Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Appl Environ Microbiol ; 90(6): e0229323, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38786361

RESUMO

Bacteria shape interactions between hosts and fungal pathogens. In some cases, bacteria associated with fungi are essential for pathogen virulence. In other systems, host-associated microbiomes confer resistance against fungal pathogens. We studied an aphid-specific entomopathogenic fungus called Pandora neoaphidis in the context of both host and pathogen microbiomes. Aphids host several species of heritable bacteria, some of which confer resistance against Pandora. We first found that spores that emerged from aphids that harbored protective bacteria were less virulent against subsequent hosts and did not grow on plate media. We then used 16S amplicon sequencing to study the bacterial microbiome of fungal mycelia and spores during plate culturing and host infection. We found that the bacterial community is remarkably stable in culture despite dramatic changes in pathogen virulence. Last, we used an experimentally transformed symbiont of aphids to show that Pandora can acquire host-associated bacteria during infection. Our results uncover new roles for bacteria in the dynamics of aphid-pathogen interactions and illustrate the importance of the broader microbiological context in studies of fungal pathogenesis. IMPORTANCE: Entomopathogenic fungi play important roles in the population dynamics of many insect species. Understanding the factors shaping entomopathogen virulence is critical for agricultural management and for the use of fungi in pest biocontrol. We show that heritable bacteria in aphids, which confer protection to their hosts against fungal entomopathogens, influence virulence against subsequent hosts. Aphids reproduce asexually and are typically surrounded by genetically identical offspring, and thus these effects likely shape the dynamics of fungal disease in aphid populations. Furthermore, fungal entomopathogens are known to rapidly lose virulence in lab culture, complicating their laboratory use. We show that this phenomenon is not driven by changes in the associated bacterial microbiome. These results contribute to our broader understanding of the aphid model system and shed light on the biology of the Entomophthorales-an important but understudied group of fungi.


Assuntos
Afídeos , Microbiota , Animais , Afídeos/microbiologia , Virulência , Interações Hospedeiro-Patógeno , Entomophthorales/patogenicidade , Entomophthorales/fisiologia , Entomophthorales/genética , Bactérias/genética , Bactérias/classificação , Bactérias/patogenicidade , Bactérias/isolamento & purificação , Simbiose , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/patogenicidade
2.
Elife ; 122024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767950

RESUMO

Despite over a century of observations, the obligate insect parasites within the order Entomophthorales remain poorly characterized at the genetic level. In this manuscript, we present a genome for a laboratory-tractable Entomophthora muscae isolate that infects fruit flies. Our E. muscae assembly is 1.03 Gb, consists of 7810 contigs and contains 81.3% complete fungal BUSCOs. Using a comparative approach with recent datasets from entomophthoralean fungi, we show that giant genomes are the norm within Entomophthoraceae owing to extensive, but not recent, Ty3 retrotransposon activity. In addition, we find that E. muscae and its closest allies possess genes that are likely homologs to the blue-light sensor white-collar 1, a Neurospora crassa gene that has a well-established role in maintaining circadian rhythms. We uncover evidence that E. muscae diverged from other entomophthoralean fungi by expansion of existing families, rather than loss of particular domains, and possesses a potentially unique suite of secreted catabolic enzymes, consistent with E. muscae's species-specific, biotrophic lifestyle. Finally, we offer a head-to-head comparison of morphological and molecular data for species within the E. muscae species complex that support the need for taxonomic revision within this group. Altogether, we provide a genetic and molecular foundation that we hope will provide a platform for the continued study of the unique biology of entomophthoralean fungi.


Assuntos
Entomophthora , Genoma Fúngico , Animais , Entomophthora/genética , Elementos de DNA Transponíveis/genética , Filogenia , Ritmo Circadiano/genética , Entomophthorales/genética , Entomophthorales/fisiologia
3.
J Invertebr Pathol ; 204: 108107, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614292

RESUMO

The sugarcane aphid, Melanaphis sacchari, is a widely distributed insect that attacks grasses in different genera including Miscanthus, Saccharum, and Sorghum. The invasive aphid superclone was first discovered in the U.S. attacking grain sorghum in Texas in 2013. Since then, it has been found in at least 25 states including Georgia. We conducted a survey of naturally occurring fungal pathogens of sugarcane aphids on five farms in Georgia, and identified a hypocrealean fungus, Akanthomyces dipterigenus, and two entomophthoralean fungi, Neoconidiobolus spp. From 2018 to 2020, fungal activity differed across farms but at one farm both major fungal species, A. dipterigenus and N. thromboides, were found each of the 3 years infecting sugarcane aphids, attacking adults, both alatae and apterae, and nymphs.


Assuntos
Afídeos , Sorghum , Animais , Afídeos/microbiologia , Sorghum/microbiologia , Sorghum/parasitologia , Georgia , Entomophthorales/fisiologia , Hypocreales/fisiologia
4.
Vet Pathol ; 60(5): 704-708, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36803167

RESUMO

Massospora cicadina, an obligate fungal pathogen in the subphylum Entomophthoromycotina (Zoopagomycota), infects periodical cicadas (Magicicada spp.) during their adult emergence and modifies their sexual behavior to maximize fungal spore dissemination. In this study, 7 periodical cicadas from the Brood X emergence in 2021 infected by M. cicadina were histologically examined. In 7 of 7 cicadas, fungal masses replaced the posterior portion of the abdominal cavity, effacing portions of the body wall, reproductive organs, alimentary tract, and fat bodies. No appreciable inflammation was noted at the intersections of the fungal masses and host tissues. Fungal organisms were present in multiple morphologies including protoplasts, hyphal bodies, conidiophores, and mature conidia. Conidia were clustered into eosinophilic membrane-bound packets. These findings help uncover the pathogenesis of M. cicadina by suggesting there is evasion of the host immune response and by providing a more in-depth description of its relationship with Magicicada septendecim than previously documented.


Assuntos
Entomophthorales , Hemípteros , Animais , Hemípteros/microbiologia , Hemípteros/fisiologia , Entomophthorales/fisiologia , Esporos Fúngicos
5.
J Invertebr Pathol ; 186: 107673, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34626615

RESUMO

A new species from the genus Strongwellsea (Entomophthorales: Entomophthoraceae) is described: Strongwellsea crypta Eilenberg & Humber from adult Botanophila fugax (Meigen) (Diptera: Anthomyiidae). The description is based on pathobiological, phenotypical and genotypical characters. The abdominal holes in infected hosts develop rapidly and become strikingly large and edgy, almost rhomboid in shape. The new species S. crypta differs from S. castrans, the only described species infecting flies from Anthomyiidae, by: (a) naturally infecting another host species, (b) by having significantly longer primary conidia, and (c) by genotypical clustering separately from that species when sequencing ITS2.


Assuntos
Dípteros/microbiologia , Entomophthorales/classificação , Animais , Entomophthorales/genética , Entomophthorales/fisiologia , Genótipo , Esporos Fúngicos/citologia
6.
mBio ; 12(5): e0187221, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34607463

RESUMO

Transmission is a crucial step in all pathogen life cycles. As such, certain species have evolved complex traits that increase their chances to find and invade new hosts. Fungal species that hijack insect behaviors are evident examples. Many of these "zombie-making" entomopathogens cause their hosts to exhibit heightened activity, seek out elevated positions, and display body postures that promote spore dispersal, all with specific circadian timing. Answering how fungal entomopathogens manipulate their hosts will increase our understanding of molecular aspects underlying fungus-insect interactions, pathogen-host coevolution, and the regulation of animal behavior. It may also lead to the discovery of novel bioactive compounds, given that the fungi involved have traditionally been understudied. This minireview summarizes and discusses recent work on zombie-making fungi of the orders Hypocreales and Entomophthorales that has resulted in hypotheses regarding the mechanisms that drive fungal manipulation of insect behavior. We discuss mechanical processes, host chemical signaling pathways, and fungal secreted effectors proposed to be involved in establishing pathogen-adaptive behaviors. Additionally, we touch on effectors' possible modes of action and how the convergent evolution of host manipulation could have given rise to the many parallels in observed behaviors across fungus-insect systems and beyond. However, the hypothesized mechanisms of behavior manipulation have yet to be proven. We, therefore, also suggest avenues of research that would move the field toward a more quantitative future.


Assuntos
Comportamento Animal , Entomophthorales/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Insetos/microbiologia , Animais , Formigas/microbiologia , Formigas/fisiologia , Hypocreales/fisiologia , Insetos/fisiologia , Filogenia
7.
J Invertebr Pathol ; 183: 107621, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34029539

RESUMO

A new but still unpublished entomopathogenic fungus (ARSEF13372) in the genus Pandora (Entomophthorales: Entomophthoraceae) was originally isolated from Cacopsylla sp. (Hemiptera: Psyllidae). Several species of the genus Cacopsylla vector phloem-borne bacteria of the genus 'Candidatus Phytoplasma', which cause diseases in fruit crops such as apple proliferation, pear decline and European stone fruit yellows. To determine Pandora's host range and biocontrol potential we conducted laboratory infection bioassays; Hemipteran phloem-feeding insects were exposed to conidia actively discharged from in vitro produced mycelial mats of standardized area. We documented the pathogenicity of Pandora sp. nov. to species of the insect families Psyllidae and Triozidae, namely Cacopsyllapyri L., C.pyricola (Foerster), C.picta (Foerster, 1848), C.pruni (Scopoli), C.peregrina (Foerster), and Trioza apicalis Foerster. The occurrence of postmortem signs of infection on cadavers within 10 days post inoculation proved that Pandora sp. nov. was infective to the tested insect species under laboratory conditions and significantly reduced mean survival time for C.pyri (summer form and nymph), C.pyricola, C.picta, C.pruni, C.peregrina and T.apicalis. Assessing a potential interaction between phytoplasma, fungus and insect host revealed that phytoplasma infection ('Candidatus Phytoplasma mali') of the vector C.picta and/or its host plant apple Malus domestica Borkh. did not significantly impact the survival of C.picta after Pandora sp. nov. infection. The results from infection bioassays were discussed in relation to Pandora sp. nov. host range and its suitability as biocontrol agent in integrated pest management strategies of psyllid pests, including vector species, in orchards.


Assuntos
Entomophthorales/fisiologia , Entomophthorales/patogenicidade , Hemípteros/microbiologia , Controle de Insetos , Controle Biológico de Vetores , Animais , Agentes de Controle Biológico/farmacologia , Insetos Vetores/microbiologia , Doenças das Plantas/prevenção & controle , Virulência
8.
J Invertebr Pathol ; 175: 107444, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32707095

RESUMO

Two new species from the genus Strongwellsea (Entomophthorales: Entomophthoraceae) are described: Strongwellsea tigrinae from adult Coenosia tigrina (Diptera: Muscidae) and Strongwellsea acerosa from adult Coenosia testacea. The descriptions are based on pathobiological, phenotypical and genotypical characters. Further, the circumscription of the genus Strongwellsea is emended. Our findings suggest that Strongwellsea harbors a high number of species, of which now only five have been described.


Assuntos
Entomophthorales/classificação , Controle de Insetos , Muscidae/microbiologia , Controle Biológico de Vetores , Animais , Entomophthorales/fisiologia , Feminino , Masculino
9.
J Invertebr Pathol ; 174: 107399, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32473942

RESUMO

Two types of secondary conidia and their formation are described from six species of Strongwellsea infecting hosts from Anthomyiidae, Muscidae and Fanniidae. We used a simple device allowing secondary conidia to be produced under very moist or comparatively dry conditions. Ellipsoid type secondary conidia, which are formed under very moist conditions, have never been reported before from the genus Strongwellsea, and they are unique for Entomophthorales; these are broadly ellipsoidal with a clearly pointed basal papilla and are actively discharged. Subglobose type secondary conidia are, for the first time, described from several species in the genus Strongwellsea; they are subglobose to almost bell-shaped with a flattened papilla and are actively discharged. Subglobose type secondary conidia are formed under more dry conditions. A general pattern of the formation of secondary conidia in Strongwellsea and the ecological roles of primary conidia and of the two types of secondary conidia are discussed.


Assuntos
Dípteros/microbiologia , Entomophthorales/fisiologia , Esporos Fúngicos/citologia , Animais , Esporos Fúngicos/classificação
10.
Am Nat ; 195(3): 504-523, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32097039

RESUMO

In deterministic models of epidemics, there is a host abundance threshold above which the introduction of a few infected individuals leads to a severe epidemic. Studies of weather-driven animal pathogens often assume that abundance thresholds will be overwhelmed by weather-driven stochasticity, but tests of this assumption are lacking. We collected observational and experimental data for a fungal pathogen, Entomophaga maimaiga, that infects the gypsy moth, Lymantria dispar. We used an advanced statistical-computing algorithm to fit mechanistic models to our data, such that different models made different assumptions about the effects of host density and weather on E. maimaiga epizootics (epidemics in animals). We then used Akaike information criterion analysis to choose the best model. In the best model, epizootics are driven by a combination of weather and host density, and the model does an excellent job of explaining the data, whereas models that allow only for weather effects or only for density-dependent effects do a poor job of explaining the data. Density-dependent transmission in our best model produces a host density threshold, but this threshold is strongly blurred by the stochastic effects of weather. Our work shows that host-abundance thresholds may be important even if weather strongly affects transmission, suggesting that epidemiological models that allow for weather have an important role to play in understanding animal pathogens. The success of our model means that it could be useful for managing the gypsy moth, an important pest of hardwood forests in North America.


Assuntos
Entomophthorales/fisiologia , Controle de Insetos , Larva/microbiologia , Mariposas/microbiologia , Tempo (Meteorologia) , Animais , Larva/crescimento & desenvolvimento , Modelos Biológicos , Mariposas/crescimento & desenvolvimento , Densidade Demográfica , Processos Estocásticos
11.
PLoS One ; 14(5): e0215914, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31116738

RESUMO

Entomophthoralean fungi are insect pathogenic fungi and are characterized by their active discharge of infective conidia that infect insects. Our aim was to study the effects of temperature on the discharge and to characterize the variation in the associated temporal pattern of a newly discovered Pandora species with focus on peak location and shape of the discharge. Mycelia were incubated at various temperatures in darkness, and conidial discharge was measured over time. We used a novel modification of a statistical model (pavpop), that simultaneously estimates phase and amplitude effects, into a setting of generalized linear models. This model is used to test hypotheses of peak location and discharge of conidia. The statistical analysis showed that high temperature leads to an early and fast decreasing peak, whereas there were no significant differences in total number of discharged conidia. Using the proposed model we also quantified the biological variation in the timing of the peak location at a fixed temperature.


Assuntos
Entomophthorales/fisiologia , Modelos Estatísticos , Esporos Fúngicos/fisiologia
12.
Exp Appl Acarol ; 76(2): 161-183, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30293177

RESUMO

Mulching of soil beds of strawberry fields is usually done with polyethylene film in southern Minas Gerais state, Brazil. This material is relatively expensive and difficult to discard after use. In some countries, mulching is done with the use of organic material that could have an advantage over the use of plastic for its easier degradation after use, and for favoring edaphic beneficial organisms. Predatory mites (especially Gamasina, Mesostigmata) may be abundant in the soil and could conceivably move to the soil surface and onto the short-growing strawberry plants at night, helping in the control or pest arthropods. The two-spotted spider mite, Tetranychus urticae Koch, is considered an important strawberry pest in that region, where the fungus Neozygites floridana (Weiser and Muma) has been found to infect it. Different mulching types could affect the incidence of this pathogen. Dehydrated coffee husk and pulp (DCHP) is a byproduct readily available in southern Minas Gerais, where could be used as organic mulching in strawberry beds. The temporary contact of that material with the soil of a patch of natural vegetation could facilitate its colonization by edaphic predatory mites helpful in the control of strawberry pests. The objective of this work was to study the effect of mulching type on the population dynamics of the two-spotted spider mite, associate mites and N. floridana, in a greenhouse and in the field. The use of DCHP increased the number of edaphic Gamasina on strawberry plants-Proctolaelaps pygmaeus (Müller) (Melicharidae) and Blattisocius dentriticus (Berlese) (Blattisociidae) were observed on strawberry leaflets, mainly in nocturnal samplings, indicating their possible daily migration from soil to plants. Lower levels of two-spotted spider mite occurred on plants from pots or soil beds mulched with DCHP instead of polyethylene film, possibly because of the slightly higher levels of mites of the family Phytoseiidae and infection by N. floridana. Adding DCHP onto the floor of natural vegetation did not result in higher diversity or levels of gamasine mites on DCHP. Complementary studies should be conducted to find ways to increase diversity and density of those organisms in strawberry beds, in an attempt to improve biological control of strawberry pests. The decision to use DCHP for mulching should also take into account other factors such as strawberry yield, costs and efficiency of weed management, to be evaluated in subsequent studies.


Assuntos
Coffea/química , Produção Agrícola/métodos , Entomophthorales/fisiologia , Fragaria/crescimento & desenvolvimento , Ácaros/fisiologia , Controle Biológico de Vetores/métodos , Animais , Cadeia Alimentar , Dinâmica Populacional , Comportamento Predatório , Tetranychidae/fisiologia
13.
Clin Microbiol Rev ; 31(4)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30158298

RESUMO

The pathogenic entomophthoralean fungi cause infection in insects and mammalian hosts. Basidiobolus and Conidiobolus species can be found in soil and insect, reptile, and amphibian droppings in tropical and subtropical areas. The life cycles of these fungi occur in these environments where infecting sticky conidia are developed. The infection is acquired by insect bite or contact with contaminated environments through open skin. Conidiobolus coronatus typically causes chronic rhinofacial disease in immunocompetent hosts, whereas some Conidiobolus species can be found in immunocompromised patients. Basidiobolus ranarum infection is restricted to subcutaneous tissues but may be involved in intestinal and disseminated infections. Its early diagnosis remains challenging due to clinical similarities to other intestinal diseases. Infected tissues characteristically display eosinophilic granulomas with the Splendore-Höeppli phenomenon. However, in immunocompromised patients, the above-mentioned inflammatory reaction is absent. Laboratory diagnosis includes wet mount, culture serological assays, and molecular methodologies. The management of entomophthoralean fungi relies on traditional antifungal therapies, such as potassium iodide (KI), amphotericin B, itraconazole, and ketoconazole, and surgery. These species are intrinsically resistant to some antifungals, prompting physicians to experiment with combinations of therapies. Research is needed to investigate the immunology of entomophthoralean fungi in infected hosts. The absence of an animal model and lack of funding severely limit research on these fungi.


Assuntos
Entomophthorales/fisiologia , Zigomicose/diagnóstico , Zigomicose/patologia , Antifúngicos/uso terapêutico , Entomophthorales/imunologia , Humanos , Zigomicose/imunologia , Zigomicose/terapia
14.
Sci Rep ; 8(1): 1432, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362478

RESUMO

Male periodical cicadas (Magicicada spp.) infected with conidiospore-producing ("Stage I") infections of the entomopathogenic fungus Massospora cicadina exhibit precisely timed wing-flick signaling behavior normally seen only in sexually receptive female cicadas. Male wing-flicks attract copulation attempts from conspecific males in the chorus; close contact apparently spreads the infective conidiospores. In contrast, males with "Stage II" infections that produce resting spores that wait for the next cicada generation do not produce female-specific signals. We propose that these complex fungus-induced behavioral changes, which resemble apparently independently derived changes in other cicada-Massospora systems, represent a fungus "extended phenotype" that hijacks cicadas, turning them into vehicles for fungus transmission at the expense of the cicadas' own interests.


Assuntos
Entomophthorales/fisiologia , Hemípteros/fisiologia , Comportamento Sexual Animal , Adaptação Biológica , Animais , Feminino , Hemípteros/microbiologia , Masculino , Esporos Fúngicos/fisiologia
15.
J Insect Physiol ; 104: 9-14, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29133229

RESUMO

A real-time qPCR method was developed, validated, and used to quantity the fungal pathogen, P. neoaphidis, within aphids at different times during infection; colonization rate fitted the Gompertz model well (R2 = 0.9356). Feeding behaviour of P. neoaphidis-infected and uninfected M. persicae were investigated, for the first time, using DC-electrical penetration graphs (DC-EPG) that characterized the waveforms made during different aphid stylet probing periods corresponding to epidermis penetration, salivation and ingestion. In the 6 h following the 12-h incubation period (to achieve infection), there were significant differences in the number of events of Np (non-probing) and C (stylet pathway) between infected and uninfected aphids. However, the difference between total duration of Np and C were not significantly different between infected and uninfected aphids. There were no significant differences in the number of events or total duration of E1 (phloem salivation) or E2 (phloem ingestion) between infected and uninfected aphids. There were significant differences in mean number of events and total duration of the pd waveform (intracellular punctures) in infected and uninfected aphids. In the 16 h prior to death, the same differences in behaviour were observed but they were even more obvious. Furthermore, the total duration time of E2 was significantly greater in uninfected aphids than infected aphids, a change that had not been observed in the first 6 h observation period. In conclusion, qPCR quantification demonstrated 'molecular' colonization levels throughout infection, and EPG data analysis during the two periods (during early infection and then during late infection just prior to death) demonstrated the actual physical effects of fungal infection on feeding behaviour of M. persicae; this has the potential to decrease the aphid's capacity of transmission and dispersal. These studies increase our understanding of the interaction between P. neoaphidis and its host aphid.


Assuntos
Afídeos/microbiologia , Afídeos/fisiologia , Entomophthorales/fisiologia , Interações Hospedeiro-Patógeno , Animais , Fenômenos Eletrofisiológicos , Comportamento Alimentar , Reação em Cadeia da Polimerase em Tempo Real
16.
J Invertebr Pathol ; 143: 108-114, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27993619

RESUMO

Among fungi from the order Entomophthorales (Entomophthoromycota), there are many specialized, obligatory insect-killing pathogens. Pandora formicae (Humber & Balazy) Humber is a rare example of an entomophthoralean fungus adapted to exclusively infect social insects: wood ants from the genus Formica. There is limited information available on P. formicae; many important aspects of this host-pathogen system remain hitherto unknown, and the taxonomical status of the fungus is unclear. Our study fills out some main gaps in the life history of P. formicae, such as seasonal prevalence and overwintering strategy. Field studies of infection prevalence show a disease peak in late summer and early autumn. Typical thick-walled entomophthoralean resting spores of P. formicae are documented and described for the first time. The proportion of cadavers with resting spores increased from late summer throughout autumn, suggesting that these spores are the main overwintering fungal structures. In addition, the phylogenetic status of Pandora formicae is outlined. Finally, we review the available taxonomical literature and conclude that the name P. formicae should be used rather than the name P. myrmecophaga for ant-infecting fungi displaying described morphological features.


Assuntos
Formigas/microbiologia , Entomophthorales/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Animais , Filogenia
17.
Proc Biol Sci ; 283(1828)2016 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-27053740

RESUMO

Diverse parasite taxa share hosts both at the population level and within individual hosts, and their interactions, ranging from competitive exclusion to facilitation, can drive community structure and dynamics. Emergent pathogens have the potential to greatly alter community interactions. We found that an emergent fungal entomopathogen dominated pre-existing lethal parasites in populations of the forest defoliating gypsy moth,Lymantria dispar The parasite community was composed of the fungus and four parasitoid species that only develop successfully after they kill the host, and a virus that produces viable propagules before the host has died. A low-density site was sampled over 17 years and compared with 66 sites across a range of host densities, including outbreaks. The emergent fungal pathogen and competing parasitoids rarely co-infected host individuals because each taxa must kill its host. The virus was not present at low host densities, but successfully co-infected with all other parasite species. In fact, there was facilitation between the virus and one parasitoid species hosting a polydnavirus. This newly formed parasite community, altered by an emergent pathogen, is shaped both by parasite response to host density and relative abilities of parasites to co-inhabit the same host individuals.


Assuntos
Dípteros/fisiologia , Entomophthorales/fisiologia , Mariposas/microbiologia , Mariposas/parasitologia , Nucleopoliedrovírus/fisiologia , Vespas/fisiologia , Animais , Interações Hospedeiro-Parasita , Interações Hospedeiro-Patógeno , Larva/crescimento & desenvolvimento , Larva/microbiologia , Larva/parasitologia , Mariposas/crescimento & desenvolvimento , New York , Controle Biológico de Vetores
18.
Acta Trop ; 158: 177-180, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26968351

RESUMO

Fungi are where one finds them, and if one seeks fungal pathogens affecting flies, then a garbage dump may be an ideal place to find both persistent, abundant fly populations and their fungal pathogens. An obvious fungal epizootic affecting the oriental latrine fly, Chrysomya megacephala (Diptera: Calliphoridae), was observed over several days in mid-February 2015 at the local garbage dump adjacent to the city of Cavalcante, northern Goiás. This site harbored large populations of both C. megacephala and a Musca sp. (Diptera: Muscidae) but only the population of oriental latrine fly was affected by any fungal pathogen and presented unusually dense populations of fresh cadavers. The fungus was identifiable as Pandora bullata (Entomophthorales: Entomophthoraceae) only after a very small number of characteristically decorated resting spores were found in these flies two months later; this represents the first Brazilian (and South American) record of this species. P. bullata is known previously from a small number of North American, European and Australian collections, all of which have included relatively abundant production of resting spores. We cannot dismiss the possibility that the extremely sparse formation of resting spores at this Brazilian site may be due to abiotic factors such as latitude (13°46'40.53″S), day length, ambient temperatures, or even the precipitation patterns in this mid-tropical montaine site. Epizootic events affecting calliphorids in Brazil strengthen the interest in entomophthoran pathogens for biological control of flies.


Assuntos
Dípteros/microbiologia , Entomophthorales/fisiologia , Animais , Brasil , Muscidae/microbiologia , Controle Biológico de Vetores
19.
J Invertebr Pathol ; 134: 35-37, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26796096

RESUMO

Introducing the predatory mite Phytoseiulus persimilis into two-spotted spider mite, Tetranychus urticae, populations significantly increased the proportion of T. urticae infected with the spider mite pathogen Neozygites floridana in one of two experiments. By the final sampling occasion, the number of T. urticae in the treatment with both the predator and the pathogen had declined to zero in both experiments, while in the fungus-only treatment T. urticae populations still persisted (20-40 T. urticae/subsample). Releasing P. persimilis into crops in which N. floridana is naturally present has the potential to improve spider mite control more than through predation alone.


Assuntos
Entomophthorales/fisiologia , Interações Hospedeiro-Patógeno , Ácaros/microbiologia , Comportamento Predatório , Tetranychidae/microbiologia , Animais , Ácaros/fisiologia
20.
Pest Manag Sci ; 72(8): 1566-71, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26577724

RESUMO

BACKGROUND: Transmission of fungal pathogens of aphids may be affected by the host developmental stage. Brassica and Lactuca sativa L. crops were sampled in Santa Fe, Argentina, to determine the prevalence of fungal-diseased aphids and investigate the differences between developmental stages of aphids. RESULTS: The fungal pathogens identified were Zoophthora radicans (Bref.) A. Batko, Pandora neoaphidis (Remaud. & Hennebert) Humber and Entomophthora planchoniana Cornu. Their prevalence on each crop was calculated. The numbers of infected aphids were significantly different between the different developmental stages on all crops except B. oleracea var. botrytis L. CONCLUSIONS: The entomophthoralean fungi identified are important mortality factors of aphids on horticultural crops in Santa Fe. The numbers of infected nymphs and adults were significantly different, nymphs being the most affected developmental stage. © 2015 Society of Chemical Industry.


Assuntos
Afídeos/crescimento & desenvolvimento , Afídeos/microbiologia , Entomophthorales/fisiologia , Animais , Argentina , Brassica/parasitologia , Lactuca/parasitologia , Ninfa/microbiologia , Dinâmica Populacional , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA