Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 372
Filtrar
1.
Commun Biol ; 7(1): 494, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658802

RESUMO

Inflammatory monocytes (iMO) are recruited from the bone marrow to the brain during viral encephalitis. C-C motif chemokine receptor (CCR) 2 deficiency substantially reduces iMO recruitment for most, but not all encephalitic viruses. Here we show CCR7 acts synergistically with CCR2 to control this process. Following Herpes simplex virus type-1 (HSV-1), or La Crosse virus (LACV) infection, we find iMO proportions are reduced by approximately half in either Ccr2 or Ccr7 knockout mice compared to control mice. However, Ccr2/Ccr7 double knockouts eliminate iMO recruitment following infection with either virus, indicating these receptors together control iMO recruitment. We also find that LACV induces a more robust iMO recruitment than HSV-1. However, unlike iMOs in HSV-1 infection, LACV-recruited iMOs do not influence neurological disease development. LACV-induced iMOs have higher expression of proinflammatory and proapoptotic but reduced mitotic, phagocytic and phagolysosomal transcripts compared to HSV-1-induced iMOs. Thus, virus-specific activation of iMOs affects their recruitment, activation, and function.


Assuntos
Encéfalo , Herpesvirus Humano 1 , Vírus La Crosse , Camundongos Knockout , Monócitos , Receptores CCR2 , Receptores CCR7 , Animais , Receptores CCR2/metabolismo , Receptores CCR2/genética , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/virologia , Encéfalo/virologia , Encéfalo/metabolismo , Encéfalo/imunologia , Herpesvirus Humano 1/fisiologia , Vírus La Crosse/genética , Vírus La Crosse/fisiologia , Receptores CCR7/metabolismo , Receptores CCR7/genética , Encefalite da Califórnia/virologia , Encefalite da Califórnia/genética , Encefalite da Califórnia/metabolismo , Encefalite da Califórnia/imunologia , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Inflamação/virologia , Feminino , Masculino
2.
Emerg Infect Dis ; 30(5): 874-881, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38666581

RESUMO

Jamestown Canyon virus (JCV) is a mosquitoborne orthobunyavirus in the California serogroup that circulates throughout Canada and the United States. Most JCV exposures result in asymptomatic infection or a mild febrile illness, but JCV can also cause neurologic diseases, such as meningitis and encephalitis. We describe a case series of confirmed JCV-mediated neuroinvasive disease among persons from the provinces of British Columbia, Alberta, Quebec, and Nova Scotia, Canada, during 2011-2016. We highlight the case definitions, epidemiology, unique features and clinical manifestations, disease seasonality, and outcomes for those cases. Two of the patients (from Quebec and Nova Scotia) might have acquired JCV infections during travel to the northeastern region of the United States. This case series collectively demonstrates JCV's wide distribution and indicates the need for increased awareness of JCV as the underlying cause of meningitis/meningoencephalitis during mosquito season.


Assuntos
Vírus da Encefalite da Califórnia , Encefalite da Califórnia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Canadá/epidemiologia , Vírus da Encefalite da Califórnia/genética , Encefalite da Califórnia/epidemiologia , Encefalite da Califórnia/virologia , História do Século XXI
3.
Am J Trop Med Hyg ; 110(5): 850-855, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531108

RESUMO

La Crosse virus (LACV) is an arthropod-borne RNA virus with substantial potential for future spread in North America. La Crosse virus is responsible for La Crosse encephalitis, a leading cause of arboviral encephalitis in children in the United States. Primarily transmitted by Aedes triseriatus (Eastern treehole) mosquitos and amplified by small mammal hosts, LACV has caused infections throughout the upper Midwest and, more recently, the mid-Atlantic and southeastern United States. Notably, in recent years, infections have also been identified increasingly in the Appalachian region. Anthropogenic and environmental factors have likely contributed to recent LACV spread, including the introduction of invasive vector species (especially Ae. albopictus), biotic interactions between and among vector and host species, land-use change, habitat disturbance, increased human travel and transport, and rising global temperatures. Prevention and control strategies, such as increased surveillance of vector and host populations, increased awareness among populations at risk for infection, and increased awareness among physicians are needed to limit future spread. Continued climate change with increases in global temperatures and erratic weather patterns may result in the expansion of competent mosquito vector species and thus could facilitate the geographic spread of LACV.


Assuntos
Aedes , Encefalite da Califórnia , Vírus La Crosse , Mosquitos Vetores , Vírus La Crosse/fisiologia , Encefalite da Califórnia/epidemiologia , Encefalite da Califórnia/transmissão , Encefalite da Califórnia/virologia , Humanos , Animais , Aedes/virologia , Mosquitos Vetores/virologia , América do Norte/epidemiologia , Mudança Climática , Insetos Vetores/virologia
4.
Virus Res ; 342: 199335, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38331257

RESUMO

Tripartite motif 21 (TRIM21) is a cytosolic Fc receptor that targets antibody-bound, internalized pathogens for destruction. Apart from this intrinsic defense role, TRIM21 is implicated in autoimmune diseases, inflammation, and autophagy. Whether TRIM21 participates in host interactions with influenza A virus (IAV), however, is unknown. By computational modeling of body weight and lung transcriptome data from the BXD parents (C57BL/6 J (B6) and DBA/2 J (D2)) and 41 BXD mouse strains challenged by IAV, we reveal that a Trim21-associated gene network modulates the early host responses to IAV infection. Trim21 transcripts were significantly upregulated in infected mice of both B6 and D2 backgrounds. Its expression was significantly higher in infected D2 than in infected B6 early after infection and significantly correlated with body weight loss. We identified significant trans-eQTL on chromosome 14 that regulates Trim21 expression. Nr1d2 and Il3ra were among the strongest candidate genes. Pathway analysis found Trim21 to be involved in inflammation and immunity related pathways, such as inflammation signaling pathways (TNF, IL-17, and NF-κB), viral detection signaling pathways (NOD-like and RIG-I-like), influenza, and other respiratory viral infections. Knockdown of TRIM21 in human lung epithelial A549 cells significantly augmented IAV-induced expression of IFNB1, IFNL1, CCL5, CXCL10, and IFN-stimulated genes including DDX58 and IFIH1, among others. Our data suggest that a TRIM21-associated gene network is involved in several aspects of inflammation and viral detection mechanisms during IAV infection. We identify and validate TRIM21 as a critical regulator of innate immune responses to IAV in human lung epithelial cells.


Assuntos
Encefalite da Califórnia , Imunidade Inata , Animais , Humanos , Camundongos , Proteína DEAD-box 58 , Inflamação , Pulmão , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA
5.
Nat Commun ; 15(1): 1121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321047

RESUMO

The first step in disease pathogenesis for arboviruses is the establishment of infection following vector transmission. For La Crosse virus (LACV), the leading cause of pediatric arboviral encephalitis in North America, and other orthobunyaviruses, the initial course of infection in the skin is not well understood. Using an intradermal (ID) model of LACV infection in mice, we find that the virus infects and replicates nearly exclusively within skin-associated muscle cells of the panniculus carnosus (PC) and not in epidermal or dermal cells like most other arbovirus families. LACV is widely myotropic, infecting distal muscle cells of the peritoneum and heart, with limited infection of draining lymph nodes. Surprisingly, muscle cells are resistant to virus-induced cell death, with long term low levels of virus release progressing through the Golgi apparatus. Thus, skin muscle may be a key cell type for the initial infection and spread of arboviral orthobunyaviruses.


Assuntos
Arbovírus , Infecções por Bunyaviridae , Encefalite da Califórnia , Vírus La Crosse , Orthobunyavirus , Humanos , Criança , Animais , Camundongos , Replicação Viral , Músculos
6.
Viruses ; 16(1)2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38257798

RESUMO

Toscana virus (TOSV), a sandfly-borne virus, is an important etiological agent in human acute meningitis and meningoencephalitis in the Mediterranean area during the summer. However, the actual number of TOSV infections is underestimated. Laboratory confirmation is necessary because TOSV infection has overlapping clinical features with other neuro-invasive viral infections. Nowadays, the reference test for direct diagnosis in the acute phase of TOSV infection is the PCR based method for detecting TOSV in cerebrospinal fluid and/or plasma, serum, or blood. Although poorly employed, urine is another helpful biological matrix for TOSV detection. Urine is a matrix rich in PCR inhibitors that affect PCR efficiency; consequently, false negatives could be generated. To investigate the potential effect of urine PCR inhibitors on TOSV detection, we compared undiluted and diluted urine using 10-fold series of spiked TOSV. The results showed a significant improvement in TOSV detection performance in diluted urine (1 TCID50 vs. 1 × 104 TCID50 limit of detection and 101.35% vs. 129.62% efficiency, respectively, in diluted and undiluted urine). In conclusion, our data provide preliminary important insights into the use of diluted urine to limit the impact of the inhibitory effects of urine on the detection of TOSV in RT-PCR-based approaches.


Assuntos
Líquidos Corporais , Encefalite da Califórnia , Vírus da Febre do Flebótomo Napolitano , Humanos , Vírus da Febre do Flebótomo Napolitano/genética , Plasma , Laboratórios
7.
Diagn Microbiol Infect Dis ; 108(4): 116161, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38219377

RESUMO

Background seropositivity rates for specific antibodies to Jamestown Canyon Virus (JCV) can exceed 25 % in certain geographic areas in the United States. This can potentially lead to diagnostic confusion, as apparently illustrated by a patient from New Jersey with Powassan virus encephalitis, who also tested positive for antibodies to JCV.


Assuntos
Vírus da Encefalite da Califórnia , Encefalite da Califórnia , Encefalite Transmitida por Carrapatos , Encefalite , Humanos , Estados Unidos , Encefalite da Califórnia/diagnóstico , Anticorpos Antivirais
8.
Am J Trop Med Hyg ; 109(6): 1329-1332, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37972332

RESUMO

Jamestown Canyon virus (JCV) (Peribunyavirdae; Orthobunyavirus) is a mosquito-borne pathogen endemic to North America. The genome is composed of three segmented negative-sense RNA fragments designated as small, medium, and large. Jamestown Canyon virus is an emerging threat to public health, and infection in humans can cause severe neurological diseases, including encephalitis and meningitis. We report JCV mosquito surveillance data from 2001 to 2022 in New York state. Jamestown Canyon virus was detected in 12 mosquito species, with the greatest prevalence in Aedes canadensis and Anopheles punctipennis. Detection fluctuated annually, with the highest levels recorded in 2020. Overall, JCV infection rates were significantly greater from 2012 to 2022 compared with 2001 to 2011. Full-genome sequencing and phylogenetic analysis were also performed with representative JCV isolates collected from 2003 to 2022. These data demonstrated the circulation of numerous genetic variants, broad geographic separation, and the first identification of lineage B JCV in New York state in 2022.


Assuntos
Anopheles , Vírus da Encefalite da Califórnia , Encefalite da Califórnia , Animais , Humanos , Vírus da Encefalite da Califórnia/genética , New York/epidemiologia , Filogenia
9.
J Med Entomol ; 60(6): 1165-1182, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37862102

RESUMO

La Crosse virus (LACV) is the most common cause of neuroinvasive mosquito-borne disease in children within the United States. Despite more than 50 years of recognized endemicity in the United States, the true burden of LACV disease is grossly underappreciated, and there remain severe knowledge gaps that inhibit public health interventions to reduce morbidity and mortality. Long-standing deficiencies in disease surveillance, clinical diagnostics and therapeutics, actionable entomologic and environmental risk indices, case response capacity, public awareness, and availability of community support groups clearly frame LACV disease as neglected. Here we synthesize salient prior research and contextualize our findings as an assessment of current gaps and opportunities to develop a framework to prevent, detect, and respond to LACV disease. The persistent burdens of LACV disease clearly require renewed public health attention, policy, and action.


Assuntos
Aedes , Encefalite da Califórnia , Vírus La Crosse , Estados Unidos , Animais , Vírus La Crosse/fisiologia , Aedes/fisiologia , Encefalite da Califórnia/epidemiologia
10.
J Virol ; 97(8): e0081923, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37578236

RESUMO

Arthropod-borne viruses (arboviruses) are an emerging and evolving global public health threat, with limited antiviral treatments or vaccines available. La Crosse virus (LACV) from the Bunyavirales order is responsible for pediatric encephalitis cases in the United States, yet little is known about the infectivity of LACV. Given the structural similarities between class II fusion glycoproteins of LACV and chikungunya virus (CHIKV), an alphavirus from the Togaviridae family, we hypothesized that LACV would share similar entry mechanisms with CHIKV. To test this hypothesis, we performed cholesterol-depletion and repletion assays and used cholesterol-modulating compounds to study LACV entry and replication. We found that LACV entry was cholesterol dependent, while replication was less affected by cholesterol manipulation. In addition, we generated single-point mutants in the LACV Gc ij loop that corresponded to known CHIKV residues important for virus entry. We found that a conserved histidine and alanine residue in the Gc ij loop impaired virus infectivity and attenuated LACV replication in vitro and in vivo. Finally, we took an evolution-based approach to explore how the LACV glycoprotein evolves in mosquitoes and mice. We found multiple variants that cluster in the Gc glycoprotein head domain, providing evidence for the Gc glycoprotein as a contributor to LACV adaptation. Together, these results begin to characterize the mechanisms of LACV infectivity and how the LACV glycoprotein contributes to replication and pathogenesis. IMPORTANCE Vector-borne viruses are significant health threats that lead to devastating disease worldwide. The emergence of arboviruses, in addition to the lack of effective antivirals or vaccines, highlights the need to study how arboviruses replicate at the molecular level. One potential antiviral target is the class II fusion glycoprotein. Alphaviruses, flaviviruses, and bunyaviruses encode a class II fusion glycoprotein that contains strong structural similarities at the tip of domain II. Here, we show that the bunyavirus La Crosse virus uses a cholesterol-dependent entry pathway similar to the alphavirus chikungunya virus, and residues in the ij loop are important for virus infectivity in vitro and replication in mice. These studies show that genetically diverse viruses may use similar pathways through conserved structure domains, suggesting that these viruses may be targets for broad-spectrum antivirals in multiple arboviral families.


Assuntos
Arbovírus , Encefalite da Califórnia , Vírus La Crosse , Animais , Camundongos , Antivirais/farmacologia , Glicoproteínas/genética , Vírus La Crosse/genética , Mosquitos Vetores , Estados Unidos , Replicação Viral
11.
Nat Commun ; 14(1): 2836, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202395

RESUMO

One of the key events in viral encephalitis is the ability of virus to enter the central nervous system (CNS). Several encephalitic viruses, including La Crosse Virus (LACV), primarily induce encephalitis in children, but not adults. This phenomenon is also observed in LACV mouse models, where the virus gains access to the CNS of weanling animals through vascular leakage of brain microvessels, likely through brain capillary endothelial cells (BCECs). To examine age and region-specific regulatory factors of vascular leakage, we used genome-wide transcriptomics and targeted siRNA screening to identify genes whose suppression affected viral pathogenesis in BCECs. Further analysis of two of these gene products, Connexin43 (Cx43/Gja1) and EphrinA2 (Efna2), showed a substantial effect on LACV pathogenesis. Induction of Cx43 by 4-phenylbutyric acid (4-PBA) inhibited neurological disease in weanling mice, while Efna2 deficiency increased disease in adult mice. Thus, we show that Efna2 and Cx43 expressed by BCECs are key mediators of LACV-induced neuroinvasion and neurological disease.


Assuntos
Encefalite da Califórnia , Vírus La Crosse , Animais , Camundongos , Vírus La Crosse/genética , Encefalite da Califórnia/genética , Conexina 43 , Células Endoteliais , Fatores Etários
12.
PLoS Negl Trop Dis ; 17(1): e0011065, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656896

RESUMO

La Crosse virus (LACV) is a mosquito-borne pathogen that causes more pediatric neuroinvasive disease than any other arbovirus in the United States. The geographic focus of reported LACV neuroinvasive disease (LACV-ND) expanded from the Midwest into Appalachia in the 1990s, and most cases have been reported from a few high-risk foci since then. Here, we used publicly available human disease data to investigate changes in the distribution of geographic LACV-ND clusters between 2003 and 2021 and to investigate socioeconomic and demographic predictors of county-level disease risk in states with persistent clusters. We used spatial scan statistics to identify high-risk clusters from 2003-2021 and a generalized linear mixed model to identify socioeconomic and demographic predictors of disease risk. The distribution of LACV-ND clusters was consistent during the study period, with an intermittent cluster in the upper Midwest and three persistent clusters in Appalachia that included counties in east Tennessee / western North Carolina, West Virginia, and Ohio. In those states, county-level cumulative incidence was higher when more of the population was white and when median household income was lower. Public health officials should target efforts to reduce LACV-ND incidence in areas with consistent high risks.


Assuntos
Aedes , Encefalite da Califórnia , Vírus La Crosse , Criança , Animais , Estados Unidos/epidemiologia , Humanos , Encefalite da Califórnia/epidemiologia , Mosquitos Vetores , Região dos Apalaches/epidemiologia
13.
Clin Infect Dis ; 76(3): e1114-e1122, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35607778

RESUMO

BACKGROUND: La Crosse virus (LACV) is the most common neuroinvasive arboviral infection in children in the United States. However, data regarding predictors of disease severity and neurologic outcome are limited. Additionally, long-term neurologic and neurobehavioral outcomes remain relatively sparse. METHODS: This was a single-center, retrospective cohort study, followed by recruitment for a cross-sectional analysis of long-term neurobehavioral outcomes, among children aged 0-18 years with proven or probable LACV neuroinvasive disease (LACV-ND) between January 2009 and December 2018. Case ascertainment was assured by International Classification of Diseases, Ninth and Tenth Revision, Clinical Modification codes cross-referenced with laboratory results detecting LACV. Demographics, diagnostics, radiographs, and outcomes were evaluated. Recruitment of patients with prior diagnosis of LACV-ND occurred from January 2020 to March 2020, with assessment performed by validated pediatric questionnaires. RESULTS: One-hundred fifty-two children (83 males; median age, 8 years [interquartile range, 5-11.5 years]) were diagnosed with proven (n = 61 [47%]) and probable (n = 91 [60%]) LACV-ND. Sixty-five patients (43%) had severe disease. Altered mental status (AMS) (odds ratio [OR], 6.36 [95% confidence interval {CI}, 2.03-19.95]; P = .0002) and seizures at presentation (OR, 10.31 [95% CI, 3.45-30.86]; P = .0001) were independent predictors of severe disease. Epileptiform discharges on electroencephalogram (EEG) were independently associated with epilepsy diagnosis at follow-up (OR, 13.45 [95% CI, 1.4-128.77]; P = .024). Fifty-four patients were recruited for long-term neurobehavioral follow-up, with frequent abnormal assessments identified (19%-54%) irrespective of disease severity. CONCLUSIONS: Severe disease was observed frequently among children with LACV-ND. Seizures and AMS at presentation were independent predictors of severe disease. EEG may help determine long-term epilepsy risk. Long-term neurobehavioral issues are frequent and likely underrecognized among children with LACV-ND.


Assuntos
Encefalite da Califórnia , Epilepsia , Vírus La Crosse , Masculino , Humanos , Criança , Estados Unidos , Encefalite da Califórnia/diagnóstico , Encefalite da Califórnia/epidemiologia , Estudos Transversais , Estudos Retrospectivos , Gravidade do Paciente , Convulsões
14.
Viruses ; 14(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35891445

RESUMO

La Crosse virus (LACV) is a major cause of pediatric encephalitis and aseptic meningitis in the Midwestern, Mid-Atlantic, and Southern United States, where it is an emerging pathogen. The LACV Gc glycoprotein plays a critical role in the neuropathogenesis of LACV encephalitis as the putative virus attachment protein. Previously, we identified and experimentally confirmed the location of the LACV fusion peptide within Gc and generated a panel of recombinant LACVs (rLACVs) containing mutations in the fusion peptide as well as the wild-type sequence. These rLACVs retained their ability to cause neuronal death in a primary embryonic rat neuronal culture system, despite decreased replication and fusion phenotypes. To test the role of the fusion peptide in vivo, we tested rLACVs in an age-dependent murine model of LACV encephalitis. When inoculated directly into the CNS of young adult mice (P28), the rLACV fusion peptide mutants were as neurovirulent as the rLACV engineered with a wild-type sequence, confirming the results obtained in tissue culture. In contrast, the fusion peptide mutant rLACVs were less neuroinvasive when suckling (P3) or weanling (P21) mice were inoculated peripherally, demonstrating that the LACV fusion peptide is a determinant of neuroinvasion, but not of neurovirulence. In a challenge experiment, we found that peripheral challenge of weanling (P21) mice with fusion peptide mutant rLACVs protected from a subsequent WT-LACV challenge, suggesting that mutations in the fusion peptide are an attractive target for generating live-attenuated virus vaccines. Importantly, the high degree of conservation of the fusion peptide amongst the Bunyavirales and, structurally, other arboviruses suggests that these findings are broadly applicable to viruses that use a class II fusion mechanism and cause neurologic disease.


Assuntos
Encefalite da Califórnia , Vírus La Crosse , Animais , Humanos , Camundongos , Mutagênese Sítio-Dirigida , Mutação , Peptídeos/genética , Peptídeos/metabolismo , Ratos , Estados Unidos , Proteínas Virais/genética
15.
PLoS Pathog ; 18(3): e1010384, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245345

RESUMO

The California serogroup (CSG) of Orthobunyaviruses comprises several members capable of causing neuroinvasive disease in humans, including La Crosse orthobunyavirus (LACV), Jamestown Canyon orthobunyavirus (JCV), and Inkoo orthobunyavirus (INKV). Despite being genetically and serologically closely related, their disease incidences and pathogenesis in humans and mice differ. We have previously shown that following intraperitoneal inoculation of weanling mice, LACV was highly pathogenic while JCV and INKV were not. To determine why there were differences, we examined the ability of these viruses to invade the CNS and compared the host innate immune responses that regulated viral pathogenesis. We found that LACV was always neuroinvasive, which correlated with its high level of neuroinvasive disease. Interestingly, JCV was not neuroinvasive in any mice, while INKV was neuroinvasive in most mice. The type I interferon (IFN) response was critical for protecting mice from both JCV and INKV disease, although in the periphery JCV induced little IFN expression, while INKV induced high IFN expression. Despite their differing neuroinvasive abilities, JCV and INKV shared innate signaling components required for protection. The presence of either cytoplasmic Rig-I-Like Receptor signaling or endosomal Toll-Like Receptor signaling was sufficient to protect mice from JCV or INKV, however, inhibition of both pathways rendered mice highly susceptible to neurological disease. Comparison of IFN and IFN-stimulated gene (ISG) responses to INKV in the brains of resistant wild type (WT) mice and susceptible immune knockout mice showed similar IFN responses in the brain, but WT mice had higher ISG responses, suggesting induction of key ISGs in the brain is critical for protection of mice from INKV. Overall, these results show that the CSG viruses differ in neuroinvasiveness, which can be independent from their neuropathogenicity. The type I IFN response was crucial for protecting mice from CSG virus-induced neurological disease, however, the exact correlates of protection appear to vary between CSG viruses.


Assuntos
Vírus da Encefalite da Califórnia , Encefalite da Califórnia , Orthobunyavirus , Animais , Suscetibilidade a Doenças , Vírus da Encefalite da Califórnia/genética , Imunidade Inata , Camundongos , Orthobunyavirus/genética , Sorogrupo
16.
Nat Microbiol ; 6(11): 1398-1409, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34675384

RESUMO

La Crosse virus (LACV) is a mosquito-borne orthobunyavirus that causes approximately 60 to 80 hospitalized pediatric encephalitis cases in the United States yearly. The primary treatment for most viral encephalitis, including LACV, is palliative care, and specific antiviral therapeutics are needed. We screened the National Center for Advancing Translational Sciences library of 3,833 FDA-approved and bioactive small molecules for the ability to inhibit LACV-induced death in SH-SY5Y neuronal cells. The top three hits from the initial screen were validated by examining their ability to inhibit virus-induced cell death in multiple neuronal cell lines. Rottlerin consistently reduced LACV-induced death by 50% in multiple human and mouse neuronal cell lines with an effective concentration of 0.16-0.69 µg ml-1 depending on cell line. Rottlerin was effective up to 12 hours post-infection in vitro and inhibited virus particle trafficking from the Golgi apparatus to trans-Golgi vesicles. In human inducible pluripotent stem cell-derived cerebral organoids, rottlerin reduced virus production by one log and cell death by 35% compared with dimethyl sulfoxide-treated controls. Administration of rottlerin in mice by intraperitoneal or intracranial routes starting at 3 days post-infection decreased disease development by 30-50%. Furthermore, rottlerin also inhibited virus replication of other pathogenic California serogroup orthobunyaviruses (Jamestown Canyon and Tahyna virus) in neuronal cell lines.


Assuntos
Acetofenonas/administração & dosagem , Antivirais/administração & dosagem , Benzopiranos/administração & dosagem , Encefalite da Califórnia/virologia , Complexo de Golgi/virologia , Vírus La Crosse/efeitos dos fármacos , Vírus La Crosse/fisiologia , Neurônios/virologia , Animais , Encefalite da Califórnia/tratamento farmacológico , Feminino , Complexo de Golgi/efeitos dos fármacos , Humanos , Vírus La Crosse/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Liberação de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
17.
Sci Rep ; 11(1): 16424, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385513

RESUMO

The California Serogroup (CSG) of Orthobunyaviruses comprises several viruses capable of causing neuroinvasive disease in humans, including La Crosse (LACV), Snowshoe Hare (SSHV), Tahyna (TAHV), Jamestown Canyon (JCV), and Inkoo (INKV) viruses. Diagnosis of specific CSG viruses is complicated by the high degree of antibody cross-reactivity between them, with laboratory standards requiring a fourfold higher titer of neutralizating antibody (NAb) activity to positively identify the etiologic virus. To help elucidate NAb relationships between neuroinvasive CSG viruses, we directly compared the cross-reactivity of NAb between LACV, SSHV, TAHV, JCV, and INKV. Mice were inoculated with individual viruses and the NAb activity of plasma samples was compared by plaque reduction neutralization tests against all five viruses. Overall, the results from these studies show that the CSG viruses induced high levels of NAb against the inoculum virus, and differing amounts of cross-reactive NAb against heterologous viruses. LACV, SSHV, and INKV elicited the highest amount of cross-reactive NAb. Interestingly, a fourfold difference in NAb titer between the inoculum virus and the other CSG viruses was not always observed. Thus, NAb titers, which are the gold-standard for diagnosing the etiologic agent for viral encephalitis, may not clearly differentiate between different CSG viruses.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Reações Cruzadas , Vírus da Encefalite da Califórnia/imunologia , Encefalite da Califórnia/imunologia , Sequência de Aminoácidos , Animais , Vírus da Encefalite da Califórnia/genética , Feminino , Masculino , Camundongos , Homologia de Sequência de Aminoácidos
18.
PLoS Negl Trop Dis ; 15(7): e0009553, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34214091

RESUMO

BACKGROUND: Jamestown Canyon virus (JCV) is a mosquito-borne orthobunyavirus that causes acute febrile illness, meningitis, and meningoencephalitis, primarily in North American adults. Currently, there are no available vaccines or specific treatments against JCV infections. METHODOLOGY/PRINCIPAL FINDINGS: The antiviral efficacy of favipiravir (FPV) against JCV infection was evaluated in vitro and in vivo in comparison with that of ribavirin (RBV) and 2'-fluoro-2'-deoxycytidine (2'-FdC). The in vitro inhibitory effect of these drugs on JCV replication was evaluated in Vero and Neuro-2a (N2A) cells. The efficacy of FPV in the treatment of JCV infection in vivo was evaluated in C57BL/6J mice inoculated intracerebrally with JCV, as per the survival, viral titers in the brain, and viral RNA load in the blood. The 90% inhibitory concentrations (IC90) of FPV, RBV, and 2'-FdC were 41.0, 61.8, and 13.6 µM in Vero cells and 20.7, 25.8, and 8.8 µM in N2A cells, respectively. All mice infected with 1.0×104 TCID50 died or were sacrificed within 10 days post-infection (dpi) without treatment. However, mice treated with FPV for 5 days [initiated either 2 days prior to infection (-2 dpi-2 dpi) or on the day of infection (0 dpi-4 dpi)] survived significantly longer than control mice, administered with PBS (p = 0.025 and 0.011, respectively). Moreover, at 1 and 3 dpi, the virus titers in the brain were significantly lower in FPV-treated mice (0 dpi-4 dpi) versus PBS-treated mice (p = 0.002 for both 1 and 3 dpi). CONCLUSIONS/SIGNIFICANCE: Although the intracerebral inoculation route is thought to be a challenging way to evaluate drug efficacy, FPV inhibits the in vitro replication of JCV and prolongs the survival of mice intracerebrally inoculated with JCV. These results will enable the development of a specific antiviral treatment against JCV infections and establishment of an effective animal model.


Assuntos
Amidas/administração & dosagem , Antivirais/administração & dosagem , Vírus da Encefalite da Califórnia/efeitos dos fármacos , Encefalite da Califórnia/tratamento farmacológico , Pirazinas/administração & dosagem , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Vírus da Encefalite da Califórnia/genética , Vírus da Encefalite da Califórnia/crescimento & desenvolvimento , Encefalite da Califórnia/mortalidade , Encefalite da Califórnia/virologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células Vero
19.
Am J Trop Med Hyg ; 105(3): 807-812, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34280142

RESUMO

La Crosse virus (LACV) is an arthropod-borne virus that can cause a nonspecific febrile illness, meningitis, or encephalitis. We reviewed U.S. LACV surveillance data for 2003-2019, including human disease cases and nonhuman infections. Overall, 318 counties in 27 states, principally in the Great Lakes, mid-Atlantic, and southeastern regions, reported LACV activity. A total of 1,281 human LACV disease cases were reported, including 1,183 (92%) neuroinvasive disease cases. The median age of cases was 8 years (range: 1 month-95 years); 1,130 (88%) were aged < 18 years, and 754 (59%) were male. The most common clinical syndromes were encephalitis (N = 960; 75%) and meningitis (N = 219, 17%). The case fatality rate was 1% (N = 15). A median of 74 cases (range: 35-130) was reported per year. The average annual national incidence of neuroinvasive disease cases was 0.02 per 100,000 persons. West Virginia, North Carolina, Tennessee, and Ohio had the highest average annual state incidences (0.16-0.61 per 100,000), accounting for 80% (N = 1,030) of cases. No animal LACV infections were reported. Nine states reported LACV-positive mosquito pools, including three states with no reported human disease cases. La Crosse virus is the most common cause of pediatric neuroinvasive arboviral disease in the United States. However, surveillance data likely underestimate LACV disease incidence. Healthcare providers should consider LACV disease in patients, especially children, with febrile illness, meningitis, or encephalitis in areas where the virus circulates and advise their patients on ways to prevent mosquito bites.


Assuntos
Encefalite da Califórnia/epidemiologia , Vírus La Crosse , Meningite Viral/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Encefalite da Califórnia/virologia , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Lactente , Recém-Nascido , Masculino , Meningite Viral/virologia , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Adulto Jovem
20.
J Neuroinflammation ; 18(1): 125, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082753

RESUMO

BACKGROUND: A key factor in the development of viral encephalitis is a virus crossing the blood-brain barrier (BBB). We have previously shown that age-related susceptibility of mice to the La Crosse virus (LACV), the leading cause of pediatric arbovirus encephalitis in the USA, was associated with the ability of the virus to cross the BBB. LACV infection in weanling mice (aged around 3 weeks) results in vascular leakage in the olfactory bulb/tract (OB/OT) region of the brain, which is not observed in adult mice aged > 6-8 weeks. Thus, we studied age-specific differences in the response of brain capillary endothelial cells (BCECs) to LACV infection. METHODS: To examine mechanisms of LACV-induced BBB breakdown and infection of the CNS, we analyzed BCECs directly isolated from weanling and adult mice as well as established a model where these cells were infected in vitro and cultured for a short period to determine susceptibility to virus infection and cell death. Additionally, we utilized correlative light electron microscopy (CLEM) to examine whether changes in cell morphology and function were also observed in BCECs in vivo. RESULTS: BCECs from weanling, but not adult mice, had detectable infection after several days in culture when taken ex vivo from infected mice suggesting that these cells could be infected in vitro. Further analysis of BCECs from uninfected mice, infected in vitro, showed that weanling BCECs were more susceptible to virus infection than adult BCECs, with higher levels of infected cells, released virus as well as cytopathic effects (CPE) and cell death. Although direct LACV infection is not detected in the weanling BCECs, CLEM analysis of brain tissue from weanling mice indicated that LACV infection induced significant cerebrovascular damage which allowed virus-sized particles to enter the brain parenchyma. CONCLUSIONS: These findings indicate that BCECs isolated from adult and weanling mice have differential viral load, infectivity, and susceptibility to LACV. These age-related differences in susceptibility may strongly influence LACV-induced BBB leakage and neurovascular damage allowing virus invasion of the CNS and the development of neurological disease.


Assuntos
Envelhecimento , Barreira Hematoencefálica/virologia , Capilares/virologia , Morte Celular , Encefalite da Califórnia/virologia , Células Endoteliais/patologia , Células Endoteliais/virologia , Vírus La Crosse/fisiologia , Animais , Animais Recém-Nascidos , Barreira Hematoencefálica/fisiopatologia , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Encéfalo/virologia , Capilares/patologia , Caspase 3/fisiologia , Técnicas de Cultura de Células , Modelos Animais de Doenças , Encefalite da Califórnia/patologia , Encefalite da Califórnia/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Ensaio de Placa Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA