Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Eur J Med Chem ; 269: 116299, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38479167

RESUMO

Dendritic cells (DCs) play a pivotal role in controlling HIV-1 infections of CD4+ T cells. DC-SIGN, which is expressed on the surface of DCs, efficiently captures HIV-1 virions by binding to the highly mannosylated membrane protein, gp120, and then the DCs transport the virus to target T cells in lymphoid organs. This study explored the modification of T20, a peptide inhibitor of HIV-1 fusion, by conjugation of the N-terminus with varying sizes of oligomannose, which are DC-SIGN-specific carbohydrates, aiming to create dual-targeting HIV inhibitors. Mechanistic studies indicated the dual-target binding of the conjugates. Antiviral assays demonstrated that N-terminal mannosylation of T20 resulted in increased inhibition of the viral infection of TZM-b1 cells (EC50 = 0.3-0.8 vs. 1.4 nM). Pentamannosylated T20 (M5-T20) exhibited a stronger inhibitory effect on virus entry into DC-SIGN+ 293T cells compared with T20 (67% vs. 50% inhibition at 500 µM). M5-T20 displayed an extended half-life in rats relative to T20 (T1/2: 8.56 vs. 1.64 h, respectively). These conjugates represent a potential new treatment for HIV infections with improved antiviral activity and pharmacokinetics, and this strategy may prove useful in developing dual-target inhibitors for other pathogens that require DC-SIGN involvement for infection.


Assuntos
Inibidores da Fusão de HIV , Infecções por HIV , HIV-1 , Animais , Ratos , Enfuvirtida/farmacologia , Enfuvirtida/metabolismo , Inibidores da Fusão de HIV/farmacologia , Inibidores da Fusão de HIV/metabolismo , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo
2.
PLoS One ; 18(6): e0286752, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37289764

RESUMO

Large peptide biosynthesis is a valuable alternative to conventional chemical synthesis. Enfuvirtide, the largest therapeutic peptide used in HIV infection treatment, was synthesized in our thermostable chaperone-based peptide biosynthesis system and evaluated for peptide quality as well as the profile of process-related impurities. Host cell proteins (HCPs) and BrCN cleavage-modified peptides were evaluated by LC-MS in intermediate. Cleavage modifications during the reaction were assessed after LC-MS maps were aligned by simple in-house algorithm and formylation/oxidation levels were estimated. Circular dichroism spectra of the obtained enfuvirtide were compared to the those of the chemically- synthesized standard product. Final-product endotoxin and HCPs content were assessed resulting 1.06 EU/mg and 5.58 ppm respectively. Peptide therapeutic activity was measured using the MT-4 cells HIV infection-inhibition model. The biosynthetic peptide IC50 was 0.0453 µM while the standard one had 0.0180 µM. Non-acylated C-terminus was proposed as a cause of IC50 and CD spectra difference. Otherwise, the peptide has met all the requirements of the original chemically synthesized enfuvirtide in the cell-culture and in vivo experiments.


Assuntos
Inibidores da Fusão de HIV , Infecções por HIV , Humanos , Enfuvirtida/farmacologia , Infecções por HIV/tratamento farmacológico , Fragmentos de Peptídeos/química , Proteína gp41 do Envelope de HIV/química , Inibidores da Fusão de HIV/farmacologia , Peptídeos/química
3.
Molecules ; 27(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745059

RESUMO

Despite the enormous efforts made to develop other fusion inhibitors for HIV, the enfuvirtide (known as T20) peptide is the only approved HIV-1 inhibitory drug so far. Investigating the role of potential residues of the T20 peptide's conformational dynamics could help us to understand the role of potential residues of the T20 peptide. We investigated T20 peptide conformation and binding interactions with the HIV-1 receptor (i.e., gp41) using MD simulations and docking techniques, respectively. Although the mutation of E143 into alanine decreased the flexibility of the E143A mutant, the conformational compactness of the mutant was increased. This suggests a potential role of E143 in the T20 peptide's conformation. Interestingly, the free energy landscape showed a significant change in the wild-type T20 minimum, as the E143A mutant produced two observed minima. Finally, the docking results of T20 to the gp41 receptor showed a different binding interaction in comparison to the E143A mutant. This suggests that E143 residue can influence the binding interaction with the gp41 receptor. Overall, the E143 residue showed a significant role in conformation and binding to the HIV-1 receptor. These findings can be helpful in optimizing and developing HIV-1 inhibitor peptides.


Assuntos
Inibidores da Fusão de HIV , HIV-1 , Enfuvirtida/química , Enfuvirtida/farmacologia , Anticorpos Anti-HIV/metabolismo , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/farmacologia , HIV-1/genética , HIV-1/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/farmacologia , Peptídeos/genética , Peptídeos/metabolismo , Peptídeos/farmacologia
4.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35743078

RESUMO

In our previous work, we replaced the TRM (tryptophan-rich motif) of T20 (Enfuvirtide) with fatty acid (C16) to obtain the novel lipopeptide LP-40, and LP-40 displayed enhanced antiviral activity. In this study, we investigated whether the C16 modification could enhance the high-resistance barrier of the inhibitor LP-40. To address this question, we performed an in vitro simultaneous screening of HIV-1NL4-3 resistance to T20 and LP-40. The mechanism of drug resistance for HIV-1 Env was further studied using the expression and processing of the Env glycoprotein, the effect of the Env mutation on the entry and fusion ability of the virus, and an analysis of changes to the gp41 core structure. The results indicate that the LP-40 activity is enhanced and that it has a high resistance barrier. In a detailed analysis of the resistance sites, we found that mutations in L33S conferred a stronger resistance, except for the well-recognized mutations in amino acids 36-45 of gp41 NHR, which reduced the inhibitory activity of the CHR-derived peptides. The compensatory mutation of eight amino acids in the CHR region (NDQEEDYN) plays an important role in drug resistance. LP-40 and T20 have similar resistance mutation sites, and we speculate that the same resistance profile may arise if LP-40 is used in a clinical setting.


Assuntos
Inibidores da Fusão de HIV , HIV-1 , Aminoácidos/metabolismo , Farmacorresistência Viral/genética , Enfuvirtida/química , Enfuvirtida/farmacologia , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/farmacologia , Inibidores da Fusão de HIV/química , Inibidores da Fusão de HIV/farmacologia , Lipopeptídeos/química , Mutação , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Internalização do Vírus
5.
Adv Exp Med Biol ; 1366: 1-13, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412131

RESUMO

The approval of enfuvirtide marked a milestone for the development of virus entry inhibitor-based antiviral therapeutics. Since then, more peptide-, small-molecule-, and protein-based entry inhibitors have been identified and approved for viral diseases. Here we reviewed the development of virus entry inhibitors and the advantages and disadvantages of peptide-, small-molecule-, and protein-based entry inhibitors, herein summarizing the future trend of these antivirals. Virus entry inhibitors take effect outside the host cell, making them good candidates for development as pre- and post-exposure prophylaxis, microbicides, and therapeutics. This chapter, as well as this book, provides more information on the development and modification of peptide-, small-molecule-, and protein-based virus entry inhibitors.


Assuntos
Inibidores da Fusão de HIV , Internalização do Vírus , Antivirais/farmacologia , Antivirais/uso terapêutico , Enfuvirtida/farmacologia , Inibidores da Fusão de HIV/farmacologia , Inibidores da Fusão de HIV/uso terapêutico , Peptídeos/farmacologia
6.
J Biomol Struct Dyn ; 40(12): 5566-5576, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33438525

RESUMO

Regarding the urgency of therapeutic measures for coronavirus disease 2019 (COVID-19) pandemic, the use of available drugs with FDA approval is preferred because of the less time and cost required for their development. In silico drug repurposing is an accurate way to speed up the screening of the existing FDA-approved drugs to find a therapeutic option for COVID-19. The similarity in SARS-CoV-2 and HIV-1 fusion mechanism to host cells can be a key point for Inhibit SARS-CoV-2 entry into host cells by HIV fusion inhibitors. Accordingly, in this study, an HIV-1 fusion inhibitor called Enfuvirtide (Enf) was selected. The affinity and essential residues involving in the Enf binding to the S2 protein of SARS-CoV-2, HIV-1 gp41 protein and angiotensin-converting enzyme 2 (ACE-2) as a negative control, was evaluated using molecular docking. Eventually, Enf-S2 and Enf-gp41 protein complexes were simulated by molecular dynamics (MD) in terms of binding affinity and stability. Based on the most important criteria such as docking score, cluster size, energy and dissociation constant, the strongest interaction was observed between Enf with the S2 protein. In addition, MD results confirmed that Enf-S2 protein interaction was remarkably stable and caused the S2 protein residues to undergo the fewest fluctuations. In conclusion, it can be stated that Enf can act as a strong SARS-CoV-2 fusion inhibitor and demonstrates the potential to enter the clinical trial phase of COVID-19. Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos , Enfuvirtida , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Reposicionamento de Medicamentos/métodos , Enfuvirtida/farmacologia , HIV-1 , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2/efeitos dos fármacos , Inibidores de Proteínas Virais de Fusão
7.
J Virol ; 95(15): e0235020, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980592

RESUMO

HIV-1 infection is initiated by the viral glycoprotein Env, which, after interaction with cellular coreceptors, adopts a transient conformation known as the prehairpin intermediate (PHI). The N-heptad repeat (NHR) is a highly conserved region of gp41 exposed in the PHI; it is the target of the FDA-approved drug enfuvirtide and of neutralizing monoclonal antibodies (mAbs). However, to date, these mAbs have only been weakly effective against tier-1 HIV-1 strains, which are most sensitive to neutralizing antibodies. Here, we engineered and tested 11 IgG variants of D5, an anti-NHR mAb, by recombining previously described mutations in four of D5's six antibody complementarity-determining regions. One variant, D5_AR, demonstrated 6-fold enhancement in the 50% inhibitory dose (ID50) against lentivirus pseudotyped with HXB2 Env. D5_AR exhibited weak cross-clade neutralizing activity against a diverse set of tier-2 HIV-1 viruses, which are less sensitive to neutralizing antibodies than tier-1 viruses and are the target of current antibody-based vaccine efforts. In addition, the neutralization potency of D5_AR IgG was greatly enhanced in target cells expressing FcγRI, with ID50 values of <0.1 µg/ml; this immunoglobulin receptor is expressed on macrophages and dendritic cells, which are implicated in the early stages of HIV-1 infection of mucosal surfaces. D5 and D5_AR have equivalent neutralization potency in IgG, Fab, and single-chain variable-fragment (scFv) formats, indicating that neutralization is not impacted by steric hindrance. Taken together, these results provide support for vaccine strategies that target the PHI by eliciting antibodies against the gp41 NHR and support investigation of anti-NHR mAbs in nonhuman primate passive immunization studies. IMPORTANCE Despite advances in antiretroviral therapy, HIV remains a global epidemic and has claimed more than 32 million lives. Accordingly, developing an effective HIV vaccine remains an urgent public health need. The gp41 N-heptad repeat (NHR) of the HIV-1 prehairpin intermediate (PHI) is highly conserved (>90%) and is inhibited by the FDA-approved drug enfuvirtide, making it an attractive vaccine target. However, to date, anti-NHR antibodies have not been potent. Here, we engineered D5_AR, a more potent variant of the anti-NHR antibody D5, and established its ability to inhibit HIV-1 strains that are more difficult to neutralize and are more representative of circulating strains (tier-2 strains). The neutralizing activity of D5_AR was greatly potentiated in cells expressing FcγRI; FcγRI is expressed on cells that are implicated at the earliest stages of sexual HIV-1 transmission. Taken together, these results bolster efforts to target the gp41 NHR and the PHI for vaccine development.


Assuntos
Fármacos Anti-HIV/farmacologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteína gp41 do Envelope de HIV/antagonistas & inibidores , HIV-1/imunologia , Anticorpos Monoclonais/imunologia , Linhagem Celular , Enfuvirtida/farmacologia , Células HEK293 , Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Humanos , Domínios Proteicos/imunologia
8.
Virus Res ; 292: 198215, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33166562

RESUMO

BACKGROUND: Human immunodeficiency virus (HIV) increasing molecular diversity and emergence of drug resistant mutants remain a major concern in China. Enfuvirtide (ENF/T-20) is the first entry inhibitor used in patients failing highly active antiretroviral therapy (HAART). However, data on HIV-1 gp41genetic diversity and primary ENF resistance-associated mutations among treatment-naïve patients in China is limited. The objective was to identify molecular diversity and ENF resistance patterns of HIV-1 in southern China, using envelope (env) gp41 sequences and bioinformatics tools, which may help optimize antiretroviral therapy. METHODS: From November 2018 to January 2019, 439 blood plasma samples from ENF-naïve patients were collected from Shenzhen, Wuhan and Chongqing, of which 396 HIV env regions were sequenced and subtyped, and were performed the analysis of drug resistance-associated mutations (DRMs). RESULTS: The main subtypes were circulating recombinant form (CRF) 01_AE (30.6 %) and CRF07_BC (48.7 %). CRF55_01B had been the fourth subtype in the study, and many rare CRFs were observed. Notably, CRF02_AG and CRF_BF strains typically found in Africa and US respectively were identified amongst Chinese patients. Known DRMs were detected in 27.5 % (109/396) of ENF treatment-naïve patients. One major DRM (L44 M), many secondary DRMs (including N126 K, E137 K, S138A), and lots of polymorphisms were found in the study, which have been proved to elevate resistance to ENF. CONCLUSIONS: HIV-1 molecular diversity was observed in the study, which indicating that HIV-1 variability is becoming increasingly complex in southern China. A diverse set of primary DRMs discovered in this study described the serious threat to ART, which reminds us the urgent need of timely surveillance of HIV-1 viral diversity and drug resistance in China.


Assuntos
Fármacos Anti-HIV/farmacologia , Enfuvirtida/farmacologia , Proteína gp41 do Envelope de HIV/genética , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/genética , China , Farmacorresistência Viral , Variação Genética/efeitos dos fármacos , Proteína gp41 do Envelope de HIV/metabolismo , Infecções por HIV/tratamento farmacológico , HIV-1/metabolismo , Humanos , Mutação/efeitos dos fármacos , Filogenia
9.
ACS Infect Dis ; 6(2): 224-236, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31855415

RESUMO

We have developed a nanocarrier consisting of large unilamellar vesicles (LUVs) for combined delivery of two human immunodeficiency virus type 1 (HIV-1) entry inhibitors, enfuvirtide (ENF) and protoporphyrin IX (PPIX). The intrinsic lipophilicity of ENF and PPIX, a fusion inhibitor and an attachment inhibitor, respectively, leads to their spontaneous incorporation into the lipid bilayer of the LUVs nanocarrier. Both entry inhibitors partition significantly toward LUVs composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and a 9:1 mixture of POPC:1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DPPE-PEG2000), representative of conventional and immune-evasive drug delivery formulations, respectively. These colocalize in the core of lipid membranes. Dual-loaded nanocarriers are monodispersed and retain the size distribution, thermotropic behavior, and surface charge of the unloaded form. Combination of the two entry inhibitors in the nanocarrier resulted in improved synergy against HIV-1 entry compared to combination in free form, strongly when immune-evasive formulations are used. We propose that the improved action of the entry inhibitors when loaded into the nanocarriers results from their slow release at the site of viral entry. Overall, liposomes remain largely unexplored platforms for combination of viral entry inhibitors, with potential for improvement of current antiretroviral therapy drug safety and application. Our work calls for a reappraisal of the potential of entry inhibitor combinations and delivery for clinical use in antiretroviral therapy.


Assuntos
Enfuvirtida/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Protoporfirinas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Linhagem Celular , Sinergismo Farmacológico , Humanos , Concentração Inibidora 50 , Lipossomos/química , Nanopartículas/química , Polietilenoglicóis
10.
Retrovirology ; 16(1): 36, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796053

RESUMO

BACKGROUND: Peptides corresponding to N- and C-terminal heptad repeat regions (HR1 and HR2, respectively) of gp41 can inhibit HIV-1 infection in a dominant negative manner by interfering with refolding of the viral HR1 and HR2 to form a six-helix bundle (6HB) that induces fusion between viral and host cell membranes. Previously, we found that HIV-1 acquired the mutations of Glu560 (E560) in HR1 of envelope (Env) to escape peptide inhibitors. The present study aimed to elucidate the critical role of position 560 in the virus entry and potential resistance mechanisms. RESULTS: The Glu560Lys/Asp/Gly (E560K/D/G) mutations in HR1 of gp41 that are selected under the pressure of N- and C-peptide inhibitors modified its molecular interactions with HR2 to change 6HB stability and peptide inhibitor binding. E560K mutation increased 6HB thermostability and resulted in resistance to N peptide inhibitors, but E560G or E560D as compensatory mutations destabilized the 6HB to reduce inhibitor binding and resulted in increased resistance to C peptide inhibitor, T20. Significantly, the neutralizing activities of all mutants to soluble CD4 and broadly neutralizing antibodies targeting membrane proximal external region, 2F5 and 4E10 were improved, indicating the mutations of E560 could regulate Env conformations through cross interactions with gp120 or gp41. The molecular modeling analysis of E560K/D/G mutants suggested that position 560 might interact with the residues within two potentially flexible topological layer 1 and layer 2 in the gp120 inner domain to apparently affect the CD4 utilization. The E560K/D/G mutations changed its interactions with Gln650 (Q650) in HR2 to contribute to the resistance of peptide inhibitors. CONCLUSIONS: These findings identify the contributions of mutations of E560K/D/G in the highly conserved gp41 and highlight Env's high degree of plasticity for virus entry and inhibitor design.


Assuntos
Farmacorresistência Viral/genética , Proteína gp41 do Envelope de HIV/genética , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Internalização do Vírus/efeitos dos fármacos , Linhagem Celular , Enfuvirtida/farmacologia , HIV-1/fisiologia , Humanos , Concentração Inibidora 50 , Mutação
11.
Viruses ; 11(9)2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31480738

RESUMO

The clinical application of HIV fusion inhibitor, enfuvirtide (T20), was limited mainly because of its short half-life. Here we designed and synthesized two PEGylated C34 peptides, PEG2kC34 and PEG5kC34, with the PEG chain length of 2 and 5 kDa, respectively, and evaluated their anti-HIV-1 activity and mechanisms of action. We found that these two PEGylated peptides could bind to the HIV-1 peptide N36 to form high affinity complexes with high α-helicity. The peptides PEG2kC34 and PEG5kC34 effectively inhibited HIV-1 Env-mediated cell-cell fusion with an effective concentration for 50% inhibition (EC50) of about 36 nM. They also inhibited infection of the laboratory-adapted HIV-1 strain NL4-3 with EC50 of about 4-5 nM, and against 47 HIV-1 clinical isolates circulating in China with mean EC50 of PEG2kC34 and PEG5kC34 of about 26 nM and 32 nM, respectively. The plasma half-life (t1/2) of PEG2kC34 and PEG5kC34 was 2.6 h and 5.1 h, respectively, and the t1/2 of PEGylated C34 was about 2.4-fold and 4.6-fold longer than C34 (~1.1 h), respectively. These findings suggest that PEGylated C34 with broad-spectrum anti-HIV-1 activity and prolonged half-life can be further developed as a peptide fusion inhibitor-based long-acting anti-HIV drug for clinical use to treat HIV-infected patients who have failed to respond to current anti-retrovirus drugs.


Assuntos
Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Linhagem Celular , Dicroísmo Circular , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Enfuvirtida/farmacologia , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/farmacologia , Inibidores da Fusão de HIV/síntese química , Inibidores da Fusão de HIV/química , Inibidores da Fusão de HIV/farmacocinética , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/genética , Humanos , Fusão de Membrana/efeitos dos fármacos , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Polietilenoglicóis/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Ratos , Replicação Viral/efeitos dos fármacos
12.
Protein Sci ; 28(8): 1501-1512, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31228294

RESUMO

The HIV fusion inhibitor T20 has been approved to treat those living with HIV/AIDS, but treatment gives rise to resistant viruses. Using combinatorial phage-displayed libraries, we applied a saturation scan approach to dissect the entire T20 sequence for binding to a prefusogenic five-helix bundle (5HB) mimetic of HIV-1 gp41. Our data set compares all possible amino acid substitutions at all positions, and affords a complete view of the complex molecular interactions governing the binding of T20 to 5HB. The scan of T20 revealed that 12 of its 36 positions were conserved for 5HB binding, which cluster into three epitopes: hydrophobic epitopes at the ends and a central dyad of hydrophilic residues. The scan also revealed that the T20 sequence was highly adaptable to mutations at most positions, demonstrating a striking structural plasticity that allows multiple amino acid substitutions at contact points to adapt to conformational changes, and also at noncontact points to fine-tune the interface. Based on the scan result and structural knowledge of the gp41 fusion intermediate, a library was designed with tailored diversity at particular positions of T20 and was used to derive a variant (T20v1) that was found to be a highly effective inhibitor of infection by multiple HIV-1 variants, including a common T20-escape mutant. These findings show that the plasticity of the T20 functional sequence space can be exploited to develop variants that overcome resistance of HIV-1 variants to T20 itself, and demonstrate the utility of saturation scanning for rapid epitope mapping and protein engineering.


Assuntos
Enfuvirtida/farmacologia , Proteína gp41 do Envelope de HIV/antagonistas & inibidores , Inibidores da Fusão de HIV/farmacologia , Biblioteca de Peptídeos , Enfuvirtida/química , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Proteica
13.
Viruses ; 11(5)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096572

RESUMO

Identifying drug resistance mutations is important for the clinical use of antivirals and can help define both a drug's mechanism of action and the mechanistic basis of resistance. Resistance mutations are often identified one-at-a-time by studying viral evolution within treated patients or during viral growth in the presence of a drug in cell culture. Such approaches have previously mapped resistance to enfuvirtide, the only clinically approved HIV-1 fusion inhibitor, to enfuvirtide's binding site in the N-terminal heptad repeat (NHR) of the Envelope (Env) transmembrane domain as well as a limited number of allosteric sites. Here, we sought to better delineate the genotypic determinants of resistance throughout Env. We used deep mutational scanning to quantify the effect of all single-amino-acid mutations to the subtype A BG505 Env on resistance to enfuvirtide. We identified both previously characterized and numerous novel resistance mutations in the NHR. Additional resistance mutations clustered in other regions of Env conformational intermediates, suggesting they may act during different fusion steps by altering fusion kinetics and/or exposure of the enfuvirtide binding site. This complete map of resistance sheds light on the diverse mechanisms of enfuvirtide resistance and highlights the utility of using deep mutational scanning to comprehensively map potential drug resistance mutations.


Assuntos
Antirretrovirais/farmacologia , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Enfuvirtida/farmacologia , Genótipo , Proteína gp41 do Envelope de HIV , Infecções por HIV/tratamento farmacológico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Moleculares , Mutação , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/efeitos dos fármacos
14.
PLoS One ; 14(5): e0216712, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31120908

RESUMO

CONTEXT: Classical antiretroviral agents may acutely impact on metabolic, mitochondrial, renal and hepatic function in HIV-infected and uninfected persons. Fusion and integrase inhibitors are supposed to be safer, but have been scarcely investigated. To avoid any interference with HIV or other antiretrovirals, we assessed markers of these toxicities in healthy adult volunteers treated with Enfuvirtide (T20) or Raltegravir (RAL). METHODS: Twenty-six healthy participants were randomized to T20/90mg vs. placebo (n = 12) or RAL/400mg vs. placebo (n = 14) every 12h in two 7-day periods separated by a 4-week washout period. Major end-points were changes in lipid profile (total cholesterol, high-density-lipoprotein (HDL)-cholesterol, low-density-lipoprotein (LDL)-cholesterol, triglycerides), insulin resistance (glucose) and mitochondrial toxicity (mitochondrial DNA content-mtDNA-in peripheral blood mononuclear cells). Renal and hepatic toxicity (creatinine, alanine transaminase (AST), alanine aminotransferase (ALT), bilirubin and total plasma proteins) and overall safety were also analysed. Effect of period, treatment, and basal measures were evaluated for each end-point. RESULTS: Neither T20-administration nor RAL-administration yielded to any statistic significant change in the markers of metabolic, mitochondrial, renal or hepatic toxicity assessed. No symptoms indicative of drug toxicity were neither found in any subject. CONCLUSIONS: In absence of HIV infection, or concomitant treatment, short-term exposure to T20 or RAL in healthy adult volunteers did not lead to any indicative changes in toxicity markers thus presuming the safe profile of both drugs.


Assuntos
Enfuvirtida/farmacologia , Raltegravir Potássico/farmacologia , Adulto , Alanina Transaminase/análise , Alanina Transaminase/sangue , Antirretrovirais/uso terapêutico , Creatina/análise , Creatina/sangue , Enfuvirtida/metabolismo , Enfuvirtida/toxicidade , Infecções por HIV/tratamento farmacológico , Voluntários Saudáveis , Humanos , Resistência à Insulina , Rim/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lipídeos/análise , Fígado/efeitos dos fármacos , Masculino , Metabolismo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Raltegravir Potássico/metabolismo , Raltegravir Potássico/toxicidade
15.
AIDS ; 33(10): 1545-1555, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932963

RESUMO

OBJECTIVE: To revisit the mechanism of action of enfuvirtide (T20) and based on the newly defined mechanism, design an analogous peptide of T20 with improved antiviral activity. DESIGN: We compared the inhibitory activity of T20 with that of T1144 on six-helix bundle (6HB) formation at different time after coculture of HIV type 1 (HIV-1) envelope (Env)-expressing Chinese hamster ovary (CHO-Env) cells and CD4-expressing MT-2 cells at 31.5 °C and with that of T20-SF, an analogous peptide of T20 with an additional tryptophan-rich motif, on hemolysis mediated by FP-P, which contains fusion peptide and fusion peptide (FP) proximal region (FPPR), and HIV-1 infection. METHODS: Inhibitory activity of peptides on 6HB formation was tested in a temperature-controlled cell-cell fusion assay by flow cytometry using 6HB-specific mAb 2G8; on HIV-1 infection and fusion was assessed by p24 and cell-cell fusion assays. Interaction between different peptides or peptide and antibody was evaluated by ELISA. RESULTS: T20 could inhibit 6HB formation at early, but not late, stage of HIV-1 fusion, whereas T1144 was effective at both stages. T20-SF is much more effective than T20 in binding to FP-P and inhibiting infection of HIV-1, including T20-resistant strains, and FP-P-mediated hemolysis. CONCLUSION: Results suggest that T20 has a double-target mechanism, by which its N-terminal and C-terminal portions bind to N-terminal heptad repeat and FPPR, respectively. T20-SF designed based on this new mechanism exhibits significantly improved anti-HIV-1 activity because it targets the triple sites in gp41, including N-terminal heptad repeat, FPPR, and fusion peptide. Thus, this study provides clues for designing novel HIV fusion inhibitors with improved antiviral activity.


Assuntos
Descoberta de Drogas/métodos , Enfuvirtida/química , Enfuvirtida/farmacologia , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/química , Inibidores da Fusão de HIV/farmacologia , Animais , Sítios de Ligação , Fusão Celular , Linhagem Celular , Enfuvirtida/síntese química , Proteína do Núcleo p24 do HIV/metabolismo , Inibidores da Fusão de HIV/síntese química , Humanos , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Temperatura
16.
J Virol ; 93(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30867304

RESUMO

HIV infection requires lifelong treatment with multiple antiretroviral drugs in a combination, which ultimately causes cumulative toxicities and drug resistance, thus necessitating the development of novel antiviral agents. We recently found that enfuvirtide (T-20)-based lipopeptides conjugated with fatty acids have dramatically increased in vitro and in vivo anti-HIV activities. Herein, a group of cholesterol-modified fusion inhibitors were characterized with significant findings. First, novel cholesterylated inhibitors, such as LP-83 and LP-86, showed the most potent activity in inhibiting divergent human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). Second, the cholesterylated inhibitors were highly active to inhibit T-20-resistant mutants that still conferred high resistance to the fatty acid derivatives. Third, the cholesterylated inhibitors had extremely potent activity to block HIV envelope (Env)-mediated cell-cell fusion, especially a truncated minimum lipopeptide (LP-95), showing a greatly increased potency relative to its inhibition on virus infection. Fourth, the cholesterylated inhibitors efficiently bound to both the cellular and viral membranes to exert their antiviral activities. Fifth, the cholesterylated inhibitors displayed low cytotoxicity and binding capacity with human serum albumin. Sixth, we further demonstrated that LP-83 exhibited extremely potent and long-lasting anti-HIV activity in rhesus monkeys. Taken together, the present results help our understanding on the mechanism of action of lipopeptide-based viral fusion inhibitors and facilitate the development of novel anti-HIV drugs.IMPORTANCE The peptide drug enfuvirtide (T-20) remains the only membrane fusion inhibitor available for treatment of viral infection, which is used in combination therapy of HIV-1 infection; however, it exhibits relatively low antiviral activity and a genetic barrier to inducing resistance, calling for the continuous development for novel anti-HIV agents. In this study, we report cholesterylated fusion inhibitors showing the most potent and broad anti-HIV activities to date. The new inhibitors have been comprehensively characterized for their modes of action and druggability, including small size, low cytotoxicity, binding ability to human serum albumin (HSA), and, especially, extremely potent and long-lasting antiviral activity in rhesus monkeys. Therefore, the present studies have provided new drug candidates for clinical development, which can also be used as tools to probe the mechanisms of viral entry and inhibition.


Assuntos
Enfuvirtida/farmacologia , Infecções por HIV/terapia , Lipopeptídeos/farmacologia , Animais , Fármacos Anti-HIV/farmacologia , Antirretrovirais/uso terapêutico , Antivirais/farmacologia , Linhagem Celular , Desenho de Fármacos , Farmacorresistência Viral/efeitos dos fármacos , Células HEK293 , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/farmacologia , HIV-1/fisiologia , HIV-2/fisiologia , Humanos , Macaca mulatta , Fusão de Membrana/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Internalização do Vírus/efeitos dos fármacos
17.
Eur J Pharm Biopharm ; 137: 218-226, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30851352

RESUMO

HIV therapy with anti-retroviral drugs is limited by the poor exposure of viral reservoirs, such as lymphoid tissue, to these small molecule drugs. We therefore investigated the effect of PEGylation on the anti-retroviral activity and subcutaneous lymphatic pharmacokinetics of the peptide-based fusion inhibitor enfuvirtide in thoracic lymph duct cannulated rats. Both the peptide and the PEG were quantified in plasma and lymph via ELISA. Conjugation to a single 5 kDa linear PEG decreased anti-HIV activity three-fold compared to enfuvirtide. Whilst plasma and lymphatic exposure to peptide mass was moderately increased, the loss of anti-viral activity led to an overall decrease in exposure to enfuvirtide activity. A 20 kDa 4-arm branched PEG conjugated with an average of two enfuvirtide peptides decreased peptide activity by six-fold. Plasma and lymph exposure to enfuvirtide, however, increased significantly such that anti-viral activity was increased two- and six-fold respectively. The results suggest that a multi-enfuvirtide-PEG complex may optimally enhance the anti-retroviral activity of the peptide in plasma and lymph.


Assuntos
Enfuvirtida/administração & dosagem , Inibidores da Fusão de HIV/administração & dosagem , HIV/efeitos dos fármacos , Polietilenoglicóis/química , Animais , Linhagem Celular , Enfuvirtida/farmacocinética , Enfuvirtida/farmacologia , Ensaio de Imunoadsorção Enzimática , Inibidores da Fusão de HIV/farmacocinética , Inibidores da Fusão de HIV/farmacologia , Infecções por HIV/tratamento farmacológico , Humanos , Linfa/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
18.
PLoS Pathog ; 15(2): e1007552, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716118

RESUMO

Combination antiretroviral therapy (cART) dramatically improves survival of HIV-infected patients, but lifelong treatment can ultimately result in cumulative toxicities and drug resistance, thus necessitating the development of new drugs with significantly improved pharmaceutical profiles. We recently found that the fusion inhibitor T-20 (enfuvirtide)-based lipopeptides possess dramatically increased anti-HIV activity. Herein, a group of novel lipopeptides were designed with different lengths of fatty acids, identifying a stearic acid-modified lipopeptide (LP-80) with the most potent anti-HIV activity. It inhibited a large panel of divergent HIV subtypes with a mean IC50 in the extremely low picomolar range, being > 5,300-fold more active than T-20 and the neutralizing antibody VRC01. It also sustained the potent activity against T-20-resistant mutants and exhibited very high therapeutic selectivity index. Pharmacokinetics of LP-80 in rats and monkeys verified its potent and long-acting anti-HIV activity. In the monkey, subcutaneous administration of 3 mg/kg LP-80 yielded serum concentrations of 1,147 ng/ml after injection 72 h and 9 ng/ml after injection 168 h (7 days), equivalent to 42,062- and 330-fold higher than the measured IC50 value. In SHIV infected rhesus macaques, a single low-dose LP-80 (3 mg/kg) sharply reduced viral loads to below the limitation of detection, and twice-weekly monotherapy could maintain long-term viral suppression.


Assuntos
Enfuvirtida/uso terapêutico , Lipopeptídeos/uso terapêutico , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Animais , Antirretrovirais , Anticorpos Neutralizantes , Farmacorresistência Viral , Enfuvirtida/farmacologia , Células HEK293 , Inibidores da Fusão de HIV/farmacologia , Inibidores da Fusão de HIV/uso terapêutico , Infecções por HIV/terapia , HIV-1/patogenicidade , Humanos , Macaca mulatta/imunologia , Macaca mulatta/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Vírus da Imunodeficiência Símia/patogenicidade , Carga Viral , Internalização do Vírus
19.
ACS Infect Dis ; 5(4): 634-640, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30811933

RESUMO

Drugs that block HIV-1 entry are relatively limited. Enfuvirtide is a 36-residue synthetic peptide that targets gp41 and blocks viral fusion. However, Enfuvirtide-resistant HIV has been reported, and this peptide drug requires daily injection. Previously, we have reported helix-grafted display proteins, consisting of HIV-1 gp41 C-peptide helix grafted onto Pleckstrin Homology domains. Some of these biologics inhibit HIV-1 entry with relatively modest and varied potency (IC50 = 190 nM to >1 µM). Here, we report that gp41 C-peptide helix-grafted Sac7d (Sac7d-Cpep) potently suppresses HIV-1 entry in a live virus assay (IC50 = 1.9-12.4 nM). Yeast display sequence optimization of solvent exposed helix residues led to new biologics with improved expression in E. coli (a common biosimilar expression host), with no appreciable change in entry inhibition. Evolved proteins inhibit the entry of a clinically relevant mutant of HIV-1 that is gp41 C-peptide sensitive and Enfuvirtide resistant. Fusion proteins designed for serum stability also potently suppress HIV-1 entry. Collectively, we report several evolved biologics that are functional against an Enfuvirtide-resistant strain and are designed for serum stability.


Assuntos
Farmacorresistência Viral , Enfuvirtida/farmacologia , Proteína gp41 do Envelope de HIV/química , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Peptídeos/farmacologia , Internalização do Vírus/efeitos dos fármacos , Proteína gp41 do Envelope de HIV/metabolismo , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Peptídeos/química , Peptídeos/genética , Conformação Proteica em alfa-Hélice , Engenharia de Proteínas
20.
J Biol Chem ; 294(15): 5736-5746, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30696772

RESUMO

HIV-1 entry into cells is mediated by the envelope glycoprotein (Env) and represents an attractive target for therapeutic intervention. Two drugs that inhibit HIV entry are approved for clinical use: the membrane fusion-inhibitor T20 (Fuzeon, enfuvirtide) and the C-C chemokine receptor type 5 (CCR5) blocker maraviroc (Selzentry). Another class of entry inhibitors supposedly target the fusion peptide (FP) and are termed anchor inhibitors. These include the VIRIP peptide and VIRIP derivatives such as VIR165, VIR353, and VIR576. Here, we investigated the mechanism of inhibition by VIR165. We show that substitutions within the FP modulate sensitivity to VIR165, consistent with the FP being the drug target. Our results also revealed that VIR165 acts during an intermediate post-CD4-binding entry step that is overlapping but not identical to the step inhibited by fusion inhibitors such as T20. We found that some but not all resistance mutations to heptad repeat 2 (HR2)-targeting fusion inhibitors can provide cross-resistance to VIR165. In contrast, resistance mutations in the HR1-binding site for the fusion inhibitors did not cause cross-resistance to VIR165. However, Env with mutations located outside this binding site and thought to affect fusion kinetics, exhibited decreased sensitivity to VIR165. Although we found a strong correlation between Env stability and resistance to HR2-based fusion inhibitors, such correlation was not observed for Env stability and VIR165 resistance. We conclude that VIRIP analogs target the FP during an intermediate, post-CD4-binding entry step that overlaps with but is distinct from the step(s) inhibited by HR2-based fusion inhibitors.


Assuntos
Farmacorresistência Viral , HIV-1/fisiologia , Mutação , Fragmentos de Peptídeos/farmacologia , Internalização do Vírus/efeitos dos fármacos , alfa 1-Antitripsina/farmacologia , Produtos do Gene env do Vírus da Imunodeficiência Humana , Antígenos CD4/genética , Antígenos CD4/metabolismo , Linhagem Celular , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Enfuvirtida/química , Enfuvirtida/farmacologia , Humanos , Maraviroc/química , Maraviroc/farmacologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , alfa 1-Antitripsina/química , alfa 1-Antitripsina/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA