GS1 and plastidic GS2, and involves in the assimilation and recycling of NH4+ ions and maintenance of complex traits such as crop nitrogen-use efficiency and yield. Our present understanding of crop nitrogen-use efficiency and its correlation with the functional role of the GS family genes is inadequate, which delays harnessing the benefit of this key enzyme in crop improvement. In this report, we performed a comprehensive investigation on the phylogenetic relationship, structural properties, complex multilevel gene regulation, and expression patterns of the GS genes to enrich present understanding about the enzyme. Our Gene Ontology and protein-protein interactions analysis revealed the functional aspects of GS isozymes in stress mitigation, aging, nucleotide biosynthesis/transport, DNA repair and response to metals. The insight gained here contributes to the future research strategies in developing climate-smart crops for global sustainability.


Assuntos
Glutamato-Amônia Ligase/química , Glutamato-Amônia Ligase/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Processamento Alternativo , Motivos de Aminoácidos , Biologia Computacional/métodos , Mineração de Dados , Embriófitas/enzimologia , Embriófitas/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Glutamato-Amônia Ligase/genética , Modelos Moleculares , Filogenia , Proteínas de Plantas/genética , Conformação Proteica , Processamento de Proteína Pós-Traducional
4.
Mol Plant ; 14(8): 1244-1265, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34216829

RESUMO

The superfamily of cytochrome P450 (CYP) enzymes plays key roles in plant evolution and metabolic diversification. This review provides a status on the CYP landscape within green algae and land plants. The 11 conserved CYP clans known from vascular plants are all present in green algae and several green algae-specific clans are recognized. Clan 71, 72, and 85 remain the largest CYP clans and include many taxa-specific CYP (sub)families reflecting emergence of linage-specific pathways. Molecular features and dynamics of CYP plasticity and evolution are discussed and exemplified by selected biosynthetic pathways. High substrate promiscuity is commonly observed for CYPs from large families, favoring retention of gene duplicates and neofunctionalization, thus seeding acquisition of new functions. Elucidation of biosynthetic pathways producing metabolites with sporadic distribution across plant phylogeny reveals multiple examples of convergent evolution where CYPs have been independently recruited from the same or different CYP families, to adapt to similar environmental challenges or ecological niches. Sometimes only a single or a few mutations are required for functional interconversion. A compilation of functionally characterized plant CYPs is provided online through the Plant P450 Database (erda.dk/public/vgrid/PlantP450/).


Assuntos
Clorófitas/enzimologia , Sistema Enzimático do Citocromo P-450/genética , Embriófitas/enzimologia , Evolução Molecular , Família Multigênica , Clorófitas/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Embriófitas/genética , Filogenia
5.
Plant Cell Physiol ; 62(12): 1874-1889, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34197607

RESUMO

All land plants encode large multigene families of xyloglucan endotransglucosylase/hydrolases (XTHs), plant-specific enzymes that cleave and reconnect plant cell-wall polysaccharides. Despite the ubiquity of these enzymes, considerable uncertainty remains regarding the evolutionary history of the XTH family. Phylogenomic and comparative analyses in this study traced the non-plant origins of the XTH family to Alphaproteobacteria ExoKs, bacterial enzymes involved in loosening biofilms, rather than Firmicutes licheninases, plant biomass digesting enzymes, as previously supposed. The relevant horizontal gene transfer (HGT) event was mapped to the divergence of non-swimming charophycean algae in the Cryogenian geological period. This HGT event was the likely origin of charophycean EG16-2s, which are putative intermediates between ExoKs and XTHs. Another HGT event in the Cryogenian may have led from EG16-2s or ExoKs to fungal Congo Red Hypersensitive proteins (CRHs) to fungal CRHs, enzymes that cleave and reconnect chitin and glucans in fungal cell walls. This successive transfer of enzyme-encoding genes may have supported the adaptation of plants and fungi to the ancient icy environment by facilitating their sessile lifestyles. Furthermore, several protein evolutionary steps, including coevolution of substrate-interacting residues and putative intra-family gene fusion, occurred in the land plant lineage and drove diversification of the XTH family. At least some of those events correlated with the evolutionary gain of broader substrate specificities, which may have underpinned the expansion of the XTH family by enhancing duplicated gene survival. Together, this study highlights the Precambrian evolution of life and the mode of multigene family expansion in the evolutionary history of the XTH family.


Assuntos
Parede Celular/enzimologia , Embriófitas/enzimologia , Evolução Molecular , Família Multigênica , Proteínas de Plantas/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Proteínas de Plantas/metabolismo
6.
Plant Cell ; 33(5): 1472-1491, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33638637

RESUMO

The plant phenylpropanoid pathway generates a major class of specialized metabolites and precursors of essential extracellular polymers that initially appeared upon plant terrestrialization. Despite its evolutionary significance, little is known about the complexity and function of this major metabolic pathway in extant bryophytes, which represent the non-vascular stage of embryophyte evolution. Here, we report that the HYDROXYCINNAMOYL-CoA:SHIKIMATE HYDROXYCINNAMOYL TRANSFERASE (HCT) gene, which plays a critical function in the phenylpropanoid pathway during seed plant development, is functionally conserved in Physcomitrium patens (Physcomitrella), in the moss lineage of bryophytes. Phylogenetic analysis indicates that bona fide HCT function emerged in the progenitor of embryophytes. In vitro enzyme assays, moss phenolic pathway reconstitution in yeast and in planta gene inactivation coupled to targeted metabolic profiling, collectively indicate that P. patens HCT (PpHCT), similar to tracheophyte HCT orthologs, uses shikimate as a native acyl acceptor to produce a p-coumaroyl-5-O-shikimate intermediate. Phenotypic and metabolic analyses of loss-of-function mutants show that PpHCT is necessary for the production of caffeate derivatives, including previously reported caffeoyl-threonate esters, and for the formation of an intact cuticle. Deep conservation of HCT function in embryophytes is further suggested by the ability of HCT genes from P. patens and the liverwort Marchantia polymorpha to complement an Arabidopsis thaliana CRISPR/Cas9 hct mutant, and by the presence of phenolic esters of shikimate in representative species of the three bryophyte lineages.


Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Sequência Conservada , Embriófitas/enzimologia , Evolução Molecular , Acilação , Aciltransferases/deficiência , Biocatálise , Briófitas/enzimologia , Embriófitas/genética , Regulação Enzimológica da Expressão Gênica , Genes de Plantas , Cinética , Modelos Biológicos , Fenóis/metabolismo , Filogenia , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Chiquímico/química , Ácido Chiquímico/metabolismo
7.
Plant Cell Physiol ; 61(3): 470-480, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31722408

RESUMO

Regulation of the stability and the quality of mitochondrial RNA is essential for the maintenance of mitochondrial and cellular functions in eukaryotes. We have previously reported that the eukaryotic poly(A)-specific ribonuclease (PARN) and the prokaryotic poly(A) polymerase encoded by AHG2 and AGS1, respectively, coordinately regulate the poly(A) status and the stability of mitochondrial mRNA in Arabidopsis. Mitochondrial function of PARN has not been reported in any other eukaryotes. To know how much this PARN-based mitochondrial mRNA regulation is conserved among plants, we studied the AHG2 and AGS1 counterparts of the liverwort, Marchantia polymorpha, a member of basal land plant lineage. We found that M. polymorpha has one ortholog each for AHG2 and AGS1, named MpAHG2 and MpAGS1, respectively. Their Citrine-fused proteins were detected in mitochondria of the liverwort. Molecular genetic analysis showed that MpAHG2 is essential and functionally interacts with MpAGS1 as observed in Arabidopsis. A recombinant MpAHG2 protein had a deadenylase activity in vitro. Overexpression of MpAGS1 and the reduced expression of MpAHG2 caused an accumulation of polyadenylated Mpcox1 mRNA. Furthermore, MpAHG2 suppressed Arabidopsis ahg2-1 mutant phenotype. These results suggest that the PARN-based mitochondrial mRNA regulatory system is conserved in land plants.


Assuntos
Embriófitas/genética , Embriófitas/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Poli A/metabolismo , RNA Mensageiro/metabolismo , RNA Mitocondrial/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Embriófitas/enzimologia , Regulação da Expressão Gênica de Plantas , Marchantia/genética , Marchantia/metabolismo , Mitocôndrias/metabolismo , Fenótipo , Plantas Geneticamente Modificadas/genética , Transcriptoma
8.
New Phytol ; 224(1): 466-479, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31183872

RESUMO

Mannans are an abundant cell wall polysaccharide in bryophytes, seedless vascular plants and gymnosperms. A previous study has shown that mannan acetylation in Arabidopsis and konjac is mediated by mannan O-acetyltransferases belonging to the Domain of Unknown Function (DUF) 231 family. However, little is known about the acetylation patterns of mannans in bryophytes and seedless vascular plants, and the evolutionary origin of mannan O-acetyltransferases in land plants has not yet been studied. Phylogenetic analysis of the DUF231 family revealed that DUF231 members were present in the charophycean green algae and evolved to form overlapped and divergent phylogenetic groups in different taxa of land plants. Acetyltransferase activity assays of recombinant proteins demonstrated that a number of group II DUF231 members from moss, Selaginella, pine, spruce, rice and poplar were mannan 2-O- and 3-O-acetyltransferases, whereas the two group I DUF231 members from the alga Klebsormidium nitens were not. Structural analysis of mannans from moss and Selaginella showed they were composed of mannosyl and glucosyl residues and the mannosyl residues were acetylated at O-2 and O-3. These findings indicate that although the DUF231 genes originated in algae, their recruitment as mannan O-acetyltransferases probably occurred in bryophytes, and the biochemical functions of these O-acetyltransferases are evolutionarily conserved throughout land plants.


Assuntos
Acetiltransferases/genética , Acetiltransferases/metabolismo , Embriófitas/enzimologia , Embriófitas/genética , Evolução Molecular , Mananas/metabolismo , Acetilação , Biocatálise , Genes de Plantas , Células HEK293 , Humanos , Filogenia , Espectroscopia de Prótons por Ressonância Magnética , Proteínas Recombinantes/biossíntese
9.
J Exp Bot ; 70(6): 1815-1827, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30861072

RESUMO

Ethanol fermentation is considered as one of the main metabolic adaptations to ensure energy production in higher plants under anaerobic conditions. Following this pathway, pyruvate is decarboxylated and reduced to ethanol with the concomitant oxidation of NADH to NAD+. Despite its acknowledgement as an essential metabolic strategy, the conservation of this pathway and its regulation throughout plant evolution have not been assessed so far. To address this question, we compared ethanol fermentation in species representing subsequent steps in plant evolution and related it to the structural features and transcriptional regulation of the two enzymes involved: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). We observed that, despite the conserved ability to produce ethanol upon hypoxia in distant phyla, transcriptional regulation of the enzymes involved is not conserved in ancient plant lineages, whose ADH homologues do not share structural features distinctive for acetaldehyde/ethanol-processing enzymes. Moreover, Arabidopsis mutants devoid of ADH expression exhibited enhanced PDC activity and retained substantial ethanol production under hypoxic conditions. Therefore, we concluded that, whereas ethanol production is a highly conserved adaptation to low oxygen, its catalysis and regulation in land plants probably involve components that will be identified in the future.


Assuntos
Álcool Desidrogenase/metabolismo , Evolução Biológica , Embriófitas/metabolismo , Etanol/metabolismo , Fermentação , Piruvato Descarboxilase/metabolismo , Embriófitas/enzimologia
10.
BMC Evol Biol ; 19(1): 66, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30819112

RESUMO

BACKGROUND: ß-Amylases (BAMs) are a multigene family of glucan hydrolytic enzymes playing a key role not only for plant biology but also for many industrial applications, such as the malting process in the brewing and distilling industries. BAMs have been extensively studied in Arabidopsis thaliana where they show a surprising level of complexity in terms of specialization within the different isoforms as well as regulatory functions played by at least three catalytically inactive members. Despite the importance of BAMs and the fact that multiple BAM proteins are also present in other angiosperms, little is known about their phylogenetic history or functional relationship. RESULTS: Here, we examined 961 ß-amylase sequences from 136 different algae and land plant species, including 66 sequenced genomes and many transcriptomes. The extraordinary number and the diversity of organisms examined allowed us to reconstruct the main patterns of ß-amylase evolution in land plants. We identified eight distinct clades in angiosperms, which results from extensive gene duplications and sub- or neo-functionalization. We discovered a novel clade of BAM, absent in Arabidopsis, which we called BAM10. BAM10 emerged before the radiation of seed plants and has the feature of an inactive enzyme. Furthermore, we report that BAM4 - an important protein regulating Arabidopsis starch metabolism - is absent in many relevant starch-accumulating crop species, suggesting that starch degradation may be differently regulated between species. CONCLUSIONS: BAM proteins originated sometime more than 400 million years ago and expanded together with the differentiation of plants into organisms of increasing complexity. Our phylogenetic analyses provide essential insights for future functional studies of this important class of storage glucan hydrolases and regulatory proteins.


Assuntos
Embriófitas/enzimologia , Evolução Molecular , Proteínas de Plantas/genética , beta-Amilase/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Embriófitas/genética , Duplicação Gênica , Perfilação da Expressão Gênica , Genoma de Planta , Família Multigênica , Filogenia , Proteínas de Plantas/fisiologia , beta-Amilase/fisiologia
11.
J Biol Chem ; 293(48): 18601-18612, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30291143

RESUMO

Flavonoids are important polyphenolic natural products, ubiquitous in land plants, that play diverse functions in plants' survival in their ecological niches, including UV protection, pigmentation for attracting pollinators, symbiotic nitrogen fixation, and defense against herbivores. Chalcone synthase (CHS) catalyzes the first committed step in plant flavonoid biosynthesis and is highly conserved in all land plants. In several previously reported crystal structures of CHSs from flowering plants, the catalytic cysteine is oxidized to sulfinic acid, indicating enhanced nucleophilicity in this residue associated with its increased susceptibility to oxidation. In this study, we report a set of new crystal structures of CHSs representing all five major lineages of land plants (bryophytes, lycophytes, monilophytes, gymnosperms, and angiosperms), spanning 500 million years of evolution. We reveal that the structures of CHS from a lycophyte and a moss species preserve the catalytic cysteine in a reduced state, in contrast to the cysteine sulfinic acid seen in all euphyllophyte CHS structures. In vivo complementation, in vitro biochemical and mutagenesis analyses, and molecular dynamics simulations identified a set of residues that differ between basal-plant and euphyllophyte CHSs and modulate catalytic cysteine reactivity. We propose that the CHS active-site environment has evolved in euphyllophytes to further enhance the nucleophilicity of the catalytic cysteine since the divergence of euphyllophytes from other vascular plant lineages 400 million years ago. These changes in CHS could have contributed to the diversification of flavonoid biosynthesis in euphyllophytes, which in turn contributed to their dominance in terrestrial ecosystems.


Assuntos
Aciltransferases/metabolismo , Evolução Biológica , Cisteína/metabolismo , Embriófitas/enzimologia , Aciltransferases/química , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Cristalografia por Raios X , Embriófitas/classificação , Embriófitas/fisiologia , Simulação de Dinâmica Molecular , Filogenia , Conformação Proteica , Homologia de Sequência de Aminoácidos
12.
Mol Phylogenet Evol ; 120: 33-42, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29222062

RESUMO

Plants are successful paleopolyploids. The wide diversity of land plants is driven strongly by their gene duplicates undergoing distinct evolutionary fates after duplication. We used genomic resources from 35 model plant species to unravel the evolutionary fate of gene copies (paralogs) of the cobalamin-independent methionine synthase (metE) gene family across the land plants. To explore genealogical relationships and characterize positive selection as a driving force in the evolution of metE paralogs within a single species, we carried out complementary analyses on genomic data of 32 genotypes of soybean. The size of the metE gene family remained small across the land plants; most of the studied species possessed 1-6 paralogs. Gene products were either cytosolic or chloroplastic; this dual subcellular distribution arose early during the divergence of the land plants and reached all extant lineages. Biased gene loss and gene retention events took place multiple times; recurrent evolution remodeled redundant metE paralogs to recover and maintain the dual subcellular distribution of MetE. Shared whole-genome duplication events gave rise to the metE paralogs of both soybean and Medicago truncatula. In soybean, the ancestral paralog pair GlymaPP2A encoded a cytosolic isoform of MetE, was under strong purifying selection, and retained high levels of expression across eight RNA-seq expression libraries. The daughters GlymaPP1 and GlymaPP2B showed accelerated rates of evolution, accumulated many sites predicted to be under positive selection, and possessed low levels of expression. Our results suggest that the metE paralogs of soybean follow Ohno's neofunctionalization model of gene duplicate evolution.


Assuntos
Embriófitas/enzimologia , Embriófitas/genética , Evolução Molecular , Genes de Plantas , Metiltransferases/genética , Família Multigênica , Teorema de Bayes , Duplicação Gênica , Perfilação da Expressão Gênica , Genes Duplicados , Genótipo , Filogenia , Homologia de Sequência do Ácido Nucleico , Glycine max/enzimologia , Glycine max/genética
13.
New Phytol ; 217(2): 909-924, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29083033

RESUMO

Flavonoids ubiquitously distribute to the terrestrial plants and chalcone isomerase (CHI)-catalyzed intramolecular and stereospecific cyclization of chalcones is a committed step in the production of flavonoids. However, so far the bona fide CHIs are found only in vascular plants, and their origin and evolution remains elusive. We conducted transcriptomic and/or genomic sequence search, subsequent phylogenetic analysis, and detailed biochemical and genetic characterization to explore the potential existence of CHI proteins in the basal bryophyte liverwort species and the lycophyte Selaginella moellendorffii. We found that both liverwort and Selaginella species possess canonical CHI-fold proteins that cluster with their corresponding higher plant counterparts. Among them, some members exhibited bona fide CHI activity, which catalyze stereospecific cyclization of both 6'-hydroxychalcone and 6'-deoxychalcone, yielding corresponding 5-hydroxy and 5-deoxyflavanones, resembling the typical type II CHIs currently known to be 'specific' for legume plants. Expressing those primitive bona fide CHIs in the Arabidopsis chi mutant restores the seed coat transparent testa phenotype and the accumulation of flavonoids. These findings, in contrast to our current understanding of the evolution of enzymatic CHIs, suggest that emergence of the bona fide type II CHIs is an ancient evolution event that occurred before the divergence of liverwort lineages.


Assuntos
Embriófitas/enzimologia , Evolução Molecular , Flavonoides/biossíntese , Liases Intramoleculares/metabolismo , Sequência de Aminoácidos , Biocatálise , Vias Biossintéticas , Ciclização , Ácidos Graxos/metabolismo , Flavonoides/química , Teste de Complementação Genética , Liases Intramoleculares/química , Liases Intramoleculares/genética , Cinética , Mutação/genética , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Recombinação Genética/genética
14.
FEMS Microbiol Lett ; 364(16)2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28854711

RESUMO

The universal, but catalytically modest, CO2-fixing enzyme Rubisco is currently experiencing intense interest by researchers aiming to enhance crop photosynthesis. These efforts are mostly focused on the highly conserved hexadecameric enzyme found in land plants. In comparison, prokaryotic organisms harbor a far greater diversity in Rubisco forms. Recent work towards improving our appreciation of microbial Rubisco properties and harnessing their potential is surveyed. New structural models are providing informative glimpses into catalytic subtleties and diverse oligomeric states. Ongoing characterization is informing us about the conservation of constraints, such as sugar phosphate inhibition and the associated dependence on Rubisco activase helper proteins. Prokaryotic Rubiscos operate under a far wider range of metabolic contexts than the photosynthetic function of higher plant enzymes. Relaxed selection pressures may have resulted in the exploration of a larger volume of sequence space than permitted in organisms performing oxygenic photosynthesis. To tap into the potential of microbial Rubiscos, in vivo selection systems are being used to discover functional metagenomic Rubiscos. Various directed evolution systems to optimize their function have been developed. It is anticipated that this approach will provide access to biotechnologically valuable enzymes that cannot be encountered in the higher plant Rubisco space.


Assuntos
Archaea/enzimologia , Bactérias/enzimologia , Biotecnologia/tendências , Ribulose-Bifosfato Carboxilase , Dióxido de Carbono/metabolismo , Evolução Molecular Direcionada , Embriófitas/enzimologia , Variação Genética , Metagenômica , Fotossíntese , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/classificação , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Seleção Genética
15.
Mol Plant Microbe Interact ; 30(6): 489-501, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28353400

RESUMO

Subtilases, a family of proteases involved in a variety of developmental processes in land plants, are also involved in both mutualistic symbiosis and host-pathogen interactions in different angiosperm lineages. We examined the evolutionary history of subtilase genes across land plants through a phylogenetic analysis integrating amino acid sequence data from full genomes, transcriptomes, and characterized subtilases of 341 species of diverse green algae and land plants along with subtilases from 12 species of other eukaryotes, archaea, and bacteria. Our analysis reconstructs the subtilase gene phylogeny and identifies 11 new gene lineages, six of which have no previously characterized members. Two large, previously unnamed, subtilase gene lineages that diverged before the origin of angiosperms accounted for the majority of subtilases shown to be associated with symbiotic interactions. These lineages expanded through both whole-genome and tandem duplication, with differential neofunctionalization and subfunctionalization creating paralogs associated with different symbioses, including nodulation with nitrogen-fixing bacteria, arbuscular mycorrhizae, and pathogenesis in different plant clades. This study demonstrates for the first time that a key gene family involved in plant-microbe interactions proliferated in size and functional diversity before the explosive radiation of angiosperms.


Assuntos
Clorófitas/genética , Embriófitas/genética , Evolução Molecular , Subtilisinas/genética , Archaea/enzimologia , Archaea/genética , Bactérias/enzimologia , Bactérias/genética , Clorófitas/enzimologia , Embriófitas/enzimologia , Embriófitas/microbiologia , Duplicação Gênica , Modelos Genéticos , Micorrizas/fisiologia , Filogenia , Subtilisinas/classificação , Simbiose/genética
16.
BMC Genomics ; 16: 402, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25994181

RESUMO

BACKGROUND: Carbohydrate metabolism is a key feature of vascular plant architecture, and is of particular importance in large woody species, where lignocellulosic biomass is responsible for bearing the bulk of the stem and crown. Since Carbohydrate Active enZymes (CAZymes) in plants are responsible for the synthesis, modification and degradation of carbohydrate biopolymers, the differences in gene copy number and regulation between woody and herbaceous species have been highlighted previously. There are still many unanswered questions about the role of CAZymes in land plant evolution and the formation of wood, a strong carbohydrate sink. RESULTS: Here, twenty-two publically available plant genomes were used to characterize the frequency, diversity and complexity of CAZymes in plants. We find that a conserved suite of CAZymes is a feature of land plant evolution, with similar diversity and complexity regardless of growth habit and form. In addition, we compared the diversity and levels of CAZyme gene expression during wood formation in trees using mRNA-seq data from two distantly related angiosperm tree species Eucalyptus grandis and Populus trichocarpa, highlighting the major CAZyme classes involved in xylogenesis and lignocellulosic biomass production. CONCLUSIONS: CAZyme domain ratio across embryophytes is maintained, and the diversity of CAZyme domains is similar in all land plants, regardless of woody habit. The stoichiometric conservation of gene expression in woody and non-woody tissues of Eucalyptus and Populus are indicative of gene balance preservation.


Assuntos
Embriófitas/enzimologia , Embriófitas/genética , Proteínas de Plantas/genética , Madeira/metabolismo , Sequência de Bases , Evolução Biológica , Metabolismo dos Carboidratos , Sequência Conservada , Embriófitas/metabolismo , Eucalyptus/enzimologia , Eucalyptus/genética , Genoma de Planta , Proteínas de Plantas/metabolismo , Populus/enzimologia , Populus/genética
17.
Ying Yong Sheng Tai Xue Bao ; 26(11): 3251-8, 2015 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-26915177

RESUMO

The mass loss and lignocellulose enzyme activities of Actinothuidium hookeri residues and Cystopteris montana leaf litter in coniferous forest and timberline of western Sichuan, China were investigated. The results showed that both the mass loss rates of A. hookeri and C. Montana in timberline were higher than those in coniferous forest, while enzyme activities in timberline were lower than those in coniferous forest which was contrast with the hypothesis. The mass loss of two ground covers had significant differences in different seasons. The mass loss rate of A. hookeri in snow-covered season accounted for 69.8% and 83.0% of the whole year' s in timberline and coniferous forest, while that of C. montana in the growing season accounted for 82.6% and 83.4% of the whole year' s in timberline and coniferous forest, respectively. C. montana leaf litter decayed faster in the growing season, which was consistent with its higher cellulase activity in the growing season. The result illustrated that the enzymatic hydrolysis of cellulose and hemicellulose might be the main driving force for the early stage of litter decomposition. Multiple linear regression analysis showed that environmental factors and initial litter quality could explain 45.8%-85.1% variation of enzyme activity. The enzyme activities of A. hookeri and C. montana in the process of decomposition were mainly affected by the freeze-thaw cycle in snow-covered season.


Assuntos
Bryopsida/enzimologia , Embriófitas/enzimologia , Florestas , Lignina/metabolismo , China , Estações do Ano
18.
Biochem J ; 462(3): 539-46, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24983886

RESUMO

ent-Kaurene is a key intermediate in the biosynthesis of the plant hormone gibberellin. In ent-kaurene biosynthesis in flowering plants, two diterpene cyclases (DTCs), ent-copalyl diphosphate (ent-CDP) synthase (ent-CPS) and ent-kaurene synthase (KS), catalyse the cyclization of geranylgeranyl diphosphate to ent-CDP and ent-CDP to ent-kaurene, respectively. In contrast, the moss Physcomitrella patens has a bifunctional ent-CPS/KS (PpCPS/KS) that catalyses both cyclization reactions. To gain more insight into the functional diversity of ent-kaurene biosynthetic enzymes in land plants, we focused on DTCs in the lycophyte Selaginella moellendorffii. The present paper describes the characterization of two S. moellendorffii DTCs (SmKS and SmDTC3) in vitro. SmDTC3 converted ent-CDP into ent-16α-hydroxykaurane and also used other CDP stereoisomers as substrate. Remarkably, SmKS, which produces ent-kaurene from ent-CDP, showed similar substrate selectivity: both SmKS and SmDTC3 synthesized sandaracopimaradiene from normal CDP. Therefore, the diversity of substrate recognition among KSs from other plants was investigated. PpCPS/KS could use normal CDP and syn-CDP as well as ent-CDP as substrate. In contrast, lettuce KS showed high specificity for ent-CDP, and rice KS recognized only ent-CDP. Our studies imply that ancient KS having low substrate specificity has evolved to be specific for ent-CDP to the biosynthesis of gibberellin.


Assuntos
Alquil e Aril Transferases/metabolismo , Giberelinas/biossíntese , Proteínas de Plantas/metabolismo , Alquil e Aril Transferases/genética , Clonagem Molecular , Embriófitas/enzimologia , Evolução Molecular , Ressonância Magnética Nuclear Biomolecular , Organofosfatos/metabolismo , Proteínas de Plantas/genética , Selaginellaceae/enzimologia , Selaginellaceae/genética , Estereoisomerismo , Especificidade por Substrato
19.
J Exp Bot ; 65(4): 1153-63, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24449382

RESUMO

Bryophytes, a paraphyletic group which includes liverworts, mosses, and hornworts, have been stated as land plants that under metal stress (particularly cadmium) do not synthesize metal-binding peptides such as phytochelatins. Moreover, very little information is available to date regarding phytochelatin synthesis in charophytes, postulated to be the direct ancestors of land plants, or in lycophytes, namely very basal tracheophytes. In this study, it was hypothesized that basal land plants and charophytes have the capability to produce phytochelatins and possess constitutive and functional phytochelatin synthases. To verify this hypothesis, twelve bryophyte species (six liverworts, four mosses, and two hornworts), three charophytes, and two lycophyte species were exposed to 0-36 µM cadmium for 72 h, and then assayed for: (i) glutathione and phytochelatin quali-quantitative content by HPLC and mass spectrometry; (ii) the presence of putative phytochelatin synthases by western blotting; and (iii) in vitro activity of phytochelatin synthases. Of all the species tested, ten produced phytochelatins in vivo, while the other seven did not. The presence of a constitutively expressed and functional phytochelatin synthase was demonstrated in all the bryophyte lineages and in the lycophyte Selaginella denticulata, but not in the charophytes. Hence, current knowledge according to phytochelatins have been stated as being absent in bryophytes was therefore confuted by this work. It is argued that the capability to synthesize phytochelatins, as well as the presence of active phytochelatin synthases, are ancestral (plesiomorphic) characters for basal land plants.


Assuntos
Aminoaciltransferases/genética , Cádmio/farmacologia , Embriófitas/enzimologia , Fitoquelatinas/metabolismo , Aminoaciltransferases/metabolismo , Briófitas/efeitos dos fármacos , Briófitas/enzimologia , Briófitas/genética , Carofíceas/efeitos dos fármacos , Carofíceas/enzimologia , Carofíceas/genética , Embriófitas/efeitos dos fármacos , Embriófitas/genética , Glutationa/química , Glutationa/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Filogenia , Fitoquelatinas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espectrometria de Massas em Tandem , Traqueófitas/efeitos dos fármacos , Traqueófitas/enzimologia , Traqueófitas/genética
20.
Mol Biol Rep ; 41(1): 563-72, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24338163

RESUMO

Several functional and regulatory proteins play important roles in controlling plant stress tolerance. Proline (Pro) is one of the most accumulated osmolytes correlated with tolerance to stresses. Δ(1)-Pyrroline-5-carboxylate synthetase (P5CS) is a rate-limiting enzyme in Pro biosynthesis. In the present study, we isolated the cDNA for a P5CS gene (NtP5CS) from the halophyte Nitraria tangutorum. Phylogenetic analysis and subcellular localization analysis of NtP5CS-GFP protein in onion cells showed that NtP5CS was a new P5CS gene and was involved in Pro synthesis in N. tangutorum. Expression of the NtP5CS gene was induced by salt stress, dehydration, and high and low temperatures. Escherichia coli overexpressing AtP5CS or NtP5CS exhibited better growth in all treatments, including high salinity, high alkalinity, dehydration, osmotic, heat and cold stresses. Additionally, NtP5CS recombinant E. coli cells grew better than did AtP5CS recombinant cells in response to abiotic stresses. Our data demonstrate that the P5CS from a halophytic species functions more efficiently than its homologue from a glycophytic species in improving the stress tolerance of E. coli.


Assuntos
Proteínas de Arabidopsis/biossíntese , Embriófitas/enzimologia , Glutamato-5-Semialdeído Desidrogenase/biossíntese , Complexos Multienzimáticos/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/biossíntese , Tolerância ao Sal , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Clonagem Molecular , Embriófitas/citologia , Embriófitas/crescimento & desenvolvimento , Escherichia coli , Glutamato-5-Semialdeído Desidrogenase/genética , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Filogenia , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Transporte Proteico , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA