Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Adv Colloid Interface Sci ; 332: 103270, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142064

RESUMO

Functional foods or drugs based on probiotics have gained unprecedented attention and development due to the increasingly clear relationship between probiotics and human health. Probiotics can regulate intestinal microbiota, dynamically participating in various physiological activities to directly affect human health. Some probiotic-based functional preparations have shown great potential in treating multiple refractory diseases. Currently, the survival and activity of probiotic cells in complex environments in vitro and in vivo have taken priority, and various encapsulation systems based on food-derived materials have been designed and constructed to protect and deliver probiotics. However, traditional encapsulation technology cannot achieve precise protection for a single probiotic, which makes it unable to have a significant effect after release. In this case, single-cell encapsulation systems can be assembled based on biological interfaces to protect and functionalize individual probiotic cells, maximizing their physiological activity. This review discussed the arduous challenges of probiotics in food processing, storage, human digestion, and the commonly used probiotic encapsulation system. Besides, a novel technology of probiotic encapsulation was introduced based on single-cell coating, namely, "armor probiotics". We focused on the classification, structural design, and functional characteristics of armor coatings, and emphasized the essential functional characteristics of armor probiotics in human health regulation, including regulating intestinal health and targeted bioimaging and treatment of diseased tissues. Subsequently, the benefits, limitations, potential challenges, as well as future direction of armor probiotics were put forward. We hope this review may provide new insights and ideas for developing a single-cell probiotics encapsulating system.


Assuntos
Probióticos , Humanos , Encapsulamento de Células/métodos , Microbioma Gastrointestinal , Animais , Sistemas de Liberação de Medicamentos
2.
Biotechnol Bioeng ; 121(11): 3614-3628, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39104025

RESUMO

Chemically defined, suspension culture conditions are a key requirement in realizing clinical translation of engineered cardiac tissues (ECTs). Building on our previous work producing functional ECT microspheres through differentiation of biomaterial encapsulated human induced pluripotent stem cells (hiPSCs), here we establish the ability to use chemically defined culture conditions, including stem cell media (E8) and cardiac differentiation media (chemically defined differentiation media with three components, CDM3). A custom microfluidic cell encapsulation system was used to encapsulate hiPSCs at a range of initial cell concentrations and diameters in the hybrid biomaterial, poly(ethylene glycol)-fibrinogen (PF), for the formation of highly spherical and uniform ECT microspheres for subsequent cardiac differentiation. Initial microsphere diameter could be tightly controlled, and microspheres could be produced with an initial diameter between 400 and 800 µm. Three days after encapsulation, cardiac differentiation was initiated through small molecule modulation of Wnt signaling in CDM3. Cardiac differentiation occurred resulting in in situ ECT formation; results showed that this differentiation protocol could be used to achieve cardiomyocyte (CM) contents greater than 90%, although there was relatively high variability in CM content and yield between differentiation batches. Spontaneous contraction of ECT microspheres initiated between Days 7 and 10 of differentiation and ECT microspheres responded to electrical pacing up to 1.5 Hz. Resulting CMs had well-defined sarcomeres and the gap junction protein, connexin 43, and had appropriate temporal changes in gene expression. In summary, this study demonstrated the proof-of-concept to produce functional ECT microspheres with chemically defined media in suspension culture in combination with biomaterial support of microsphere encapsulated hiPSCs.


Assuntos
Diferenciação Celular , Hidrogéis , Células-Tronco Pluripotentes Induzidas , Microesferas , Miócitos Cardíacos , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Hidrogéis/química , Encapsulamento de Células/métodos
3.
J Mater Chem B ; 12(29): 7122-7134, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38946474

RESUMO

Micro- and nanoencapsulation of cells has been studied as a strategy to protect cells from environmental stress and promote survival during delivery. Hydrogels used in encapsulation can be modified to influence cell behaviors and direct assembly in their surroundings. Here, we report a system that conformally encapsulated stem cells using hyaluronic acid (HA). We successfully modified HA with lipid, thiol, and maleimide pendant groups to facilitate a hydrogel system in which HA was deposited onto cell plasma membranes and subsequently crosslinked through thiol-maleimide click chemistry. We demonstrated conformal encapsulation of both neural stem cells (NSCs) and mesenchymal stromal cells (MSCs), with viability of both cell types greater than 90% after encapsulation. Additional material could be added to the conformal hydrogel through alternating addition of thiol-modified and maleimide-modified HA in a layering process. After encapsulation, we tracked egress and viability of the cells over days and observed differential responses of cell types to conformal hydrogels both according to cell type and the amount of material deposited on the cell surfaces. Through the design of the conformal hydrogels, we showed that multicellular assembly could be created in suspension and that encapsulated cells could be immobilized on surfaces. In conjunction with photolithography, conformal hydrogels enabled rapid assembly of encapsulated cells on hydrogel substrates with resolution at the scale of 100 µm.


Assuntos
Sobrevivência Celular , Ácido Hialurônico , Hidrogéis , Células-Tronco Mesenquimais , Células-Tronco Neurais , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Animais , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/citologia , Hidrogéis/química , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Encapsulamento de Células/métodos , Camundongos , Propriedades de Superfície , Células Cultivadas
4.
J Microencapsul ; 41(6): 479-501, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39077800

RESUMO

One of the goals of tissue engineering and regenerative medicine is restoring primary living tissue function by manufacturing a 3D microenvironment. One of the main challenges is protecting implanted non-autologous cells or tissues from the host immune system. Cell encapsulation has emerged as a promising technique for this purpose. It involves entrapping cells in biocompatible and semi-permeable microcarriers made from natural or synthetic polymers that regulate the release of cellular secretions. In recent years, droplet-based microfluidic systems have emerged as powerful tools for cell encapsulation in tissue engineering and regenerative medicine. These systems offer precise control over droplet size, composition, and functionality, allowing for creating of microenvironments that closely mimic native tissue. Droplet-based microfluidic systems have extensive applications in biotechnology, medical diagnosis, and drug discovery. This review summarises the recent developments in droplet-based microfluidic systems and cell encapsulation techniques, as well as their applications, advantages, and challenges in biology and medicine. The integration of these technologies has the potential to revolutionise tissue engineering and regenerative medicine by providing a precise and controlled microenvironment for cell growth and differentiation. By overcoming the immune system's challenges and enabling the release of cellular secretions, these technologies hold great promise for the future of regenerative medicine.


Assuntos
Encapsulamento de Células , Medicina Regenerativa , Engenharia Tecidual , Humanos , Encapsulamento de Células/métodos , Medicina Regenerativa/métodos , Animais , Microfluídica/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação
5.
Int J Biol Macromol ; 274(Pt 2): 133418, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936577

RESUMO

Microfluidic cell encapsulation has provided a platform for studying the behavior of individual cells and has become a turning point in single-cell analysis during the last decade. The engineered microenvironment, along with protecting the immune response, has led to increasingly presenting the results of practical and pre-clinical studies with the goals of disease treatment, tissue engineering, intelligent control of stem cell differentiation, and regenerative medicine. However, the significance of cell-substrate interaction versus cell-cell communications in the microgel is still unclear. In this study, monodisperse alginate microgels were generated using a flow-focusing microfluidic device to determine how the cell microenvironment can control human bone marrow-derived mesenchymal stem cells (hBMSCs) viability, proliferation, and biomechanical features in single-cell droplets versus multi-cell droplets. Collected results show insufficient cell proliferation (234 % and 329 %) in both single- and multi-cell alginate microgels. Alginate hydrogels supplemented with poly-l-lysine (PLL) showed a better proliferation rate (514 % and 780 %) in a comparison of free alginate hydrogels. Cell stiffness data illustrate that hBMSCs cultured in alginate hydrogels have higher membrane flexibility and migration potency (Young's modulus equal to 1.06 kPa), whereas PLL introduces more binding sites for cell attachment and causes lower flexibility and migration potency (Young's modulus equal to 1.83 kPa). Considering that cell adhesion is the most important parameter in tissue engineering, in which cells do not run away from a 3D substrate, PLL enhances cell stiffness and guarantees cell attachments. In conclusion, cell attachment to PLL-mediated alginate hydrogels is crucial for cell viability and proliferation. It suggests that cell-cell signaling is good enough for stem cell viability, but cell-PLL attachment alongside cell-cell signaling is crucial for stem cell proliferation and self-renewal.


Assuntos
Alginatos , Adesão Celular , Proliferação de Células , Células-Tronco Mesenquimais , Microgéis , Polilisina , Alginatos/química , Alginatos/farmacologia , Polilisina/química , Polilisina/farmacologia , Humanos , Adesão Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Proliferação de Células/efeitos dos fármacos , Microgéis/química , Microfluídica/métodos , Comunicação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Encapsulamento de Células/métodos , Análise de Célula Única , Autorrenovação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos
6.
J Microencapsul ; 41(5): 375-389, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945166

RESUMO

AIMS: This study aimed to encapsulate natural killer (NK) cells in a hydrogel to sustain their function within the hypoxic tumour microenvironments. METHODS: An alginate-gelatine hydrogel was generated via electrospray technology. Hydrogel biocompatibility was assessed through cell counting kit-8 and Live/Dead assays to ascertain cell. Moreover, we analysed lactate dehydrogenase assays to evaluate the cytotoxicity against tumours and utilised RT-qPCR to analyse cytokine gene level. RESULTS: Alginate and gelatine formed hydrogels with diameters ranging from 489.2 ± 23.0 µm, and the encapsulation efficiency was 34.07 ± 1.76%. Encapsulated NK cells exhibited robust proliferation and tumour-killing capabilities under normoxia and hypoxia. Furthermore, encapsulation provided a protective shield against cell viability under hypoxia. Importantly, tumour-killing cytotoxicity through cytokines upregulation such as granzyme B and interferon-gamma was preserved under hypoxia. CONCLUSION: The encapsulation of NK cells not only safeguards their viability but also reinforces anticancer capacity, countering the inhibition of activation induced by hypoxia.


Assuntos
Alginatos , Proliferação de Células , Gelatina , Hidrogéis , Células Matadoras Naturais , Microesferas , Alginatos/química , Alginatos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Humanos , Proliferação de Células/efeitos dos fármacos , Gelatina/química , Sobrevivência Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Encapsulamento de Células/métodos , Animais , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos
7.
Artif Cells Nanomed Biotechnol ; 52(1): 345-354, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38829715

RESUMO

Cell encapsulation into spherical microparticles is a promising bioengineering tool in many fields, including 3D cancer modelling and pre-clinical drug discovery. Cancer microencapsulation models can more accurately reflect the complex solid tumour microenvironment than 2D cell culture and therefore would improve drug discovery efforts. However, these microcapsules, typically in the range of 1 - 5000 µm in diameter, must be carefully designed and amenable to high-throughput production. This review therefore aims to outline important considerations in the design of cancer cell microencapsulation models for drug discovery applications and examine current techniques to produce these. Extrusion (dripping) droplet generation and emulsion-based techniques are highlighted and their suitability to high-throughput drug screening in terms of tumour physiology and ease of scale up is evaluated.


3D microencapsulation models of cancer offer a customisable platform to mimic key aspects of solid tumour physiology in vitro. However, many 3D models do not recapitulate the hypoxic conditions and altered tissue stiffness established in many tumour types and stages. Furthermore, microparticles for cancer cell encapsulation are commonly produced using methods that are not necessarily suitable for scale up to high-throughput manufacturing. This review aims to evaluate current technologies for cancer cell-laden microparticle production with a focus on physiological relevance and scalability. Emerging techniques will then be touched on, for production of uniform microparticles suitable for high-throughput drug discovery applications.


Assuntos
Descoberta de Drogas , Neoplasias , Humanos , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Descoberta de Drogas/métodos , Encapsulamento de Células/métodos , Modelos Biológicos , Cápsulas , Animais , Composição de Medicamentos/métodos , Microambiente Tumoral/efeitos dos fármacos
8.
Sci Rep ; 14(1): 14665, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918510

RESUMO

Delivery of therapeutic stem cells to treat bone tissue damage is a promising strategy that faces many hurdles to clinical translation. Among them is the design of a delivery vehicle which promotes desired cell behavior for new bone formation. In this work, we describe the use of an injectable microporous hydrogel, made of crosslinked gelatin microgels, for the encapsulation and delivery of human mesenchymal stem cells (MSCs) and compared it to a traditional nonporous injectable hydrogel. MSCs encapsulated in the microporous hydrogel showed rapid cell spreading with direct cell-cell connections whereas the MSCs in the nonporous hydrogel were entrapped by the surrounding polymer mesh and isolated from each other. On a per-cell basis, encapsulation in microporous hydrogel induced a 4 × increase in alkaline phosphatase (ALP) activity and calcium mineral deposition in comparison to nonporous hydrogel, as measured by ALP and calcium assays, which indicates more robust osteogenic differentiation. RNA-seq confirmed the upregulation of the genes and pathways that are associated with cell spreading and cell-cell connections, as well as the osteogenesis in the microporous hydrogel. These results demonstrate that microgel-based injectable hydrogels can be useful tools for therapeutic cell delivery for bone tissue repair.


Assuntos
Diferenciação Celular , Hidrogéis , Células-Tronco Mesenquimais , Osteogênese , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Humanos , Hidrogéis/química , Porosidade , Fosfatase Alcalina/metabolismo , Células Cultivadas , Encapsulamento de Células/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Injeções
9.
J Biomed Mater Res A ; 112(12): 2124-2135, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38894666

RESUMO

Hematopoietic stem cells (HSCs) are the apical cells of the hematopoietic system, giving rise to cells of the blood and lymph lineages. HSCs reside primarily within bone marrow niches that contain matrix and cell-derived signals that help inform stem cell fate. Aspects of the bone marrow microenvironment have been captured in vitro by encapsulating cells within hydrogel matrices that mimic native mechanical and biochemical properties. Hydrogel microparticles, or microgels, are increasingly being used to assemble granular biomaterials for cell culture and noninvasive delivery applications. Here, we report the optimization of a gelatin maleimide hydrogel system to create monodisperse gelatin microgels via a flow-focusing microfluidic process. We report characteristic hydrogel stiffness, stability, and swelling characteristics as well as encapsulation of murine hematopoietic stem and progenitor cells, and mesenchymal stem cells within microgels. Microgels support cell viability, confirming compatibility of the microfluidic encapsulation process with these sensitive bone marrow cell populations. Overall, this work presents a microgel-based gelatin maleimide hydrogel as a foundation for future development of a multicellular artificial bone marrow culture system.


Assuntos
Gelatina , Células-Tronco Hematopoéticas , Maleimidas , Microgéis , Gelatina/química , Animais , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Microgéis/química , Maleimidas/química , Encapsulamento de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos
10.
Lab Chip ; 24(11): 2958-2967, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38722067

RESUMO

Droplet-based microfluidic technologies for encapsulating single cells have rapidly evolved into powerful tools for single-cell analysis. In conventional passive single-cell encapsulation techniques, because cells arrive randomly at the droplet generation section, to encapsulate only a single cell with high precision, the average number of cells per droplet has to be decreased by reducing the average frequency at which cells arrive relative to the droplet generation rate. Therefore, the encapsulation efficiency for a given droplet generation rate is very low. Additionally, cell sorting operations are required prior to the encapsulation of target cells for specific cell type analysis. To address these challenges, we developed a cell encapsulation technology with a cell sorting function using a microfluidic chip. The microfluidic chip is equipped with an optical detection section to detect the optical information of cells and a sorting section to encapsulate cells into droplets by controlling a piezo element, enabling active encapsulation of only the single target cells. For a particle population including both targeted and non-targeted particles arriving at an average frequency of up to 6000 particles per s, with an average number of particles per droplet of 0.45, our device maintained a high purity above 97.9% for the single-target-particle droplets and achieved an outstanding throughput, encapsulating up to 2900 single target particles per s. The proposed encapsulation technology surpasses the encapsulation efficiency of conventional techniques, provides high efficiency and flexibility for single-cell research, and shows excellent potential for various applications in single-cell analysis.


Assuntos
Dispositivos Lab-On-A-Chip , Análise de Célula Única , Análise de Célula Única/instrumentação , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento , Ensaios de Triagem em Larga Escala/instrumentação , Animais , Encapsulamento de Células/métodos , Encapsulamento de Células/instrumentação
11.
Int J Biol Macromol ; 271(Pt 2): 132461, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777024

RESUMO

In this study, a novel one-step coaxial electrospinning process is employed to fabricate shell-core structure fibers choosing Chlorella pyrenoidosa proteins (CP) as the core material. These nanofibers, serving as the wall material for probiotic encapsulation, aimed to enhance the stability and antioxidant activity of probiotics in food processing, storage, and gastrointestinal environments under sensitive conditions. Morphological analysis was used to explore the beads-on-a-string morphology and core-shell structure of the electrospun fibers. Probiotics were successfully encapsulated within the fibers (7.97 log CFU/g), exhibiting a well-oriented structure along the distributed fibers. Compared to free probiotics and uniaxial fibers loaded with probiotics, encapsulation within microalgae proteins/alginate core-shell structure nanofibers significantly enhanced the probiotic cells' tolerance to simulated gastrointestinal conditions (p < 0.05). Thermal analysis indicated that microalgae proteins/alginate core-shell structure nanofibers displayed superior thermal stability compared to uniaxial fibers. The introduction of CP resulted in a 50 % increase in the antioxidant capacity of probiotics-loaded microalgae proteins/alginate nanofibers compared to uniaxial alginate nanofibers, with minimal loss of viability (0.8 log CFU/g) after 28 days of storage at 4 °C. In summary, this dual-layer carrier holds immense potential in probiotic encapsulation and enhancing their resistance to harsh conditions.


Assuntos
Alginatos , Encapsulamento de Células , Chlorella , Nanofibras , Probióticos , Nanofibras/química , Probióticos/administração & dosagem , Probióticos/química , Alginatos/química , Chlorella/química , Cápsulas/administração & dosagem , Cápsulas/química , Antioxidantes/administração & dosagem , Antioxidantes/química , Antioxidantes/farmacologia , Encapsulamento de Células/métodos
12.
Front Immunol ; 15: 1385022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694507

RESUMO

Liver failure represents a critical medical condition with a traditionally grim prognosis, where treatment options have been notably limited. Historically, liver transplantation has stood as the sole definitive cure, yet the stark disparity between the limited availability of liver donations and the high demand for such organs has significantly hampered its feasibility. This discrepancy has necessitated the exploration of hepatocyte transplantation as a temporary, supportive intervention. In light of this, our review delves into the burgeoning field of hepatocyte transplantation, with a focus on the latest advancements in maintaining hepatocyte function, co-microencapsulation techniques, xenogeneic hepatocyte transplantation, and the selection of materials for microencapsulation. Our examination of hepatocyte microencapsulation research highlights that, to date, most studies have been conducted in vitro or using liver failure mouse models, with a notable paucity of experiments on larger mammals. The functionality of microencapsulated hepatocytes is primarily inferred through indirect measures such as urea and albumin production and the rate of ammonia clearance. Furthermore, research on the mechanisms underlying hepatocyte co-microencapsulation remains limited, and the practicality of xenogeneic hepatocyte transplantation requires further validation. The potential of hepatocyte microencapsulation extends beyond the current scope of application, suggesting a promising horizon for liver failure treatment modalities. Innovations in encapsulation materials and techniques aim to enhance cell viability and function, indicating a need for comprehensive studies that bridge the gap between small-scale laboratory success and clinical applicability. Moreover, the integration of bioengineering and regenerative medicine offers novel pathways to refine hepatocyte transplantation, potentially overcoming the challenges of immune rejection and ensuring the long-term functionality of transplanted cells. In conclusion, while hepatocyte microencapsulation and transplantation herald a new era in liver failure therapy, significant strides must be made to translate these experimental approaches into viable clinical solutions. Future research should aim to expand the experimental models to include larger mammals, thereby providing a clearer understanding of the clinical potential of these therapies. Additionally, a deeper exploration into the mechanisms of cell survival and function within microcapsules, alongside the development of innovative encapsulation materials, will be critical in advancing the field and offering new hope to patients with liver failure.


Assuntos
Encapsulamento de Células , Sobrevivência Celular , Hepatócitos , Animais , Humanos , Encapsulamento de Células/métodos , Hepatócitos/transplante , Hepatócitos/citologia , Falência Hepática/terapia , Transplante Heterólogo
13.
Carbohydr Polym ; 338: 122204, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763712

RESUMO

This study presents the development and characterization of a novel double-network self-healing hydrogel based on N-carboxyethyl chitosan (CEC) and oxidized dextran (OD) with the incorporation of crosslinked collagen (CEC-OD/COL-GP) to enhance its biological and physicochemical properties. The hydrogel formed via dynamic imine bond formation exhibited efficient self-healing within 30 min, and a compressive modulus recovery of 92 % within 2 h. In addition to its self-healing ability, CEC-OD/COL-GP possesses unique physicochemical characteristics including transparency, injectability, and adhesiveness to various substrates and tissues. Cell encapsulation studies confirmed the biocompatibility and suitability of the hydrogel as a cell-culture scaffold, with the presence of a collagen network that enhances cell adhesion, spreading, long-term cell viability, and proliferation. Leveraging their unique properties, we engineered assemblies of self-healing hydrogel modules for controlled spatiotemporal drug delivery and constructed co-culture models that simulate angiogenesis in tumor microenvironments. Overall, the CEC-OD/COL-GP hydrogel is a versatile and promising material for biomedical applications, offering a bottom-up approach for constructing complex structures with self-healing capabilities, controlled drug release, and support for diverse cell types in 3D environments. This hydrogel platform has considerable potential for advancements in tissue engineering and therapeutic interventions.


Assuntos
Adesão Celular , Quitosana , Dextranos , Hidrogéis , Hidrogéis/química , Hidrogéis/farmacologia , Quitosana/química , Dextranos/química , Humanos , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/química , Animais , Liberação Controlada de Fármacos , Proliferação de Células/efeitos dos fármacos , Encapsulamento de Células/métodos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Camundongos , Biomimética/métodos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Alicerces Teciduais/química
14.
Talanta ; 276: 126299, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788384

RESUMO

Droplet microfluidics-based single-cell encapsulation is a critical technology that enables large-scale parallel single-cell analysis by capturing and processing thousands of individual cells. As the efficiency of passive single-cell encapsulation is limited by Poisson distribution, active single-cell encapsulation has been developed to theoretically ensure that each droplet contains one cell. However, existing active single-cell encapsulation technologies still face issues related to fluorescence labeling and low throughput. Here, we present an active single-cell encapsulation technique by using microvalve-based drop-on-demand technology and real-time image processing to encapsulate single cells with high throughput in a label-free manner. Our experiments demonstrated that the single-cell encapsulation system can encapsulate individual polystyrene beads with 96.3 % efficiency and HeLa cells with 94.9 % efficiency. The flow speed of cells in this system can reach 150 mm/s, resulting in a corresponding theoretical encapsulation throughput of 150 Hz. This technology has significant potential in various biomedical applications, including single-cell omics, secretion detection, and drug screening.


Assuntos
Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Células HeLa , Processamento de Imagem Assistida por Computador , Poliestirenos/química , Técnicas Analíticas Microfluídicas/instrumentação , Dispositivos Lab-On-A-Chip , Encapsulamento de Células/métodos
15.
ACS Biomater Sci Eng ; 10(7): 4311-4322, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718147

RESUMO

Encapsulation of single cells is a powerful technique used in various fields, such as regenerative medicine, drug delivery, tissue regeneration, cell-based therapies, and biotechnology. It offers a method to protect cells by providing cytocompatible coatings to strengthen cells against mechanical and environmental perturbations. Silk fibroin, derived from the silkworm Bombyx mori, is a promising protein biomaterial for cell encapsulation due to the cytocompatibility and capacity to maintain cell functionality. Here, THP-1 cells, a human leukemia monocytic cell line, were encapsulated with chemically modified silk polyelectrolytes through electrostatic layer-by-layer deposition. The effectiveness of the silk nanocoating was assessed using scanning electron microscopy (SEM) and confocal microscopy and on cell viability and proliferation by Alamar Blue assay and live/dead staining. An analysis of the mechanical properties of the encapsulated cells was conducted using atomic force microscopy nanoindentation to measure elasticity maps and cellular stiffness. After the cells were encapsulated in silk, an increase in their stiffness was observed. Based on this observation, we developed a mechanical predictive model to estimate the variations in stiffness in relation to the thickness of the coating. By tuning the cellular assembly and biomechanics, these encapsulations promote systems that protect cells during biomaterial deposition or processing in general.


Assuntos
Bombyx , Sobrevivência Celular , Humanos , Sobrevivência Celular/efeitos dos fármacos , Animais , Seda/química , Células THP-1 , Fibroínas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Proliferação de Células/efeitos dos fármacos , Encapsulamento de Células/métodos
16.
Compr Rev Food Sci Food Saf ; 23(3): e13322, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38597567

RESUMO

Adequate intake of live probiotics is beneficial to human health and wellbeing because they can help treat or prevent a variety of health conditions. However, the viability of probiotics is reduced by the harsh environments they experience during passage through the human gastrointestinal tract (GIT). Consequently, the oral delivery of viable probiotics is a significant challenge. Probiotic encapsulation provides a potential solution to this problem. However, the production methods used to create conventional encapsulation technologies often damage probiotics. Moreover, the delivery systems produced often do not have the required physicochemical attributes or robustness for food applications. Single-cell encapsulation is based on forming a protective coating around a single probiotic cell. These coatings may be biofilms or biopolymer layers designed to protect the probiotic from the harsh gastrointestinal environment, enhance their colonization, and introduce additional beneficial functions. This article reviews the factors affecting the oral delivery of probiotics, analyses the shortcomings of existing encapsulation technologies, and highlights the potential advantages of single-cell encapsulation. It also reviews the various approaches available for single-cell encapsulation of probiotics, including their implementation and the characteristics of the delivery systems they produce. In addition, the mechanisms by which single-cell encapsulation can improve the oral bioavailability and health benefits of probiotics are described. Moreover, the benefits, limitations, and safety issues of probiotic single-cell encapsulation technology for applications in food and beverages are analyzed. Finally, future directions and potential challenges to the widespread adoption of single-cell encapsulation of probiotics are highlighted.


Assuntos
Encapsulamento de Células , Probióticos , Humanos , Trato Gastrointestinal , Biofilmes
17.
Adv Healthc Mater ; 13(19): e2400185, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38452393

RESUMO

Diabetes is a prevalent chronic disease affecting millions of people globally. To address this health challenge, advanced beta cell therapy using biomaterials-based macroscale, microscale, and nanoscale encapsulation devices must tackle various obstacles. First, overcoming foreign body responses is a major focus of research. Strategies such as immunomodulatory materials and physical immunoshielding are investigated to reduce the immune response and improve the longevity of the encapsulated cells. Furthermore, oxygenating strategies, such as the use of oxygen-releasing biomaterials, are developed to improve oxygen diffusion and promote cell survival. Finally, yet importantly, promoting vascularization through the use of angiogenic growth factors and the incorporation of pre-vascularized materials are also explored to enhance nutrient and oxygen supply to the encapsulated cells. This review seeks to specifically highlight the emerging research strategies developed to overcome these challenges using micro and nanoscale biomaterial encapsulation devices. Continuously improving and refining these strategies make an advance toward realizing the improved therapeutic potential of the encapsulated beta cells.


Assuntos
Materiais Biocompatíveis , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Tipo 1/terapia , Animais , Materiais Biocompatíveis/química , Encapsulamento de Células/métodos , Oxigênio/química
18.
J Mater Sci Mater Med ; 35(1): 19, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526655

RESUMO

The efficacy of stem-cell therapy depends on the ability of the transplanted cells to escape early immunological reactions and to be retained at the site of transplantation. The use of tissue engineering scaffolds or injectable biomaterials as carriers has been proposed, but they still present limitations linked to a reliable manufacturing process, surgical practice and clinical outcomes. Alginate microbeads are potential candidates for the encapsulation of mesenchymal stromal cells with the aim of providing a delivery carrier suitable for minimally-invasive and scaffold-free transplantation, tissue-adhesive properties and protection from the immune response. However, the formation of stable microbeads relies on the cross-linking of alginate with divalent calcium ions at concentrations that are toxic for the cells, making control over the beads' size and a single-cell encapsulation unreliable. The present work demonstrates the efficiency of an innovative, high throughput, and reproducible microfluidic system to produce single-cell, calcium-free alginate coatings of human mesenchymal stromal cells. Among the various conditions tested, visible light and confocal microscopy following staining of the cell nuclei by DAPI showed that the microfluidic system yielded an optimal single-cell encapsulation of 2000 cells/min in 2% w/v alginate microcapsules of reproducible morphology and an average size of 28.2 ± 3.7 µm. The adhesive properties of the alginate microcapsules, the viability of the encapsulated cells and their ability to escape the alginate microcapsule were demonstrated by the relatively rapid adherence of the beads onto tissue culture plastic and the cells' ability to gradually disrupt the microcapsule shell after 24 h and proliferate. To mimic the early inflammatory response upon transplantation, the encapsulated cells were exposed to proliferating macrophages at different cell seeding densities for up to 2 days and the protection effect of the microcapsule on the cells assessed by time-lapse microscopy showing a shielding effect for up to 48 h. This work underscores the potential of microfluidic systems to precisely encapsulate cells by good manufacturing practice standards while favouring cell retention on substrates, viability and proliferation upon transplantation.


Assuntos
Células-Tronco Mesenquimais , Microfluídica , Humanos , Encapsulamento de Células , Cápsulas , Medula Óssea , Alginatos/química , Ácidos Hexurônicos/química , Sobrevivência Celular , Ácido Glucurônico/química
19.
Pharmacol Res ; 203: 107159, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554790

RESUMO

Encapsulated cell technology (ECT) is a targeted delivery method that uses the genetically engineered cells in semipermeable polymer capsules to deliver cytokines. Thus far, ECT has been extensively utilized in pharmacologic research, and shows enormous potentials in the treatment of posterior segment diseases. Due to the biological barriers within the eyeball, it is difficult to attain effective therapeutic concentration in the posterior segment through topical administration of drug molecules. Encouragingly, therapeutic cytokines provided by ECT can cross these biological barriers and achieve sustained release at the desired location. The encapsulation system uses permeable materials that allow growth factors and cytokines to diffuse efficiently into retinal tissue. Moreover, the ECT based treatment can be terminated timely when we need to retrieve the implant, which makes the therapy reversible and provides a safer alternative for intraocular gene therapy. Meanwhile, we also place special emphasis on optimizing encapsulation materials and enhancing preservation techniques to achieve the stable release of growth factors and cytokines in the eyeball. This technology holds great promise for the treatment of patients with dry AMD, RP, glaucoma and MacTel. These findings would enrich our understandings of ECT and promote its future applications in treatment of degenerative retinopathy. This review comprises articles evaluating the exactness of artificial intelligence-based formulas published from 2000 to March 2024. The papers were identified by a literature search of various databases (PubMed/MEDLINE, Google Scholar, Cochrane Library and Web of Science).


Assuntos
Citocinas , Oftalmopatias , Humanos , Citocinas/metabolismo , Animais , Oftalmopatias/terapia , Oftalmopatias/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Encapsulamento de Células/métodos
20.
J Biomed Mater Res A ; 112(9): 1506-1517, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38488241

RESUMO

Hydrogel cell encapsulation devices are a common approach to reduce the need for chronic systemic immunosuppression in allogeneic cell product transplantation. Macroencapsulation approaches are an appealing strategy, as they maximize graft retrievability and cell dosage within a single device; however, macroencapsulation devices face oxygen transport challenges as geometries increase from preclinical to clinical scales. Device design guided by computational approaches can facilitate graft oxygen availability to encapsulated cells in vivo but is limited without accurate measurement of oxygen levels within the transplant site and graft. In this study, we engineer pO2 reporter composite hydrogels (PORCH) to enable spatiotemporal measurement of oxygen tension within macroencapsulation devices using the proton Imaging of siloxanes to map tissue oxygenation levels (PISTOL) magnetic resonance imaging approach. We engineer two methods of incorporating siloxane oximetry reporters within hydrogel devices, an emulsion and microbead-based approach, and evaluate PORCH cytotoxicity on co-encapsulated cells and accuracy in quantifying oxygen tension in vitro. We find that both emulsion and microbead PORCH approaches enable accurate in situ oxygen quantification using PISTOL magnetic resonance oximetry, and that the emulsion-based PORCH approach results in higher spatial resolution.


Assuntos
Hidrogéis , Imageamento por Ressonância Magnética , Oxigênio , Imageamento por Ressonância Magnética/métodos , Oxigênio/análise , Oxigênio/metabolismo , Hidrogéis/química , Humanos , Encapsulamento de Células/métodos , Oximetria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA