Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 664
Filtrar
1.
Elife ; 132024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722677

RESUMO

Environmental air irritants including nanosized carbon black (nCB) can drive systemic inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema development. The let-7 microRNA (Mirlet7 miRNA) family is associated with IL-17-driven T cell inflammation, a canonical signature of lung inflammation. Recent evidence suggests the Mirlet7 family is downregulated in patients with COPD, however, whether this repression conveys a functional consequence on emphysema pathology has not been elucidated. Here, we show that overall expression of the Mirlet7 clusters, Mirlet7b/Mirlet7c2 and Mirlet7a1/Mirlet7f1/Mirlet7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the Mirlet7b/Mirlet7c2 cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. Furthermore, ablation of the Mirlet7b/Mirlet7c2 cluster enhanced CD8+IL17a+ T cells (Tc17) formation in emphysema development in mice. Additionally, transgenic mice overexpressing Mirlet7g in T cells are resistant to Tc17 and CD4+IL17a+ T cells (Th17) development when exposed to nCB. Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), as a direct target of Mirlet7 in T cells. Overall, our findings shed light on the Mirlet7/RORγt axis with Mirlet7 acting as a molecular brake in the generation of Tc17 cells and suggest a novel therapeutic approach for tempering the augmented IL-17-mediated response in emphysema.


Assuntos
Diferenciação Celular , Regulação para Baixo , MicroRNAs , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Humanos , Células Th17/imunologia , Células Th17/metabolismo , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Enfisema/genética , Enfisema/metabolismo , Camundongos Endogâmicos C57BL , Pulmão/patologia , Pulmão/metabolismo , Masculino , Interleucina-17/metabolismo , Interleucina-17/genética , Feminino
2.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(4): 339-345, 2024 Apr 12.
Artigo em Chinês | MEDLINE | ID: mdl-38599809

RESUMO

Objective: To construct and characterize conditional Src homology region 2 protein tyrosine phosphatase 1 (SHP-1) knockout mice in airway epithelial cells and to observe the effect of defective SHP-1 expression in airway epithelial cells on the emphysema phenotype in chronic obstructive pulmonary disease (COPD). Methods: To detect the expression of SHP-1 in the airway epithelium of COPD patients. CRISPR/Cas9 technology was used to construct SHP-1flox/flox transgenic mice, which were mated with airway epithelial Clara protein 10-cyclase recombinase and estrogen receptor fusion transgenic mice (CC10-CreER+/+), and after intraperitoneal injection of tamoxifen, airway epithelial SHP-1 knockout mice were obtained (SHP-1flox/floxCC10-CreER+/-, SHP-1Δ/Δ). Mouse tail and lung tissue DNA was extracted and PCR amplified to discriminate the genotype of the mice; the knockout effect of SHP-1 gene in airway epithelial cells was verified by qRT-PCR, Western blotting, and immunofluorescence. In addition, an emphysema mouse model was constructed using elastase to assess the severity of emphysema in each group of mice. Results: Airway epithelial SHP-1 was significantly downregulated in COPD patients. Genotyping confirmed that SHP-1Δ/Δ mice expressed CC10-CreER and SHP-1-flox. After tamoxifen induction, we demonstrated the absence of SHP-1 protein expression in airway epithelial cells of SHP-1Δ/Δ mice at the DNA, RNA, and protein levels, indicating that airway epithelial cell-specific SHP-1 knockout mice had been successfully constructed. In the emphysema animal model, SHP-1Δ/Δ mice had a more severe emphysema phenotype compared with the control group, which was manifested by disorganization of alveolar structure in lung tissue and rupture and fusion of alveolar walls to form pulmonary alveoli. Conclusions: The present study successfully established and characterized the SHP-1 knockout mouse model of airway epithelial cells, which provides a new experimental tool for the in-depth elucidation of the role of SHP-1 in the emphysema process of COPD and its mechanism.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Camundongos , Animais , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Células Epiteliais/metabolismo , Camundongos Transgênicos , Camundongos Knockout , Fenótipo , DNA , Tamoxifeno
3.
Artigo em Inglês | MEDLINE | ID: mdl-38333775

RESUMO

Introduction: Although pulmonary involvement due to alpha-1 antitrypsin (AAT) deficiency has been widely described, most studies focus on the genotypes causing severe deficiency (<60 mg/dL). Objective: The aim of this study was to analyze the prevalence of the different AAT gene variants that do not cause severe deficiency in patients with pulmonary emphysema diagnosed by thoracic computed tomography (CT). Furthermore, we assessed the risk associated with a non-severe decrease in AAT values in the pathogenesis of emphysema. Methods: Case-control study design that included patients who had a CT scan available of the entire thorax. In total, 176 patients with emphysema (cases) and 100 control subjects without emphysema were analyzed. Results: The prevalence of variants was higher among cases (25.6%; 45/176) than controls (22%; 22/100), although the difference was not statistically significant (P=0.504) when analyzed globally. In the control group, all the variants detected were MS. Excluding this variant, statistically significant differences were observed in the remaining variants (MZ, SS and SZ). Only 18% of the controls (all MS) presented values below our limit of normality, and all had values very close to the reference value (90 mg/dL). In contrast, 76% of patients with the other variants presented pathological levels. In a logistic regression model, both smoking and a non-severe reduction in AAT (60 to 90 mg/dL) increased the probability of emphysema. Conclusion: Our study confirms an association between certain variants in the alpha-1 antitrypsin gene that do not cause severe deficiency and the presence of pulmonary emphysema. This association with variants that are associated with reductions in serum AAT values is statistically significant and independent of smoking habit.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Deficiência de alfa 1-Antitripsina , Humanos , alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/diagnóstico , Deficiência de alfa 1-Antitripsina/diagnóstico por imagem , Estudos de Casos e Controles , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Enfisema Pulmonar/diagnóstico por imagem , Enfisema Pulmonar/epidemiologia , Enfisema Pulmonar/genética , Tórax , Tomografia Computadorizada por Raios X
5.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L98-L110, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38050687

RESUMO

miR-146a, a microRNA (miRNA) that regulates inflammatory responses, plays an important role in many inflammatory diseases. Although an in vitro study had suggested that miR-146a is involved in abnormal inflammatory response, being a critical factor in the pathogenesis of chronic obstructive pulmonary disease (COPD), in vivo evidence of its pathogenic role in COPD remains limited. Eight-week-old male B6(FVB)-Mir146tm1.1Bal/J [miR-146a knockout (KO)] and C57BL/6J mice were intratracheally administered elastase and evaluated after 28 days or exposed to cigarette smoke (CS) and evaluated after 5 mo. miR-146a expression was significantly increased in C57BL/6J mouse lungs due to elastase administration (P = 0.027) or CS exposure (P = 0.019) compared with that in the control group. Compared with C57BL/6J mice, elastase-administered miR-146a-KO mice had lower average computed tomography (CT) values (P = 0.017) and increased lung volume-to-weight ratio (P = 0.016), mean linear intercept (P < 0.001), and destructive index (P < 0.001). Moreover, total cell (P = 0.006), macrophage (P = 0.001), neutrophil (P = 0.026), chemokine (C-X-C motif) ligand 2/macrophage inflammatory protein-2 [P = 0.045; in bronchoalveolar lavage fluid (BALF)], cyclooxygenase-2, and matrix metalloproteinase-2 levels were all increased (in the lungs). Following long-term CS exposure, miR-146a-KO mice showed a greater degree of emphysema formation in their lungs and inflammatory response in the BALF and lungs than C57BL/6J mice. Collectively, miR-146a protected against emphysema formation and the associated abnormal inflammatory response in two murine models.NEW & NOTEWORTHY This study demonstrates that miR-146a expression is upregulated in mouse lungs because of elastase- and CS-induced emphysema and that the inflammatory response by elastase or CS is enhanced in the lungs of miR-146a-KO mice than in those of control mice, resulting in the promotion of emphysema. This is the first study to evaluate the protective role of miR-146a in emphysema formation and the associated abnormal inflammatory response in different in vivo models.


Assuntos
Enfisema , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Masculino , Camundongos , Enfisema/etiologia , Inflamação/patologia , Pulmão/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Elastase Pancreática/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/genética
6.
Am J Respir Crit Care Med ; 209(1): 48-58, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37934672

RESUMO

Rationale: Within chronic obstructive pulmonary disease (COPD), emphysema is characterized by a significant yet partially understood B cell immune component. Objectives: To characterize the transcriptomic signatures from lymphoid follicles (LFs) in ever-smokers without COPD and patients with COPD with varying degrees of emphysema. Methods: Lung sections from 40 patients with COPD and ever-smokers were used for LF proteomic and transcriptomic spatial profiling. Formalin- and O.C.T.-fixed lung samples obtained from biopsies or lung explants were assessed for LF presence. Emphysema measurements were obtained from clinical chest computed tomographic scans. High-confidence transcriptional target intersection analyses were conducted to resolve emphysema-induced transcriptional networks. Measurements and Main Results: Overall, 115 LFs from ever-smokers and Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1-2 and GOLD 3-4 patients were analyzed. No LFs were found in never-smokers. Differential gene expression analysis revealed significantly increased expression of LF assembly and B cell marker genes in subjects with severe emphysema. High-confidence transcriptional analysis revealed activation of an abnormal B cell activity signature in LFs (q-value = 2.56E-111). LFs from patients with GOLD 1-2 COPD with emphysema showed significantly increased expression of genes associated with antigen presentation, inflammation, and B cell activation and proliferation. LFs from patients with GOLD 1-2 COPD without emphysema showed an antiinflammatory profile. The extent of centrilobular emphysema was significantly associated with genes involved in B cell maturation and antibody production. Protein-RNA network analysis showed that LFs in emphysema have a unique signature skewed toward chronic B cell activation. Conclusions: An off-targeted B cell activation within LFs is associated with autoimmune-mediated emphysema pathogenesis.


Assuntos
Enfisema , Linfadenopatia , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Enfisema Pulmonar/diagnóstico por imagem , Enfisema Pulmonar/genética , Proteômica , Perfilação da Expressão Gênica
7.
Am J Respir Crit Care Med ; 209(3): 273-287, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37917913

RESUMO

Rationale: Emphysema is a chronic obstructive pulmonary disease phenotype with important prognostic implications. Identifying blood-based biomarkers of emphysema will facilitate early diagnosis and development of targeted therapies. Objectives: To discover blood omics biomarkers for chest computed tomography-quantified emphysema and develop predictive biomarker panels. Methods: Emphysema blood biomarker discovery was performed using differential gene expression, alternative splicing, and protein association analyses in a training sample of 2,370 COPDGene participants with available blood RNA sequencing, plasma proteomics, and clinical data. Internal validation was conducted in a COPDGene testing sample (n = 1,016), and external validation was done in the ECLIPSE study (n = 526). Because low body mass index (BMI) and emphysema often co-occur, we performed a mediation analysis to quantify the effect of BMI on gene and protein associations with emphysema. Elastic net models with bootstrapping were also developed in the training sample sequentially using clinical, blood cell proportions, RNA-sequencing, and proteomic biomarkers to predict quantitative emphysema. Model accuracy was assessed by the area under the receiver operating characteristic curves for subjects stratified into tertiles of emphysema severity. Measurements and Main Results: Totals of 3,829 genes, 942 isoforms, 260 exons, and 714 proteins were significantly associated with emphysema (false discovery rate, 5%) and yielded 11 biological pathways. Seventy-four percent of these genes and 62% of these proteins showed mediation by BMI. Our prediction models demonstrated reasonable predictive performance in both COPDGene and ECLIPSE. The highest-performing model used clinical, blood cell, and protein data (area under the receiver operating characteristic curve in COPDGene testing, 0.90; 95% confidence interval, 0.85-0.90). Conclusions: Blood transcriptome and proteome-wide analyses revealed key biological pathways of emphysema and enhanced the prediction of emphysema.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Transcriptoma , Proteômica , Enfisema Pulmonar/genética , Enfisema Pulmonar/complicações , Biomarcadores , Perfilação da Expressão Gênica
8.
J Pathol ; 262(3): 320-333, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38108121

RESUMO

Bone morphogenetic protein (BMP)-Smad1/5/8 signaling plays a crucial regulatory role in lung development and adult lung homeostasis. However, it remains elusive whether BMP-Smad1/5/8 signaling is involved in the pathogenesis of emphysema. In this study, we downregulated BMP-Smad1/5/8 signaling by overexpressing its antagonist Noggin in adult mouse alveolar type II epithelial cells (AT2s), resulting in an emphysematous phenotype mimicking the typical pathological features of human emphysema, including distal airspace enlargement, pulmonary inflammation, extracellular matrix remodeling, and impaired lung function. Dysregulation of BMP-Smad1/5/8 signaling in AT2s leads to inflammatory destruction dominated by macrophage infiltration, associated with reduced secretion of surfactant proteins and inhibition of AT2 proliferation and differentiation. Reactivation of BMP-Smad1/5/8 signaling by genetics or chemotherapy significantly attenuated the morphology and pathophysiology of emphysema and improved the lung function in Noggin-overexpressing lungs. We also found that BMP-Smad1/5/8 signaling was downregulated in cigarette smoke-induced emphysema, and that enhancing its activity in AT2s prevented or even reversed emphysema in the mouse model. Our data suggest that BMP-Smad1/5/8 signaling, located at the top of the signaling cascade that regulates lung homeostasis, represents a key molecular regulator of alveolar stem cell secretory and regenerative function, and could serve as a potential target for future prevention and treatment of pulmonary emphysema. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Enfisema , Enfisema Pulmonar , Camundongos , Animais , Humanos , Enfisema Pulmonar/genética , Pulmão/metabolismo , Células Epiteliais Alveolares/metabolismo , Transdução de Sinais/fisiologia , Enfisema/metabolismo , Proteína Smad1/genética , Proteína Smad1/metabolismo
9.
Aging (Albany NY) ; 15(23): 13581-13592, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38095616

RESUMO

Smoking is the main risk factor for many lung diseases including chronic obstructive pulmonary disease. Cigarette smoke (CS) contains carcinogenic and reactive oxygen species that favor DNA mutations and perturb the homeostasis and environment of cells. CS induces lung cell senescence resulting in a stable proliferation arrest and a senescence-associated secretory phenotype. It was recently reported that senescent cell accumulation promotes several lung diseases. In this study, we performed a chemical screen, using an FDA-approved drug library, to identify compounds selectively promoting the death of CS-induced senescent lung cells. Aside from the well-known senolytic, ABT-263, we identified other potentially new senescence-eliminating compounds, including a new class of molecules, the dihydropyridine family of calcium voltage-gated channel (CaV) blockers. Among these blockers, Benidipine, decreased senescent lung cells and ameliorates lung emphysema in a mouse model. The dihydropyridine family of CaV blockers thus constitutes a new class of senolytics that could improve lung diseases. Hence, our work paves the way for further studies on the senolytic activity of CaV blockers in different senescence contexts and age-related diseases.


Assuntos
Fumar Cigarros , Di-Hidropiridinas , Enfisema , Enfisema Pulmonar , Camundongos , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Fumar Cigarros/efeitos adversos , Enfisema Pulmonar/genética , Pulmão/metabolismo , Di-Hidropiridinas/farmacologia , Di-Hidropiridinas/uso terapêutico , Di-Hidropiridinas/metabolismo , Enfisema/metabolismo , Senescência Celular
10.
Nat Commun ; 14(1): 7349, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963864

RESUMO

Toll-like receptor 7 (TLR7) is known for eliciting immunity against single-stranded RNA viruses, and is increased in both human and cigarette smoke (CS)-induced, experimental chronic obstructive pulmonary disease (COPD). Here we show that the severity of CS-induced emphysema and COPD is reduced in TLR7-deficient mice, while inhalation of imiquimod, a TLR7-agonist, induces emphysema without CS exposure. This imiquimod-induced emphysema is reduced in mice deficient in mast cell protease-6, or when wild-type mice are treated with the mast cell stabilizer, cromolyn. Furthermore, therapeutic treatment with anti-TLR7 monoclonal antibody suppresses CS-induced emphysema, experimental COPD and accumulation of pulmonary mast cells in mice. Lastly, TLR7 mRNA is increased in pre-existing datasets from patients with COPD, while TLR7+ mast cells are increased in COPD lungs and associated with severity of COPD. Our results thus support roles for TLR7 in mediating emphysema and COPD through mast cell activity, and may implicate TLR7 as a potential therapeutic target.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Animais , Camundongos , Triptases/genética , Receptor 7 Toll-Like/genética , Imiquimode , Pulmão , Enfisema Pulmonar/genética , Nicotiana , Camundongos Endogâmicos C57BL
11.
Signal Transduct Target Ther ; 8(1): 390, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37816708

RESUMO

Patients with chronic obstructive pulmonary disease (COPD) who exhibit elevated blood eosinophil levels often experience worsened lung function and more severe emphysema. This implies the potential involvement of eosinophils in the development of emphysema. However, the precise mechanisms underlying the development of eosinophil-mediated emphysema remain unclear. In this study, we employed single-cell RNA sequencing to identify eosinophil subgroups in mouse models of asthma and emphysema, followed by functional analyses of these subgroups. Assessment of accumulated eosinophils unveiled distinct transcriptomes in the lungs of mice with elastase-induced emphysema and ovalbumin-induced asthma. Depletion of eosinophils through the use of anti-interleukin-5 antibodies ameliorated elastase-induced emphysema. A particularly noteworthy discovery is that eosinophil-derived cathepsin L contributed to the degradation of the extracellular matrix, thereby leading to emphysema in pulmonary tissue. Inhibition of cathepsin L resulted in a reduction of elastase-induced emphysema in a mouse model. Importantly, eosinophil levels correlated positively with serum cathepsin L levels, which were higher in emphysema patients than those without emphysema. Expression of cathepsin L in eosinophils demonstrated a direct association with lung emphysema in COPD patients. Collectively, these findings underscore the significant role of eosinophil-derived cathepsin L in extracellular matrix degradation and remodeling, and its relevance to emphysema in COPD patients. Consequently, targeting eosinophil-derived cathepsin L could potentially offer a therapeutic avenue for emphysema patients. Further investigations are warranted to explore therapeutic strategies targeting cathepsin L in emphysema patients.


Assuntos
Asma , Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Humanos , Camundongos , Asma/genética , Catepsina L/genética , Eosinófilos/metabolismo , Pulmão/metabolismo , Elastase Pancreática , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo
12.
Int J Chron Obstruct Pulmon Dis ; 18: 2147-2161, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810372

RESUMO

Objective: To establish a model of emphysema induced by tobacco smoke combined with elastin peptides (EP), explore the biochemical metabolic processes and signal transduction pathways related to emphysema occurrence and development at the transcriptional level, and identify new targets and signaling pathways for emphysema prevention and treatment. Methods: Mice were randomly divided into the air pseudoexposure group (NORMAL group) and the tobacco smoke + EP group (EP group). The differentially expressed genes (DEGs) in lung tissue between the two groups were identified by RNA-seq, and functional annotation and Gene Ontology (GO)/ Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. The differential expression of the selected genes were verified using qRT‒PCR and immunohistochemistry (IHC). Results: EP group mice showed emphysema-like changes. The expression levels of 1159 genes in the EP group differed significantly (529 up-regulated and 630 down-regulated) from those in the NORMAL group. GO enrichment analysis showed that the DEGs were significantly enriched in the terms immune system, adaptive immune response, and phosphorylation, while KEGG pathway enrichment analysis showed that the DEGs were enriched mainly in the pathways cytokine‒cytokine receptor interaction, T-cell receptor signaling pathway, MAPK signaling pathway, Rap1 signaling pathway, endocytosis, chemokine signaling pathway, Th17 cell differentiation, and Th1 and Th2 cell differentiation. The differential expression of the selected DEGs were verified by qRT‒PCR and IHC, and the expression trends of these genes were consistent with those identified by RNA-seq. Conclusion: Emphysema may be related to the inflammatory response, immune response, immune regulation, oxidative stress injury, and other biological processes. The Bmp4-Smad-Hoxa5/Acvr2a signaling pathway may be involved in COPD/ emphysema occurrence and development.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Poluição por Fumaça de Tabaco , Camundongos , Animais , Elastina , Enfisema Pulmonar/genética , Citocinas/genética , Perfilação da Expressão Gênica , Análise de Sequência de RNA , Transcriptoma , Biologia Computacional
13.
Clin Respir J ; 17(12): 1223-1232, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37828807

RESUMO

BACKGROUND: Cigarette smoke (CS) is an important risk factor for chronic obstructive pulmonary disease, including emphysema. MicroRNAs (miRNAs) are important regulators of emphysema progression. However, miR-23a-3p role in emphysema is unclear. METHODS: CS exposure was used to construct emphysema mice models, and cigarette smoke extract (CSE)-induced pulmonary vascular endothelial cells (PMVECs) were used to mimic emphysema cell models. Mouse lung tissue was stained by immunohistochemical staining, hematoxylin and eosin staining, and TUNEL staining. MiR-23a-3p and DnaJ homolog subfamily B member 1 (DNAJB1) levels were tested using quantitative real-time PCR. DNAJB1 and apoptosis-related markers' protein levels were examined via western blot analysis. Cell viability and apoptosis were analyzed by MTT assay and flow cytometry. The interaction between miR-23a-3p and DNAJB1 was evaluated by dual-luciferase reporter assay and RIP assay. RESULTS: MiR-23a-3p was downregulated, and DNAJB1 was upregulated in CS-induced emphysema mice models and CSE-induced PMVECs. MiR-23a-3p overexpression promoted viability and repressed apoptosis in CSE-induced PMVECs. MiR-23a-3p targeted DNAJB1 and negatively regulated DNAJB1 expression. Moreover, DNAJB1 knockdown repressed CSE-induced PMVECs apoptosis, and miR-23a-3p inhibitor reversed this effect. Additionally, miR-23a-3p alleviated lung tissue injury and improved emphysema in mice by reducing DNAJB1 expression. CONCLUSION: MiR-23a-3p alleviated emphysema progression, which could inhibit CSE-induced PMVECs apoptosis by targeting DNAJB1.


Assuntos
Fumar Cigarros , Enfisema , MicroRNAs , Enfisema Pulmonar , Animais , Camundongos , Apoptose/genética , Fumar Cigarros/efeitos adversos , Células Endoteliais/metabolismo , Proteínas de Choque Térmico HSP40/genética , MicroRNAs/genética , Enfisema Pulmonar/genética
14.
J Biol Chem ; 299(8): 105052, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37454739

RESUMO

Chronic obstructive pulmonary disease (COPD), which includes emphysema and chronic bronchitis, is now the third cause of death worldwide, and COVID-19 infection has been reported as an exacerbation factor of them. In this study, we report that the intratracheal administration of the keratan sulfate-based disaccharide L4 mitigates the symptoms of elastase-induced emphysema in a mouse model. To know the molecular mechanisms, we performed a functional analysis of a C-type lectin receptor, langerin, a molecule that binds L4. Using mouse BMDCs (bone marrow-derived dendritic cells) as langerin-expressing cells, we observed the downregulation of IL-6 and TNFa and the upregulation of IL-10 after incubation with L4. We also identified CapG (a macrophage-capping protein) as a possible molecule that binds langerin by immunoprecipitation combined with a mass spectrometry analysis. We identified a portion of the CapG that was localized in the nucleus and binds to the promoter region of IL-6 and the TNFa gene in BMDCs, suggesting that CapG suppresses the gene expression of IL-6 and TNFa as an inhibitory transcriptional factor. To examine the effects of L4 in vivo, we also generated langerin-knockout mice by means of genome editing technology. In an emphysema mouse model, the administration of L4 did not mitigate the symptoms of emphysema as well as the inflammatory state of the lung in the langerin-knockout mice. These data suggest that the anti-inflammatory effect of L4 through the langerin-CapG axis represents a potential therapeutic target for the treatment of emphysema and COPD.


Assuntos
Dissacarídeos , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Camundongos , Dissacarídeos/farmacologia , Modelos Animais de Doenças , Interleucina-6/genética , Sulfato de Queratano/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/genética , Enfisema Pulmonar/induzido quimicamente , Lectinas Tipo C/metabolismo
15.
Thorax ; 78(11): 1067-1079, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37268414

RESUMO

BACKGROUND: Treatment and preventative advances for chronic obstructive pulmonary disease (COPD) have been slow due, in part, to limited subphenotypes. We tested if unsupervised machine learning on CT images would discover CT emphysema subtypes with distinct characteristics, prognoses and genetic associations. METHODS: New CT emphysema subtypes were identified by unsupervised machine learning on only the texture and location of emphysematous regions on CT scans from 2853 participants in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS), a COPD case-control study, followed by data reduction. Subtypes were compared with symptoms and physiology among 2949 participants in the population-based Multi-Ethnic Study of Atherosclerosis (MESA) Lung Study and with prognosis among 6658 MESA participants. Associations with genome-wide single-nucleotide-polymorphisms were examined. RESULTS: The algorithm discovered six reproducible (interlearner intraclass correlation coefficient, 0.91-1.00) CT emphysema subtypes. The most common subtype in SPIROMICS, the combined bronchitis-apical subtype, was associated with chronic bronchitis, accelerated lung function decline, hospitalisations, deaths, incident airflow limitation and a gene variant near DRD1, which is implicated in mucin hypersecretion (p=1.1 ×10-8). The second, the diffuse subtype was associated with lower weight, respiratory hospitalisations and deaths, and incident airflow limitation. The third was associated with age only. The fourth and fifth visually resembled combined pulmonary fibrosis emphysema and had distinct symptoms, physiology, prognosis and genetic associations. The sixth visually resembled vanishing lung syndrome. CONCLUSION: Large-scale unsupervised machine learning on CT scans defined six reproducible, familiar CT emphysema subtypes that suggest paths to specific diagnosis and personalised therapies in COPD and pre-COPD.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Enfisema Pulmonar/diagnóstico por imagem , Enfisema Pulmonar/genética , Estudos de Casos e Controles , Aprendizado de Máquina não Supervisionado , Pulmão , Tomografia Computadorizada por Raios X
16.
Am J Respir Cell Mol Biol ; 69(1): 99-112, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37014138

RESUMO

The epidemiological patterns of incident chronic obstructive pulmonary disease (COPD) and lung adenocarcinoma are changing, with an increasing fraction of disease occurring in patients who are never-smokers or were not exposed to traditional risk factors. However, causative mechanism(s) are obscure. Overactivity of Src family kinases (SFKs) and myeloid cell-dependent inflammatory lung epithelial and endothelial damage are independent candidate mechanisms, but their pathogenic convergence has not been demonstrated. Here we present a novel preclinical model in which an activating mutation in Lyn, a nonreceptor SFK that is expressed in immune cells, epithelium, and endothelium-all strongly implicated in the pathogenesis of COPD-causes spontaneous inflammation, early-onset progressive emphysema, and lung adenocarcinoma. Surprisingly, even though activated macrophages, elastolytic enzymes, and proinflammatory cytokines were prominent, bone marrow chimeras formally demonstrated that myeloid cells were not disease initiators. Rather, lung disease arose from aberrant epithelial cell proliferation and differentiation, microvascular lesions within an activated endothelial microcirculation, and amplified EGFR (epidermal growth factor receptor) expression. In human bioinformatics analyses, LYN expression was increased in patients with COPD and was correlated with increased EGFR expression, a known lung oncogenic pathway, and LYN was linked to COPD. Our study shows that a singular molecular defect causes a spontaneous COPD-like immunopathology and lung adenocarcinoma. Furthermore, we identify Lyn and, by implication, its associated signaling pathways as new therapeutic targets for COPD and cancer. Moreover, our work may inform the development of molecular risk screening and intervention methods for disease susceptibility, progression, and prevention of these increasingly prevalent conditions.


Assuntos
Adenocarcinoma de Pulmão , Enfisema , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Adenocarcinoma de Pulmão/genética , Receptores ErbB/metabolismo , Neoplasias Pulmonares/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/genética , Quinases da Família src/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-37077365

RESUMO

Background: M2 polarized macrophages are involved in the occurrence and development of emphysema in COPD patients. However, the molecular mechanism of M2 macrophage polarization is still unclear. This study investigated the molecular mechanism of let-7 differentially expressed in bronchial epithelial cells of COPD patients participating in COPD emphysema by regulating the expression of IL-6 and inducing M2 polarization of alveolar macrophages (AM). Materials and Methods: We measured let-7c expression in human lung tissue, serum and the lung tissue of cigarette smoke (CS)-exposed mice by qRT‒PCR. We observed the M1/M2 AM polarization in the lungs of COPD patients and COPD model mice by immunofluorescence analysis. Western blotting was used to determine the expression of MMP9/12 in the lung tissue of COPD patients and CS-exposed mice. An in vitro experiment was performed to determine the molecular mechanism of let-7c-induced macrophage polarization. Results: Let-7c expression was downregulated in COPD patients, CS-exposed mice, and CS extract (CSE)-treated human bronchial epithelial (HBE) cells. AMs in COPD patients and CS-exposed mice were dominated by the M2 type, and the release of MMP9/12 was increased. In vitro, the transfection of mimics overexpressing let-7 or the use of tocilizumab to block signal transduction between HBE cells and macrophages inhibited the IL-6/STAT3 pathway. M2 macrophage polarization was inhibited, and MMP9/12 release was reduced. Conclusion: Our results indicate that CS decreased let-7c expression in HBE cells, and M2 AM polarization was dominant in COPD. In HBE cells, let-7c could inhibit M2 polarization of AMs through the IL-6/STAT3 pathway, providing potential diagnostic and therapeutic value for slowing COPD emphysema.


Assuntos
Enfisema , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Humanos , Camundongos , Interleucina-6/metabolismo , Macrófagos/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Nicotiana
18.
Cancer Res ; 83(11): 1782-1799, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36971490

RESUMO

Pulmonary emphysema is a destructive inflammatory disease primarily caused by cigarette smoking (CS). Recovery from CS-induced injury requires proper stem cell (SC) activities with a tightly controlled balance of proliferation and differentiation. Here we show that acute alveolar injury induced by two representative tobacco carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene (N/B), increased IGF2 expression in alveolar type 2 (AT2) cells to promote their SC function and facilitate alveolar regeneration. Autocrine IGF2 signaling upregulated Wnt genes, particularly Wnt3, to stimulate AT2 proliferation and alveolar barrier regeneration after N/B-induced acute injury. In contrast, repetitive N/B exposure provoked sustained IGF2-Wnt signaling through DNMT3A-mediated epigenetic control of IGF2 expression, causing a proliferation/differentiation imbalance in AT2s and development of emphysema and cancer. Hypermethylation of the IGF2 promoter and overexpression of DNMT3A, IGF2, and the Wnt target gene AXIN2 were seen in the lungs of patients with CS-associated emphysema and cancer. Pharmacologic or genetic approaches targeting IGF2-Wnt signaling or DNMT prevented the development of N/B-induced pulmonary diseases. These findings support dual roles of AT2 cells, which can either stimulate alveolar repair or promote emphysema and cancer depending on IGF2 expression levels. SIGNIFICANCE: IGF2-Wnt signaling plays a key role in AT2-mediated alveolar repair after cigarette smoking-induced injury but also drives pathogenesis of pulmonary emphysema and cancer when hyperactivated.


Assuntos
Enfisema , Neoplasias Pulmonares , Enfisema Pulmonar , Humanos , Enfisema/metabolismo , Enfisema/patologia , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Pulmão/patologia , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/genética , Células-Tronco/metabolismo , Neoplasias Pulmonares/patologia
19.
Arterioscler Thromb Vasc Biol ; 43(5): 739-754, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924234

RESUMO

BACKGROUND: Marfan Syndrome (MFS) is an inherited connective tissue disorder caused by mutations in the FBN1 (fibrillin-1) gene. Lung abnormalities are common in MFS, but their pathogenesis is poorly understood. IL11 (interleukin-11) causes aortic disease in a mouse model of MFS and was studied here in the lung. METHODS: We examined histological and molecular phenotypes in the lungs of Fbn1C1041G/+ mice (mouse model of Marfan Syndrome [mMFS]), an established mouse model of MFS. To identify IL11-expressing cells, we used immunohistochemistry on lungs of 4- and 16-week-old Fbn1C1041G/+:Il11EGFP/+ reporter mice. We studied the effects of IL11 inhibition by RT-qPCR, immunoblots and histopathology in lungs from genetic or pharmacologic models: (1) 16-week-old IL11 receptor (IL11RA) knockout mMFS mice (Fbn1C1041G/+:Il11ra1-/- mice) and (2) in mMFS mice administered IgG control or interleukin-11 receptor antibodies twice weekly from 4 to 24 weeks of age. RESULTS: mMFS lungs showed progressive loss and enlargement of distal airspaces associated with increased proinflammatory and profibrotic gene expression as well as matrix metalloproteinases 2, 9, and 12. IL11 was increased in mMFS lungs and localized to smooth muscle and endothelial cells in young mMFS mice in the Fbn1C1041G/+:Il11EGFP/+ reporter strain and in fibroblasts, in older mice. In mMFS mice, genetic (Fbn1C1041G/+:Il11ra1-/-) or pharmacologic (anti-interleukin-11 receptor) inhibition of IL11 signaling reduced lung emphysema, fibrosis, and inflammation. This protective effect was associated with reduced pathogenic ERK1/2 signaling and lower metalloproteinase 2, 9, and 12 expression. CONCLUSIONS: IL11 causes lung disease in mMFS. This reveals a shared IL11-driven disease mechanism in lung and aorta in MFS and suggests inhibition of IL11 signaling as a holistic approach for treating multiorgan morbidity in MFS.


Assuntos
Interleucina-11 , Síndrome de Marfan , Enfisema Pulmonar , Animais , Camundongos , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Fibrilina-1/genética , Interleucina-11/genética , Subunidade alfa de Receptor de Interleucina-11 , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Metaloproteinase 2 da Matriz/genética , Camundongos Knockout , Enfisema Pulmonar/complicações , Enfisema Pulmonar/genética
20.
Int J Biochem Cell Biol ; 157: 106390, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36796505

RESUMO

Secretoglobin (SCGB) 3A2 is a bioactive molecule exhibiting various functions such as improving allergic airway inflammation and pulmonary fibrosis and promoting bronchial branching and proliferation during lung development. To determine if and how SCGB3A2 is involved in chronic obstructive pulmonary disease (COPD), a multifactorial disease with both airway and emphysematous lesions, a COPD mouse model was created by exposing Scgb3a2-deficient (KO), Scgb3a2-lung-specific overexpressing (TG), and wild type (WT) mice to cigarette smoke (CS) for 6 months. The KO mice showed loss of lung structure under control condition, and CS exposure resulted in more expansion of airspace and destruction of alveolar wall than WT mouse lungs. In contrast, TG mouse lungs showed no significant changes after CS exposure. SCGB3A2 increased the expression and phosphorylation of signal transducers and activators of transcription (STAT)1 and STAT3, and the expression of α1-antitrypsin (A1AT) in mouse lung fibroblast-derived MLg cells and mouse lung epithelial-derived MLE-15 cells. In MLg cells, A1AT expression was decreased in Stat3-knockdown cells, and increased upon Stat3 overexpression. STAT3 formed a homodimer when cells were stimulated with SCGB3A2. Chromatin immunoprecipitation and reporter assays demonstrated that STAT3 binds to specific binding sites on the Serpina1a gene encoding A1AT and upregulates its transcription in lung tissues of mice. Furthermore, nuclear localization of phosphorylated STAT3 upon SCGB3A2 stimulation was detected by immunocytochemistry. These findings demonstrate that SCGB3A2 protects the lungs from the development of CS-induced emphysema by regulating A1AT expression through STAT3 signaling.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Fibrose Pulmonar , Camundongos , Animais , Secretoglobinas/genética , Secretoglobinas/metabolismo , Enfisema Pulmonar/genética , Enfisema Pulmonar/prevenção & controle , Fumar Cigarros/efeitos adversos , Pulmão/patologia , Fibrose Pulmonar/metabolismo , Inflamação/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA