Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.006
Filtrar
1.
Biomol NMR Assign ; 16(1): 27-30, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34739631

RESUMO

Phafin2 is a peripheral protein that triggers cellular signaling from endosomal and lysosomal compartments. The specific subcellular localization of Phafin2 is mediated by the presence of a tandem of phosphatidylinositol 3-phosphate (PtdIns3P)-binding domains, the pleckstrin homology (PH) and the Fab-1, YOTB, Vac1, and EEA1 (FYVE) domains. The requirement for both domains for binding to PtdIns3P still remains unclear. To understand the molecular interactions of the Phafin2 PH domain in detail, we report its nearly complete 1H, 15N, and 13C backbone resonance assignments.


Assuntos
Domínios de Homologia à Plecstrina , Proteínas de Transporte Vesicular , Endossomos/metabolismo , Endossomos/ultraestrutura , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo
2.
J Cell Biol ; 221(1)2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34817533

RESUMO

The key endosomal regulators Rab5, EEA1, and APPL1 are frequently applied in fluorescence microscopy to mark early endosomes, whereas Rab7 is used as a marker for late endosomes and lysosomes. However, endogenous levels of these proteins localize poorly in immuno-EM, and systematic studies on their native ultrastructural distributions are lacking. To address this gap, we here present a quantitative, on-section correlative light and electron microscopy (CLEM) approach. Using the sensitivity of fluorescence microscopy, we label hundreds of organelles that are subsequently visualized by EM and classified by ultrastructure. We show that Rab5 predominantly marks small, endocytic vesicles and early endosomes. EEA1 colocalizes with Rab5 on early endosomes, but unexpectedly also labels Rab5-negative late endosomes, which are positive for PI(3)P but lack Rab7. APPL1 is restricted to small Rab5-positive, tubulo-vesicular profiles. Rab7 primarily labels late endosomes and lysosomes. These data increase our understanding of the structural-functional organization of the endosomal system and introduce quantitative CLEM as a sensitive alternative for immuno-EM.


Assuntos
Endossomos/ultraestrutura , Microscopia Eletrônica , Proteínas de Transporte Vesicular/ultraestrutura , Antígenos/metabolismo , Linhagem Celular Tumoral , Endossomos/metabolismo , Imunofluorescência , Humanos , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Proteínas de Transporte Vesicular/metabolismo
3.
Cells ; 10(12)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34943955

RESUMO

Commander complex is a 16-protein complex that plays multiple roles in various intracellular events in endosomal cargo and in the regulation of cell homeostasis, cell cycle and immune response. It consists of COMMD1-10, CCDC22, CCDC93, DENND10, VPS26C, VPS29, and VPS35L. These proteins are expressed ubiquitously in the human body, and they have been linked to diseases including Wilson's disease, atherosclerosis, and several types of cancer. In this review we describe the function of the commander complex in endosomal cargo and summarize the individual known roles of COMMD proteins in cell signaling and cancer. It becomes evident that commander complex might be a much more important player in intracellular regulation than we currently understand, and more systematic research on the role of commander complex is required.


Assuntos
Endossomos/genética , Complexos Multiproteicos/genética , Transporte Proteico/genética , Proteínas de Transporte Vesicular/genética , Endossomos/ultraestrutura , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Complexos Multiproteicos/ultraestrutura , Neoplasias/genética , Proteínas/genética , Transdução de Sinais/genética , Proteínas de Transporte Vesicular/química
4.
Cells ; 10(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34359848

RESUMO

Hereditary spastic paraplegia (HSP) refers to a group of neurological disorders involving the degeneration of motor neurons. Due to their clinical and genetic heterogeneity, finding common effective therapeutics is difficult. Therefore, a better understanding of the common pathological mechanisms is necessary. The role of several HSP genes/proteins is linked to the endolysosomal and autophagic pathways, suggesting a functional convergence. Furthermore, impairment of these pathways is particularly interesting since it has been linked to other neurodegenerative diseases, which would suggest that the nervous system is particularly sensitive to the disruption of the endolysosomal and autophagic systems. In this review, we will summarize the involvement of HSP proteins in the endolysosomal and autophagic pathways in order to clarify their functioning and decipher some of the pathological mechanisms leading to HSP.


Assuntos
Autofagia/genética , Endossomos/metabolismo , Lisossomos/metabolismo , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/genética , Paraplegia Espástica Hereditária/genética , Endossomos/ultraestrutura , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Heterogeneidade Genética , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Lisossomos/ultraestrutura , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neurônios Motores/patologia , Proteínas do Tecido Nervoso/classificação , Proteínas do Tecido Nervoso/metabolismo , Proteínas/genética , Proteínas/metabolismo , Transdução de Sinais , Paraplegia Espástica Hereditária/metabolismo , Paraplegia Espástica Hereditária/patologia , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Rede trans-Golgi/metabolismo , Rede trans-Golgi/ultraestrutura
5.
Nat Commun ; 12(1): 4552, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315878

RESUMO

The ability of endolysosomal organelles to move within the cytoplasm is essential for the performance of their functions. Long-range movement involves coupling of the endolysosomes to motor proteins that carry them along microtubule tracks. This movement is influenced by interactions with other organelles, but the mechanisms involved are incompletely understood. Herein we show that the sorting nexin SNX19 tethers endolysosomes to the endoplasmic reticulum (ER), decreasing their motility and contributing to their concentration in the perinuclear area of the cell. Tethering depends on two N-terminal transmembrane domains that anchor SNX19 to the ER, and a PX domain that binds to phosphatidylinositol 3-phosphate on the endolysosomal membrane. Two other domains named PXA and PXC negatively regulate the interaction of SNX19 with endolysosomes. These studies thus identify a mechanism for controlling the motility and positioning of endolysosomes that involves tethering to the ER by a sorting nexin.


Assuntos
Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Nexinas de Classificação/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/ultraestrutura , Endossomos/ultraestrutura , Humanos , Lisossomos/ultraestrutura , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Domínios Proteicos , Transporte Proteico , Nexinas de Classificação/química
6.
J Cell Biol ; 220(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34165494

RESUMO

The Scar/WAVE complex drives actin nucleation during cell migration. Interestingly, the same complex is important in forming membrane ruffles during macropinocytosis, a process mediating nutrient uptake and membrane receptor trafficking. Mammalian CYRI-B is a recently described negative regulator of the Scar/WAVE complex by RAC1 sequestration, but its other paralogue, CYRI-A, has not been characterized. Here, we implicate CYRI-A as a key regulator of macropinosome formation and integrin internalization. We find that CYRI-A is transiently recruited to nascent macropinosomes, dependent on PI3K and RAC1 activity. CYRI-A recruitment precedes RAB5A recruitment but follows sharply after RAC1 and actin signaling, consistent with it being a local inhibitor of actin polymerization. Depletion of both CYRI-A and -B results in enhanced surface expression of the α5ß1 integrin via reduced internalization. CYRI depletion enhanced migration, invasion, and anchorage-independent growth in 3D. Thus, CYRI-A is a dynamic regulator of macropinocytosis, functioning together with CYRI-B to regulate integrin trafficking.


Assuntos
Endossomos/metabolismo , Integrina alfa5beta1/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Mitocondriais/genética , Pinocitose/genética , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Actinas/genética , Actinas/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Chlorocebus aethiops , Endossomos/patologia , Endossomos/ultraestrutura , Regulação da Expressão Gênica , Células HEK293 , Humanos , Integrina alfa5beta1/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Mitocondriais/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patologia , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Polimerização , Transporte Proteico , Transdução de Sinais , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
7.
Immunology ; 164(3): 494-506, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34110622

RESUMO

An exclusive feature of dendritic cells (DCs) is their capacity to present exogenous antigens by MHC class I molecules, called cross-presentation. Here, we show that protein antigen can be conserved in mature murine DCs for several days in a lysosome-like storage compartment, distinct from MHC class II and early endosomal compartments, as an internal source for the supply of MHC class I ligands. Using two different uptake routes via Fcγ receptors and C-type lectin receptors, we could show that antigens were routed towards the same endolysosomal compartments after 48 h. The antigen-containing compartments lacked co-expression of molecules involved in MHC class I processing and presentation including TAP and proteasome subunits as shown by single-cell imaging flow cytometry. Moreover, we observed the absence of cathepsin S but selective co-localization of active cathepsin X with protein antigen in the storage compartments. This indicates cathepsin S-independent antigen degradation and a novel but yet undefined role for cathepsin X in antigen processing and cross-presentation by DCs. In summary, our data suggest that these antigen-containing compartments in DCs can conserve protein antigens from different uptake routes and contribute to long-lasting antigen cross-presentation.


Assuntos
Antígenos/metabolismo , Apresentação Cruzada , Células Dendríticas/imunologia , Lectinas Tipo C/metabolismo , Receptores de IgG/metabolismo , Animais , Apresentação de Antígeno , Antígenos/imunologia , Catepsinas/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/ultraestrutura , Endossomos/imunologia , Endossomos/metabolismo , Endossomos/ultraestrutura , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Lisossomos/imunologia , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Camundongos , Microscopia Eletrônica de Transmissão , Modelos Animais , Células NIH 3T3 , Cultura Primária de Células
8.
Cell Rep ; 35(2): 108973, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852866

RESUMO

Fast axonal transport of neuropeptide-containing dense core vesicles (DCVs), endolysosomal organelles, and presynaptic components is critical for maintaining neuronal functionality. How the transport of DCVs is orchestrated remains an important unresolved question. The small GTPase Rab2 mediates DCV biogenesis and endosome-lysosome fusion. Here, we use Drosophila to demonstrate that Rab2 also plays a critical role in bidirectional axonal transport of DCVs, endosomes, and lysosomal organelles, most likely by controlling molecular motors. We further show that the lysosomal motility factor Arl8 is required as well for axonal transport of DCVs, but unlike Rab2, it is also critical for DCV exit from cell bodies into axons. We also provide evidence that the upstream regulators of Rab2 and Arl8, Ema and BORC, activate these GTPases during DCV transport. Our results uncover the mechanisms underlying axonal transport of DCVs and reveal surprising parallels between the regulation of DCV and lysosomal motility.


Assuntos
Fatores de Ribosilação do ADP/genética , Transporte Axonal/genética , Vesículas de Núcleo Denso/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Neurônios/metabolismo , Proteína rab2 de Ligação ao GTP/genética , Fatores de Ribosilação do ADP/metabolismo , Animais , Vesículas de Núcleo Denso/ultraestrutura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endossomos/metabolismo , Endossomos/ultraestrutura , Regulação da Expressão Gênica , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Fusão de Membrana , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Neurônios/ultraestrutura , Biogênese de Organelas , Ligação Proteica , Transdução de Sinais , Proteína rab2 de Ligação ao GTP/metabolismo
9.
Acta Neuropathol Commun ; 9(1): 70, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853668

RESUMO

Huntington's disease (HD) is a late onset, inherited neurodegenerative disorder for which early pathogenic events remain poorly understood. Here we show that mutant exon 1 HTT proteins are recruited to a subset of cytoplasmic aggregates in the cell bodies of neurons in brain sections from presymptomatic HD, but not wild-type, mice. This occurred in a disease stage and polyglutamine-length dependent manner. We successfully adapted a high-resolution correlative light and electron microscopy methodology, originally developed for mammalian and yeast cells, to allow us to correlate light microscopy and electron microscopy images on the same brain section within an accuracy of 100 nm. Using this approach, we identified these recruitment sites as single membrane bound, vesicle-rich endolysosomal organelles, specifically as (1) multivesicular bodies (MVBs), or amphisomes and (2) autolysosomes or residual bodies. The organelles were often found in close-proximity to phagophore-like structures. Immunogold labeling localized mutant HTT to non-fibrillar, electron lucent structures within the lumen of these organelles. In presymptomatic HD, the recruitment organelles were predominantly MVBs/amphisomes, whereas in late-stage HD, there were more autolysosomes or residual bodies. Electron tomograms indicated the fusion of small vesicles with the vacuole within the lumen, suggesting that MVBs develop into residual bodies. We found that markers of MVB-related exocytosis were depleted in presymptomatic mice and throughout the disease course. This suggests that endolysosomal homeostasis has moved away from exocytosis toward lysosome fusion and degradation, in response to the need to clear the chronically aggregating mutant HTT protein, and that this occurs at an early stage in HD pathogenesis.


Assuntos
Endossomos/patologia , Doença de Huntington/patologia , Corpos de Inclusão/ultraestrutura , Lisossomos/patologia , Neurônios/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Endossomos/metabolismo , Endossomos/ultraestrutura , Técnicas de Introdução de Genes , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/metabolismo , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Camundongos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Mutação , Neurônios/metabolismo , Neurônios/ultraestrutura
10.
Biosci Biotechnol Biochem ; 85(5): 1038-1045, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33686391

RESUMO

In eukaryotic cells, membrane-surrounded organelles are orchestrally organized spatiotemporally under environmental situations. Among such organelles, vesicular transports and membrane contacts occur to communicate each other, so-called membrane traffic. Filamentous fungal cells are highly polarized and thus membrane traffic is developed to have versatile functions. Early endosome (EE) is an endocytic organelle that dynamically exhibits constant long-range motility through the hyphal cell, which is proven to have physiological roles, such as other organelle distribution and signal transduction. Since filamentous fungal cells are also considered as cell factories, to produce valuable proteins extracellularly, molecular mechanisms of secretory pathway including protein glycosylation have been well investigated. In this review, molecular and physiological aspects of membrane traffic especially related to EE dynamics and protein secretion in filamentous fungi are summarized, and perspectives for application are also described.


Assuntos
Membrana Celular/metabolismo , Endossomos/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Processamento de Proteína Pós-Traducional , Vesículas Secretórias/metabolismo , Compartimento Celular , Membrana Celular/ultraestrutura , Polaridade Celular , Endocitose , Endossomos/ultraestrutura , Proteínas Fúngicas/biossíntese , Fungos/ultraestrutura , Glicosilação , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Hifas/metabolismo , Hifas/ultraestrutura , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Biossíntese de Proteínas , Transporte Proteico , Vesículas Secretórias/ultraestrutura , Transdução de Sinais
11.
Nat Chem Biol ; 17(5): 558-566, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33649598

RESUMO

G-protein-coupled receptor-regulated cAMP production from endosomes can specify signaling to the nucleus by moving the source of cAMP without changing its overall amount. How this is possible remains unknown because cAMP gradients dissipate over the nanoscale, whereas endosomes typically localize micrometers from the nucleus. We show that the key location-dependent step for endosome-encoded transcriptional control is nuclear entry of cAMP-dependent protein kinase (PKA) catalytic subunits. These are sourced from punctate accumulations of PKA holoenzyme that are densely distributed in the cytoplasm and titrated by global cAMP into a discrete metastable state, in which catalytic subunits are bound but dynamically exchange. Mobile endosomes containing activated receptors collide with the metastable PKA puncta and pause in close contact. We propose that these properties enable cytoplasmic PKA to act collectively like a semiconductor, converting nanoscale cAMP gradients generated from endosomes into microscale elevations of free catalytic subunits to direct downstream signaling.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Citoplasma/metabolismo , Endossomos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais/genética , Animais , Domínio Catalítico , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Cadeias Pesadas de Clatrina/antagonistas & inibidores , Cadeias Pesadas de Clatrina/genética , Cadeias Pesadas de Clatrina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Citoplasma/ultraestrutura , Dinamina I/genética , Dinamina I/metabolismo , Endossomos/ultraestrutura , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Luciferases/genética , Luciferases/metabolismo , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Receptores Adrenérgicos beta 2/genética
12.
FEBS J ; 288(8): 2562-2569, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33605032

RESUMO

G protein-coupled receptors (GPCRs) are a large class of cell-surface receptor involved in cellular signaling that are currently the target of over one third of all clinically approved therapeutics. Classically, an agonist-bound, active GPCR couples to and activates G proteins through the receptor intracellular core. To attenuate G protein signaling, the GPCR is phosphorylated at its C-terminal tail and/or relevant intracellular loops, allowing for the recruitment of ß-arrestins (ßarrs). ßarrs then couple to the receptor intracellular core in order to mediate receptor desensitization and internalization. However, our laboratory and others have observed that some GPCRs are capable of continuously signaling through G protein even after internalization. This mode of sustained signaling stands in contrast with our previous understanding of GPCR signaling, and its molecular mechanism is still not well understood. Recently, we have solved the structure of a GPCR-G protein-ßarr megacomplex by cryo-electron microscopy. This 'megaplex' structure illustrates the independent and simultaneous coupling of a G protein to the receptor intracellular core, and binding of a ßarr to a phosphorylated receptor C-terminal tail, with all three components maintaining their respective canonically active conformations. The structure provides evidence for the ability of a GPCR to activate G protein even while being bound to and internalized by ßarr. It also reveals that the binding of G protein and ßarr to the same GPCR is not mutually exclusive, and raises a number of future questions to be answered regarding the mechanism of sustained signaling.


Assuntos
Endossomos/genética , Proteínas de Ligação ao GTP/genética , Receptores Acoplados a Proteínas G/genética , beta-Arrestinas/genética , Arrestinas/genética , Arrestinas/ultraestrutura , Microscopia Crioeletrônica , Endocitose/genética , Endossomos/ultraestrutura , Proteínas de Ligação ao GTP/ultraestrutura , Humanos , Conformação Molecular , Fosforilação , Ligação Proteica/genética , Receptores Acoplados a Proteínas G/ultraestrutura , Transdução de Sinais/genética
13.
FEBS J ; 288(5): 1412-1433, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32757358

RESUMO

Phagocytosis is an essential mechanism for immunity and homeostasis, performed by a subset of cells known as phagocytes. Upon target engulfment, de novo formation of specialized compartments termed phagosomes takes place. Phagosomes then undergo a series of fusion and fission events as they interact with the endolysosomal system and other organelles, in a dynamic process known as phagosome maturation. Because phagocytes play a key role in tissue patrolling and immune surveillance, phagosome maturation is associated with signaling pathways that link phagocytosis to antigen presentation and the development of adaptive immune responses. In addition, and depending on the nature of the cargo, phagosome integrity may be compromised, triggering additional cellular mechanisms including inflammation and autophagy. Upon completion of maturation, phagosomes enter a recently described phase: phagosome resolution, where catabolites from degraded cargo are metabolized, phagosomes are resorbed, and vesicles of phagosomal origin are recycled. Finally, phagocytes return to homeostasis and become ready for a new round of phagocytosis. Altogether, phagosome maturation and resolution encompass a series of dynamic events and organelle crosstalk that can be measured by biochemical, imaging, photoluminescence, cytometric, and immune-based assays that will be described in this guide.


Assuntos
Endossomos/imunologia , Lisossomos/imunologia , Fagócitos/imunologia , Fagocitose , Fagossomos/imunologia , Imunidade Adaptativa , Animais , Apresentação de Antígeno , Autofagia/genética , Autofagia/imunologia , Endossomos/metabolismo , Endossomos/ultraestrutura , Humanos , Imunidade Inata , Imunoensaio , Vigilância Imunológica , Inflamação , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Técnicas de Sonda Molecular , Fagócitos/metabolismo , Fagócitos/ultraestrutura , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Transdução de Sinais
14.
Methods Mol Biol ; 2233: 101-111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33222130

RESUMO

The efficient recycling of synaptic vesicles (SVs) during neuronal activity is central for sustaining brain function. During intense neuronal activity, the dominant mechanism of SV retrieval is activity-dependent bulk endocytosis (ADBE). Here, we describe a method to monitor ADBE in isolation from other SV endocytosis modes, via the uptake of large fluorescent fluid-phase markers in primary neuronal culture. Furthermore, we outline how to monitor ADBE using this approach across a field of neurons or in individual neurons.


Assuntos
Endocitose/genética , Neurônios/ultraestrutura , Cultura Primária de Células/métodos , Vesículas Sinápticas/ultraestrutura , Animais , Dextranos/farmacologia , Endossomos/efeitos dos fármacos , Endossomos/ultraestrutura , Corantes Fluorescentes/farmacologia , Humanos , Camundongos , Neurônios/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/ultraestrutura , Vesículas Sinápticas/efeitos dos fármacos
15.
Cell Host Microbe ; 28(6): 867-879.e5, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33271067

RESUMO

The SARS-CoV-2 spike employs mobile receptor-binding domains (RBDs) to engage the human ACE2 receptor and to facilitate virus entry, which can occur through low-pH-endosomal pathways. To understand how ACE2 binding and low pH affect spike conformation, we determined cryo-electron microscopy structures-at serological and endosomal pH-delineating spike recognition of up to three ACE2 molecules. RBDs freely adopted "up" conformations required for ACE2 interaction, primarily through RBD movement combined with smaller alterations in neighboring domains. In the absence of ACE2, single-RBD-up conformations dominated at pH 5.5, resolving into a solitary all-down conformation at lower pH. Notably, a pH-dependent refolding region (residues 824-858) at the spike-interdomain interface displayed dramatic structural rearrangements and mediated RBD positioning through coordinated movements of the entire trimer apex. These structures provide a foundation for understanding prefusion-spike mechanics governing endosomal entry; we suggest that the low pH all-down conformation potentially facilitates immune evasion from RBD-up binding antibody.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Pandemias , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Sequência de Aminoácidos/genética , Enzima de Conversão de Angiotensina 2/ultraestrutura , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Microscopia Crioeletrônica , Endossomos/ultraestrutura , Humanos , Concentração de Íons de Hidrogênio , Ligação Proteica , Domínios Proteicos , Receptores Virais/genética , Receptores Virais/ultraestrutura , SARS-CoV-2/genética , SARS-CoV-2/ultraestrutura , Glicoproteína da Espícula de Coronavírus/genética
16.
Biol Open ; 9(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33148607

RESUMO

The amyotrophic lateral sclerosis (ALS) neurodegenerative disorder has been associated with multiple genetic lesions, including mutations in the gene for fused in sarcoma (FUS), a nuclear-localized RNA/DNA-binding protein. Neuronal expression of the pathological form of FUS proteins in Caenorhabditis elegans results in mislocalization and aggregation of FUS in the cytoplasm, and leads to impairment of motility. However, the mechanisms by which the mutant FUS disrupts neuronal health and function remain unclear. Here we investigated the impact of ALS-associated FUS on motor neuron health using correlative light and electron microscopy, electron tomography, and electrophysiology. We show that ectopic expression of wild-type or ALS-associated human FUS impairs synaptic vesicle docking at neuromuscular junctions. ALS-associated FUS led to the emergence of a population of large, electron-dense, and filament-filled endosomes. Electrophysiological recording revealed reduced transmission from motor neurons to muscles. Together, these results suggest a pathological effect of ALS-causing FUS at synaptic structure and function organization.This article has an associated First Person interview with the first author of the paper.


Assuntos
Esclerose Lateral Amiotrófica/etiologia , Expressão Gênica , Mutação , Junção Neuromuscular/genética , Junção Neuromuscular/fisiopatologia , Proteína FUS de Ligação a RNA/genética , Transmissão Sináptica/genética , Animais , Caenorhabditis elegans , Modelos Animais de Doenças , Suscetibilidade a Doenças , Endossomos/metabolismo , Endossomos/ultraestrutura , Humanos , Neurônios Motores/metabolismo , Neurônios Motores/ultraestrutura , Junção Neuromuscular/patologia , Junção Neuromuscular/ultraestrutura , Potenciais Sinápticos
17.
Nat Commun ; 11(1): 5559, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144569

RESUMO

Cholesterol import in mammalian cells is mediated by the LDL receptor pathway. Here, we perform a genome-wide CRISPR screen using an endogenous cholesterol reporter and identify >100 genes involved in LDL-cholesterol import. We characterise C18orf8 as a core subunit of the mammalian Mon1-Ccz1 guanidine exchange factor (GEF) for Rab7, required for complex stability and function. C18orf8-deficient cells lack Rab7 activation and show severe defects in late endosome morphology and endosomal LDL trafficking, resulting in cellular cholesterol deficiency. Unexpectedly, free cholesterol accumulates within swollen lysosomes, suggesting a critical defect in lysosomal cholesterol export. We find that active Rab7 interacts with the NPC1 cholesterol transporter and licenses lysosomal cholesterol export. This process is abolished in C18orf8-, Ccz1- and Mon1A/B-deficient cells and restored by a constitutively active Rab7. The trimeric Mon1-Ccz1-C18orf8 (MCC) GEF therefore plays a central role in cellular cholesterol homeostasis coordinating Rab7 activation, endosomal LDL trafficking and NPC1-dependent lysosomal cholesterol export.


Assuntos
Colesterol/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Multimerização Proteica , Proteínas rab de Ligação ao GTP/metabolismo , Transporte Biológico , Sistemas CRISPR-Cas/genética , LDL-Colesterol/metabolismo , Endossomos/metabolismo , Endossomos/ultraestrutura , Corantes Fluorescentes/metabolismo , Genoma Humano , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Células HeLa , Homeostase , Humanos , Hidroximetilglutaril-CoA Sintase/metabolismo , Lisossomos/ultraestrutura , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Proteína C1 de Niemann-Pick , Ligação Proteica , proteínas de unión al GTP Rab7
18.
Proc Natl Acad Sci U S A ; 117(46): 28614-28624, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139578

RESUMO

As part of the lysosomal degradation pathway, the endosomal sorting complexes required for transport (ESCRT-0 to -III/VPS4) sequester receptors at the endosome and simultaneously deform the membrane to generate intraluminal vesicles (ILVs). Whereas ESCRT-III/VPS4 have an established function in ILV formation, the role of upstream ESCRTs (0 to II) in membrane shape remodeling is not understood. Combining experimental measurements and electron microscopy analysis of ESCRT-III-depleted cells with a mathematical model, we show that upstream ESCRT-induced alteration of the Gaussian bending rigidity and their crowding in concert with the transmembrane cargo on the membrane induce membrane deformation and facilitate ILV formation: Upstream ESCRT-driven budding does not require ATP consumption as only a small energy barrier needs to be overcome. Our model predicts that ESCRTs do not become part of the ILV, but localize with a high density at the membrane neck, where the steep decline in the Gaussian curvature likely triggers ESCRT-III/VPS4 assembly to enable neck constriction and scission.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Membranas Intracelulares/fisiologia , Modelos Biológicos , Endossomos/ultraestrutura , Células HeLa , Humanos
19.
Acta Neuropathol Commun ; 8(1): 165, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059769

RESUMO

Autosomal dominant mutations in LITAF are responsible for the rare demyelinating peripheral neuropathy, Charcot-Marie-Tooth disease type 1C (CMT1C). The LITAF protein is expressed in many human cell types and we have investigated the consequences of two different LITAF mutations in primary fibroblasts from CMT1C patients using confocal and electron microscopy. We observed the appearance of vacuolation/enlargement of late endocytic compartments (late endosomes and lysosomes). This vacuolation was also observed after knocking out LITAF from either control human fibroblasts or from the CMT1C patient-derived cells, consistent with it being the result of loss-of-function mutations in the CMT1C fibroblasts. The vacuolation was similar to that previously observed in fibroblasts from CMT4J patients, which have autosomal recessive mutations in FIG4. The FIG4 protein is a component of a phosphoinositide kinase complex that synthesises phosphatidylinositol 3,5-bisphosphate on the limiting membrane of late endosomes. Phosphatidylinositol 3,5-bisphosphate activates the release of lysosomal Ca2+ through the cation channel TRPML1, which is required to maintain the homeostasis of endosomes and lysosomes in mammalian cells. We observed that a small molecule activator of TRPML1, ML-SA1, was able to rescue the vacuolation phenotype of LITAF knockout, FIG4 knockout and CMT1C patient fibroblasts. Our data describe the first cellular phenotype common to two different subtypes of demyelinating CMT and are consistent with LITAF and FIG4 functioning on a common endolysosomal pathway that is required to maintain the homeostasis of late endosomes and lysosomes. Although our experiments were on human fibroblasts, they have implications for our understanding of the molecular pathogenesis and approaches to therapy in two subtypes of demyelinating Charcot-Marie-Tooth disease.


Assuntos
Doença de Charcot-Marie-Tooth/metabolismo , Endossomos/metabolismo , Fibroblastos/metabolismo , Lisossomos/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Adulto , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Doença de Charcot-Marie-Tooth/fisiopatologia , Endossomos/patologia , Endossomos/ultraestrutura , Feminino , Fibroblastos/patologia , Fibroblastos/ultraestrutura , Flavoproteínas/genética , Técnicas de Inativação de Genes , Humanos , Mutação com Perda de Função , Lisossomos/patologia , Lisossomos/ultraestrutura , Masculino , Microscopia Confocal , Microscopia Eletrônica , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Monoéster Fosfórico Hidrolases/genética , Fatores de Transcrição/genética , Vacúolos/patologia , Vacúolos/ultraestrutura
20.
Dev Cell ; 55(3): 289-297.e4, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916093

RESUMO

Lysosome function is essential for cellular homeostasis, but quality-control mechanisms that maintain healthy lysosomes remain poorly characterized. Here, we developed a method to measure lysosome turnover and use this to identify a selective mechanism of membrane degradation that involves lipidation of the autophagy protein LC3 onto lysosomal membranes and the formation of intraluminal vesicles through microautophagy. This mechanism is induced in response to metabolic stress resulting from glucose starvation or by treatment with pharmacological agents that induce osmotic stress on lysosomes. Cells lacking ATG5, an essential component of the LC3 lipidation machinery, show reduced ability to regulate lysosome size and degradative capacity in response to activation of this mechanism. These findings identify a selective mechanism of lysosome membrane turnover that is induced by stress and uncover a function for LC3 lipidation in regulating lysosome size and activity through microautophagy.


Assuntos
Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Nutrientes/deficiência , Autofagia , Proteína 5 Relacionada à Autofagia/metabolismo , Linhagem Celular , Endossomos/metabolismo , Endossomos/ultraestrutura , Glucose/deficiência , Glutamina/metabolismo , Humanos , Lipídeos/química , Lisossomos/ultraestrutura , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA