Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 588
Filtrar
2.
J Integr Neurosci ; 21(1): 9, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164445

RESUMO

Epilepsy is one of the most common neurology diseases. It is characterized by recurrent, spontaneous seizures and accompanied by various comorbidities which can significantly affect a person's life. Accumulating evidence indicates an essential pathophysiological role for neuroinflammation in epilepsy, which involves activation of microglia and astrocytes, recruitment of peripheral leukocytes into the central nervous system, and release of some inflammatory mediators, including pro-inflammatory factors and anti-inflammatory cytokines. There is complex crosstalk between the central nervous system and peripheral immune responses associated with the progression of epilepsy. This review provides an update of current knowledge about the contribution of this crosstalk associated with epilepsy. Additionally, how gut microbiota is involved in epilepsy and its possible influence on crosstalk is also discussed. Such recent advances in understanding suggest innovative methods for targeting the molecules correlated with the crosstalk and may provide a better prognosis for patients diagnosed with epilepsy.


Assuntos
Barreira Hematoencefálica/imunologia , Epilepsia/imunologia , Microbioma Gastrointestinal/imunologia , Sistema Imunitário/imunologia , Doenças Neuroinflamatórias/imunologia , Animais , Humanos
3.
J Integr Neurosci ; 21(1): 21, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164457

RESUMO

The current study investigated the effects of stevia extracts on a PTZ-induced epileptic rat model and its potential mechanism. Thirty male Sprague-Dawley rats were equally subdivided into 3 groups; (1) normal control (NC) group, (2) PTZ-group: received PTZ (50 mg/kg, i.p. every other day) for 2 weeks, and (3) PTZ+ Stevia group: received PTZ and stevia (200 mg/kg orally daily) for 4 weeks (2 weeks before the start of PTZ treatment and 2 weeks with PTZ administration). The first jerk latency and the seizure score were assessed in rats. Also, brain tissue samples were collected by the end of the experiment, and oxidative stress markers (catalase, MDA, and total antioxidant capacity (TAC)) were measured by biochemical analysis in hippocampal brain homogenates. Also, in the hippocampus, the expression of IL6 and Bcl-2 at the mRNA level and expression of Sirt-1, P53, caspase-3, GFAP, and NF-kB in CA3 hippocampal region by immunohistochemistry was investigated. PTZ substantially increased the seizure score and decreased the seizure latency. Also, PTZ significantly increased MDA, GFAP, IL-6, NF-kB, caspase-3, and p53 and significantly reduced Sirt-1, TAC, and Bcl-2 in hippocampal tissues compared to the control group (p < 0.01). However, Stevia Rebaudiana Bertoni (Stevia R.) significantly attenuated the PTZ-induced seizures, improved oxidative stress markers, downregulated GFAP, IL-6, NF-kB, caspase-3, and p53, and upregulated Sirt-1 and Bcl-2 in the CA3 hippocampal region (p < 0.01). In conclusion, Stevia R. exhibits neuroprotective and antiepileptic actions in PTZ-induced epilepsy due to its antioxidant, anti-apoptotic, and anti-inflammatory effects. Additionally, the Sirt-1 pathway might be involved in the antiepileptic and neuroprotective effects of stevia in PTZ-kindled epileptic rat model.


Assuntos
Anticonvulsivantes/farmacologia , Antioxidantes/farmacologia , Epilepsia/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Extratos Vegetais/farmacologia , Stevia , Animais , Anticonvulsivantes/administração & dosagem , Antioxidantes/administração & dosagem , Apoptose , Convulsivantes/farmacologia , Modelos Animais de Doenças , Epilepsia/induzido quimicamente , Epilepsia/imunologia , Epilepsia/metabolismo , Hipocampo/imunologia , Hipocampo/metabolismo , Masculino , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Pentilenotetrazol/farmacologia , Extratos Vegetais/administração & dosagem , Ratos , Ratos Sprague-Dawley , Sirtuína 1/efeitos dos fármacos , Sirtuína 1/metabolismo
4.
Mol Biol Rep ; 49(2): 1437-1452, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34751915

RESUMO

Epileptic seizure-induced brain injuries include activation of neuroimmune response with activation of microglia, astrocytes cells releasing neurotoxic inflammatory mediators underlies the pathophysiology of epilepsy. A wide spectrum of neuroinflammatory pathways is involved in neurodegeneration along with elevated levels of inflammatory mediators indicating the neuroinflammation in the epileptic brain. Therefore, the neuroimmune response is commonly observed in the epileptic brain, indicating elevated cytokine levels, providing an understanding of the neuroinflammatory mechanism contributing to seizures recurrence. Clinical and experimental-based evidence suggested the elevated levels of cytokines responsible for neuronal excitation and blood-brain barrier (BBB) dysfunctioning causing the drug resistance in epilepsy. Therefore, the understanding of the pathogenesis of neuroinflammation in epilepsy, including migration of microglial cells releasing the inflammatory cytokines indicating the correlation of elevated levels of inflammatory mediators (interleukin-1beta (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) triggering the generation or recurrence of seizures. The current review summarized the knowledge regarding elevated inflammatory mediators as immunomodulatory response correlating multiple neuroinflammatory NF-kB, RIPK, MAPK, ERK, JNK, JAK-STAT signaling cascades in epileptogenesis. Further selective targeting of inflammatory mediators provides beneficial therapeutic strategies for epilepsy.


Assuntos
Citocinas/imunologia , Epilepsia/genética , Doenças Neuroinflamatórias/imunologia , Animais , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Citocinas/metabolismo , Epilepsia/imunologia , Humanos , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
5.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34948035

RESUMO

Epilepsy is one of the most common neurological conditions. Yearly, five million people are diagnosed with epileptic-related disorders. The neuroprotective and therapeutic effect of (endo)cannabinoid compounds has been extensively investigated in several models of epilepsy. Therefore, the study of specific cell-type-dependent mechanisms underlying cannabinoid effects is crucial to understanding epileptic disorders. It is estimated that about 100 billion neurons and a roughly equal number of glial cells co-exist in the human brain. The glial population is in charge of neuronal viability, and therefore, their participation in brain pathophysiology is crucial. Furthermore, glial malfunctioning occurs in a wide range of neurological disorders. However, little is known about the impact of the endocannabinoid system (ECS) regulation over glial cells, even less in pathological conditions such as epilepsy. In this review, we aim to compile the existing knowledge on the role of the ECS in different cell types, with a particular emphasis on glial cells and their impact on epilepsy. Thus, we propose that glial cells could be a novel target for cannabinoid agents for treating the etiology of epilepsy and managing seizure-like disorders.


Assuntos
Endocanabinoides/metabolismo , Epilepsia/metabolismo , Neuroglia/metabolismo , Animais , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Epilepsia/imunologia , Regulação da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Neuroglia/imunologia
6.
Inflamm Res ; 70(10-12): 1027-1042, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34652489

RESUMO

INTRODUCTION: Mitochondrial dysfunction is a common denominator of neuroinflammation recognized by neuronal oxidative stress-mediated apoptosis that is well recognized by common intracellular molecular pathway-interlinked neuroinflammation and mitochondrial oxidative stress, a feature of epileptogenesis. In addition, the neuronal damage in the epileptic brain corroborated the concept of brain injury-mediated neuroinflammation, further providing an interlink between inflammation, mitochondrial dysfunction, and oxidative stress in epilepsy. MATERIALS AND METHODS: A systematic literature review of Bentham, Scopus, PubMed, Medline, and EMBASE (Elsevier) databases was carried out to provide evidence of preclinical and clinically used drugs targeting such nuclear, cytosolic, and mitochondrial proteins suggesting that the correlation of mechanisms linked to neuroinflammation has been elucidated in the current review. Despite that, the evidence of elevated levels of inflammatory mediators and pro-apoptotic protein levels can provide the correlation of inflammatory responses often concerned with hyperexcitability attributing to the fact that mitochondrial redox mechanisms and higher susceptibilities to neuroinflammation result from repetitive recurring epileptic seizures. Therefore, providing an understanding of seizure-induced pathological changes read by activating neuroinflammatory cascades like NF-kB, RIPK, MAPK, ERK, JNK, and JAK-STAT signaling further related to mitochondrial damage promoting hyperexcitability. CONCLUSION: The current review highlights the further opportunity for establishing therapeutic interventions underlying the apparent correlation of neuroinflammation mediated mitochondrial oxidative stress might contribute to common intracellular mechanisms underlying a future prospective of drug treatment targeting mitochondrial dysfunction linked to the neuroinflammation in epilepsy.


Assuntos
Epilepsia/imunologia , Mitocôndrias/imunologia , Doenças Neuroinflamatórias/imunologia , Animais , Morte Celular , Humanos , Inflamassomos/imunologia , Neurônios/imunologia , PPAR gama/imunologia , Fosfatidilinositol 3-Quinase/imunologia , Proteínas Quinases/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Fatores de Transcrição STAT/imunologia , Proteína Desacopladora 2/imunologia
7.
Front Immunol ; 12: 742449, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707612

RESUMO

The gut-brain axis refers to the bidirectional communication between the gut and brain, and regulates intestinal homeostasis and the central nervous system via neural networks and neuroendocrine, immune, and inflammatory pathways. The development of sequencing technology has evidenced the key regulatory role of the gut microbiota in several neurological disorders, including Parkinson's disease, Alzheimer's disease, and multiple sclerosis. Epilepsy is a complex disease with multiple risk factors that affect more than 50 million people worldwide; nearly 30% of patients with epilepsy cannot be controlled with drugs. Interestingly, patients with inflammatory bowel disease are more susceptible to epilepsy, and a ketogenic diet is an effective treatment for patients with intractable epilepsy. Based on these clinical facts, the role of the microbiome and the gut-brain axis in epilepsy cannot be ignored. In this review, we discuss the relationship between the gut microbiota and epilepsy, summarize the possible pathogenic mechanisms of epilepsy from the perspective of the microbiota gut-brain axis, and discuss novel therapies targeting the gut microbiota. A better understanding of the role of the microbiota in the gut-brain axis, especially the intestinal one, would help investigate the mechanism, diagnosis, prognosis evaluation, and treatment of intractable epilepsy.


Assuntos
Eixo Encéfalo-Intestino/imunologia , Encéfalo/imunologia , Epilepsia/imunologia , Microbioma Gastrointestinal/imunologia , Neuroimunomodulação/imunologia , Animais , Humanos
8.
JAMA Neurol ; 78(11): 1383-1390, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34515743

RESUMO

Importance: The literature on neural autoantibody positivity in epilepsy has expanded over the last decade, with an increased interest among clinicians in identifying potentially treatable causes of otherwise refractory seizures. Observations: Prior studies have reported a wide range of neural autoantibody positivity rates among various epilepsy populations, with the highest frequency reported in individuals with focal epilepsy of unknown cause and new-onset seizures. The antibodies in some cases are of uncertain significance, and their presence can cause conundrums regarding therapy. Conclusions and Relevance: There is likely some role for neural autoantibody assessment in patients with unexplained epilepsy who lack clear evidence of autoimmune encephalitis, but the clinical implications of such testing remain unclear owing to limitations in previous published studies. A framework for study design to bridge the current gaps in knowledge on autoimmune-associated epilepsy is proposed.


Assuntos
Autoanticorpos/imunologia , Autoimunidade/imunologia , Epilepsia/imunologia , Autoantígenos/imunologia , Humanos
9.
J Exp Med ; 218(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34546336

RESUMO

Autoantibodies targeting the GABAA receptor (GABAAR) hallmark an autoimmune encephalitis presenting with frequent seizures and psychomotor abnormalities. Their pathogenic role is still not well-defined, given the common overlap with further autoantibodies and the lack of patient-derived mAbs. Five GABAAR mAbs from cerebrospinal fluid cells bound to various epitopes involving the α1 and γ2 receptor subunits, with variable binding strength and partial competition. mAbs selectively reduced GABAergic currents in neuronal cultures without causing receptor internalization. Cerebroventricular infusion of GABAAR mAbs and Fab fragments into rodents induced a severe phenotype with seizures and increased mortality, reminiscent of encephalitis patients' symptoms. Our results demonstrate direct pathogenicity of autoantibodies on GABAARs independent of Fc-mediated effector functions and provide an animal model for GABAAR encephalitis. They further provide the scientific rationale for clinical treatments using antibody depletion and can serve as tools for the development of antibody-selective immunotherapies.


Assuntos
Anticorpos Monoclonais/imunologia , Autoanticorpos/imunologia , Encefalite/imunologia , Epilepsia/imunologia , Receptores de GABA-A/imunologia , Convulsões/imunologia , Animais , Autoantígenos/imunologia , Células Cultivadas , Células HEK293 , Hipocampo/imunologia , Humanos , Camundongos , Neurônios/imunologia
10.
Neurosci Lett ; 758: 136002, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34090938

RESUMO

BACKGROUND: Epilepsy is a common neurological disease that cannot be well controlled by existing antiepileptic drugs. Studies have implicated oxidative stress and inflammation in the pathophysiology of epilepsy. Rhein has a comprehensive pharmacological function in reducing inflammation and can play a neuroprotective role in many neurological diseases, however little is known about its effects on epilepsy. METHODS: A model of acute epilepsy in mice was established using the Pentylenetetrazol (PTZ) ignition method to evaluate the effects of Rhein on the duration and latency of convulsions, and the number and severity of seizures. Modified Neurological Severity Score (mNSS), Rotarod and open-field behavioral task tests were performed to evaluate the neuroprotective effect of Rhein. TUNEL staining was used to assess neuronal damage, and western blot, qPCR and ELISA kits were utilized to determine the expression of inflammatory signaling protein molecules and levels of inflammatory cytokines. RESULTS: In this study, we demonstrate that Rhein delayed the onset of seizures, decreased their severity, and reduced the duration and frequency of seizures in PTZ-induced epileptic mice. Furthermore, we found that Rhein blocked neurological deficits induced by PTZ. In addition, our results show that Rhein inhibited the activation of the TLR4-NFκB signaling pathway and decreased the secretion of the inflammatory cytokines TNF-α, IL-6, IL-1ß, and IL-18. CONCLUSION: Our results suggest that the anticonvulsant and neuroprotective effects of Rhein are achieved by disrupting the processes involved in PTZ acquisition of epilepsy.


Assuntos
Antraquinonas/farmacologia , Epilepsia/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Animais , Antraquinonas/uso terapêutico , Citocinas/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Epilepsia/induzido quimicamente , Epilepsia/diagnóstico , Epilepsia/imunologia , Humanos , Masculino , Camundongos , NF-kappa B/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Pentilenotetrazol/administração & dosagem , Pentilenotetrazol/toxicidade , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Receptor 4 Toll-Like
11.
Front Immunol ; 12: 652864, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054814

RESUMO

Objective: To examine the clinical characteristics of autoimmune encephalitis associated with the contactin-associated protein-2 (CASPR2) antibody. Materials and Methods: Medical records of all patients diagnosed with CASPR2 antibody-associated encephalitis were retrospectively analysed. Data regarding demographic features, neurological symptoms and signs, laboratory tests, imaging results, treatments, and prognosis were collected. Results: A total of 25 patients aged from 3 to 79 years old were enrolled in this study, with a median age of 43. Eight of 25 (32%) were female, and 17 of 25 (68%) were male. The median age of symptom onset was 42 years old with the course of disease from onset to hospital admission ranging from 2 days to 6 months (median was 17 days). Six patients (6/25) had fever as an onset symptom. During the course of disease, cognitive disturbance was the most common symptom, which was observed in 17 patients (17/25) in total. Eight patients (8/25) met the criteria for limbic encephalitis. Epileptic seizure occurred in six of these eight patients. Four patients (4/25) were diagnosed as Morvan syndrome. All patients were positive for anti-CASPR2 antibody in the serum (1:10-1:300). In six patients, antibodies were detected both in the blood and CSF (1:32-1:100). White blood cell (WBC) counts in the CSF were elevated in eight patients (8/25). The concentration of proteins in CSF increased in 10 patients (ranging from 480 to 1,337.6 mg/dl), decreased in seven patients (ranging from 23.2 to 130.5 mg/dl) and remained at a normal range in the other eight patients (ranging from 150 to 450 mg/dl). Abnormal electroencephalogram (EEG) activities included slow background activity and epileptic patterns. Abnormal signals in the bilateral hippocampus were detected by magnetic resonance imaging (MRI) in three patients presenting cognitive disturbance. In one patient who had limbic encephalitis, increased metabolism of bilateral basal ganglia and the mesial temporal lobe was revealed by PET-CT. Eleven of 15 patients receiving immunotherapy experienced varying degrees of improvement. Relapse occurred in four of 25 patients (4/25) after 2 months. Conclusion: CASPR-antibody-mediated autoimmune encephalitis is characterized by diverse clinical manifestations. The most prominent conclusion revealed by this retrospective analysis is the involvement of both central and peripheral nerve systems, as well as a lower relapse rate, a good response to immunotherapy, and favorable short-term prognosis after treatment was also demonstrated. Besides, additional work is necessary to evaluate the long-term prognosis.


Assuntos
Doenças Autoimunes/complicações , Disfunção Cognitiva/epidemiologia , Encefalite/complicações , Epilepsia/epidemiologia , Proteínas de Membrana/imunologia , Proteínas do Tecido Nervoso/imunologia , Adolescente , Adulto , Idoso , Autoanticorpos/sangue , Autoanticorpos/imunologia , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Criança , Pré-Escolar , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/imunologia , Eletroencefalografia , Encefalite/diagnóstico , Encefalite/tratamento farmacológico , Encefalite/imunologia , Epilepsia/diagnóstico , Epilepsia/tratamento farmacológico , Epilepsia/imunologia , Feminino , Humanos , Imunossupressores/uso terapêutico , Contagem de Leucócitos , Masculino , Proteínas de Membrana/líquido cefalorraquidiano , Testes de Estado Mental e Demência , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/líquido cefalorraquidiano , Recidiva , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
12.
Neuropathol Appl Neurobiol ; 47(6): 826-839, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34003514

RESUMO

AIMS: Focal cortical dysplasia (FCD) type 2 is an epileptogenic malformation of the neocortex associated with somatic mutations in the mammalian target of rapamycin (mTOR) pathway. Histopathologically, FCD 2 is subdivided into FCD 2a and FCD 2b, the only discriminator being the presence of balloon cells (BCs) in FCD 2b. While pro-epileptogenic immune system activation and inflammatory responses are commonly detected in both subtypes, it is unknown what contextual role BCs play. METHODS: The present study employed RNA sequencing of surgically resected brain tissue from FCD 2a (n = 11) and FCD 2b (n = 20) patients compared to autopsy control (n = 9) focusing on three immune system processes: adaptive immunity, innate immunity and cytokine production. This analysis was followed by immunohistochemistry on a clinically well-characterised FCD 2 cohort. RESULTS: Differential expression analysis revealed stronger expression of components of innate immunity, adaptive immunity and cytokine production in FCD 2b than in FCD 2a, particularly complement activation and antigen presentation. Immunohistochemical analysis confirmed these findings, with strong expression of leukocyte antigen I and II in FCD 2b as compared to FCD 2a. Moreover, T-lymphocyte tissue infiltration was elevated in FCD 2b. Expression of markers of immune system activation in FCD 2b was concentrated in subcortical white matter. Lastly, antigen presentation was strongly correlated with BC load in FCD 2b lesions. CONCLUSION: We conclude that, next to mutation-driven mTOR activation and seizure activity, BCs are crucial drivers of inflammation in FCD 2b. Our findings indicate that therapies targeting inflammation may be beneficial in FCD 2b.


Assuntos
Epilepsia/patologia , Sistema Imunitário/metabolismo , Malformações do Desenvolvimento Cortical do Grupo I/patologia , Malformações do Desenvolvimento Cortical/patologia , Serina-Treonina Quinases TOR/metabolismo , Adolescente , Criança , Epilepsia/genética , Epilepsia/imunologia , Humanos , Masculino , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/imunologia , Malformações do Desenvolvimento Cortical do Grupo I/genética , Malformações do Desenvolvimento Cortical do Grupo I/imunologia , Pessoa de Meia-Idade , Mutação/genética , Neocórtex/patologia , Neurônios/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/imunologia , Substância Branca/metabolismo
13.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922369

RESUMO

Accumulating evidence has demonstrated that the pathogenesis of epilepsy is linked to neuroinflammation and cerebrovascular dysfunction. Peripheral immune cell invasion into the brain, along with these responses, is implicitly involved in epilepsy. This review explored the current literature on the association between the peripheral and central nervous systems in the pathogenesis of epilepsy, and highlights novel research directions for therapeutic interventions targeting these reactions. Previous experimental and human studies have demonstrated the activation of the innate and adaptive immune responses in the brain. The time required for monocytes (responsible for innate immunity) and T cells (involved in acquired immunity) to invade the central nervous system after a seizure varies. Moreover, the time between the leakage associated with blood-brain barrier (BBB) failure and the infiltration of these cells varies. This suggests that cell infiltration is not merely a secondary disruptive event associated with BBB failure, but also a non-disruptive event facilitated by various mediators produced by the neurovascular unit consisting of neurons, perivascular astrocytes, microglia, pericytes, and endothelial cells. Moreover, genetic manipulation has enabled the differentiation between peripheral monocytes and resident microglia, which was previously considered difficult. Thus, the evidence suggests that peripheral monocytes may contribute to the pathogenesis of seizures.


Assuntos
Astrócitos/patologia , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Epilepsia/patologia , Leucócitos/patologia , Animais , Astrócitos/imunologia , Barreira Hematoencefálica/imunologia , Encéfalo/imunologia , Epilepsia/imunologia , Humanos , Leucócitos/imunologia
14.
Behav Brain Res ; 410: 113317, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-33910029

RESUMO

Epilepsy is one of the most common neurological disorders, with individuals having an increased susceptibility of seizures in the first few years of life, making children at risk of developing a multitude of cognitive and behavioral comorbidities throughout development. The present study examined the role of PI3K/Akt/mTOR pathway activity and neuroinflammatory signaling in the development of autistic-like behavior following seizures in the neonatal period. Male and female C57BL/6J mice were administered 3 flurothyl seizures on postnatal (PD) 10, followed by administration of minocycline, the mTOR inhibitor rapamycin, or a combined treatment of both therapeutics. On PD12, isolation-induced ultrasonic vocalizations (USVs) of mice were examined to determine the impact of seizures and treatment on communicative behaviors, a component of the autistic-like phenotype. Seizures on PD10 increased the quantity of USVs in female mice and reduced the amount of complex call types emitted in males compared to controls. Inhibition of mTOR with rapamycin significantly reduced the quantity and duration of USVs in both sexes. Changes in USVs were associated with increases in mTOR and astrocyte levels in male mice, however, three PD10 seizures did not result in enhanced proinflammatory cytokine expression in either sex. Beyond inhibition of mTOR activity by rapamycin, both therapeutics did not demonstrate beneficial effects. These findings emphasize the importance of differences that may exist across preclinical seizure models, as three flurothyl seizures did not induce as drastic of changes in mTOR activity or inflammation as observed in other rodent models.


Assuntos
Epilepsia , Fatores Imunológicos/farmacologia , Inibidores de MTOR/farmacologia , Minociclina/farmacologia , Convulsões , Sirolimo/farmacologia , Vocalização Animal/efeitos dos fármacos , Animais , Convulsivantes/farmacologia , Modelos Animais de Doenças , Epilepsia/induzido quimicamente , Epilepsia/imunologia , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Feminino , Flurotila/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Convulsões/induzido quimicamente , Convulsões/imunologia , Convulsões/metabolismo , Convulsões/fisiopatologia , Fatores Sexuais
15.
J Neuroimmunol ; 355: 577549, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33839521

RESUMO

The pathophysiology of neurological diseases related to potassium-channel dysfunction such as epilepsy is increasingly linked to immune system modulation. However, there are limited reports of which interleukin-4 (IL-4) can act on the neuroinflammatory response after seizure. Hence, we evaluated the effect of IL-4 in murine model of neuroexcitotoxcity using kaliotoxin (KTx), a potassium-channel blocker. Results showed that IL-4 treatment can significantly reduce the neuronal death induced by KTx. Probably by decreasing mitochondria swelling, reversing oxidative damage and enhancing Bcl-2 expression. Furthermore, IL-4 treatment significantly reduced TNF-α expression and enhanced GFAP and IL-10 expressions in the brain. IL-4 can be neuroprotective in epileptogenesis.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Epilepsia/prevenção & controle , Fatores Imunológicos/administração & dosagem , Interleucina-4/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Bloqueadores dos Canais de Potássio/toxicidade , Animais , Córtex Cerebral/imunologia , Córtex Cerebral/patologia , Epilepsia/induzido quimicamente , Epilepsia/imunologia , Epilepsia/patologia , Injeções Intraperitoneais , Injeções Intraventriculares , Camundongos , Venenos de Escorpião/toxicidade
16.
Rev. chil. neuro-psiquiatr ; 59(1): 56-65, mar. 2021. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-1388378

RESUMO

INTRODUCCIÓN: La epilepsia es un desorden neurológico crónico caracterizado por crisis convulsivas recurrentes, y constituye uno de los trastornos neurológicos con mayor prevalencia global. Una de las etiologías que ha cobrado mayor relevancia en el último tiempo es la autoinmunidad, la que ha venido a dar explicación a muchos casos de epilepsia idiopática o refractaria a tratamientos convencionales. MÉTODOS: Se realizó una búsqueda avanzada asociada a filtros en la plataforma PubMed con los términos "epilepsy" y "autoimmunity". Se seleccionaron 17 artículos de un total de 98 publicados desde el año 2010 en adelante, y que aportaban mas datos desde la fisiopatología. RESULTADOS: En base a la literatura, se describen los principales mecanismos de autoinmunidad que generan epilepsia entre los destacan generación de auto-anticuerpos, desregulación del perfil de citoquinas y pérdida del control de linfocitos T autorreactivos, fenómenos que redundan en neuroinflamación y que se originan en el contexto de infecciones, síndromes paraneoplásicos, autoinmunidad materna transferida a hijos, encefalitis autoinmune, entre otras. CONCLUSIONES: En los últimos años ha habido grandes avances en la comprensión de la epilepsia autoinmune, sin embargo, aún queda mucho por comprender. Pese a lo prometedor que es el descubrimiento de anticuerpos, existen muchos casos de epilepsia con seronegatividad, o casos con la presencia de anticuerpos, pero no la epilepsia autoinmune. Cabe destacar que se debe precisar mecanismos diagnósticos eficaces y específicos que permitan generar protocolos terapéuticos atingentes y resolutivos.


Epilepsy is a neurological chronic disorder which is characterized by recurrent seizures and constitutes one of the most prevalent neurological disorders worldwide. One of the etiologies that has gained a lot of strength is autoimmunity, which has explained a lot of cases of idiopathic epilepsy or epilepsies refractory to common treatment. METHODS: An advanced search was made in the PubMed platform using filters with the terms "epilepsy" and "autoimmunity", showing 98 publications from 2010 onwards, leaving only 17 selected articles because of their pathophysiological information. RESULTS: Based on the literature, we described the main mechanisms of autoimmunity as a cause of epilepsy, standing out the ones related to auto-antibodies production, cytokines disregulation and autoreactive T lymphocytes control alteration, phenomenons related to neuroinflammation that arise from the context of infections, paraneoplastic syndromes, maternal autoimmunity transmitted to their babies, autoimmune encephalitis, etc. CONCLUSIONS: Great advances has been made on the understanding of autoimmune epilepsy in the last years, but despite this there's a lot that we need to comprehend. Although how promising was the discovery of antibodies there's still a lot of seronegative cases or cases with antibodies but without the epilepsy. It is worth mentioning that it becomes necessary to establish efficient and specific diagnostic mechanisms that allow us to create suitable and resolutive therapeutic protocols.


Assuntos
Humanos , Autoimunidade , Epilepsia/imunologia , Convulsões/imunologia , Epilepsia/etiologia , Anticorpos
17.
Epileptic Disord ; 23(1): 74-84, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33602662

RESUMO

We investigated the metabolic profile, reactive species production, and inflammatory parameters in patients with epilepsy. Furthermore, we investigated whether there is any relationship between these parameters and seizure type. Patients with epilepsy (n=43) and healthy subjects (control group; n=41) were recruited to participate in the study. Initially, the participants were submitted to a clinical questionnaire and patients with epilepsy were classified according to seizure type. Metabolic markers and inflammatory and oxidative factors were also measured in specific blood samples. We compared these results with data from the control subjects. Statistical analyses showed that patients with epilepsy presented with higher levels of glycolipid, oxidative stress, and inflammatory parameters compared to the control subjects. Interestingly, patients with generalized seizures presented with higher MnSOD activity and metabolic parameters (total cholesterol, low-density lipoprotein, glucose and triglyceride levels) compared to the partial seizure and control groups. Furthermore, patients with generalized epilepsy demonstrated a significant correlation between TNF-α and caspase 8 (p<0.05), caspase 3 (p<0.05), and Picogreen (p<0.001). This study supports evidence that the levels of inflammatory, glycolipid, and oxidative factors are higher in epilepsy patients, especially those with generalized epilepsy.


Assuntos
Epilepsia , Inflamação , Metaboloma , Adulto , Epilepsia/sangue , Epilepsia/imunologia , Epilepsia/fisiopatologia , Feminino , Humanos , Inflamação/sangue , Inflamação/imunologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
18.
Exp Cell Res ; 400(1): 112437, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33385414

RESUMO

Neurotoxicity induced by glutamate (Glu) is often used to study the signaling mechanism of neurological disorders. The identification of specific genetic factors that cause Glu-induced neurotoxicity provides evidence for the common pathways of neuronal apoptosis and inflammation. TRIM27 has been found to induce apoptosis and inflammation. Nevertheless, there is little evidence that TRIM27 is associated with Glu-induced neurotoxicity. We found that TRIM27 expression was increased in epilepsy patients and in HT22 cells following Glu treatment. Glu-mediated cell apoptosis, decreased PPARγ expression, and increased levels of cleaved Caspase-3 and IL-1ß expression in HT22 cells were significantly inhibited by TRIM27 knockdown. TRIM27 overexpression significantly induced cell apoptosis and expression of cleaved Caspase-3 and IL-1ß, but inhibited PPARγ expression in HT22 cells, which were reversed by ROZ, suggesting the involvement of PPARγ in TRIM27-mediated cell apoptosis and inflammation in HT22 cells. Mechanically, TRIM27 ubiquitinates and degrades PPARγ, following induces cleaved Caspase-3 and IL-1ß expression. Clinically, increased expression of TRIM27 in epilepsy patients was associated with decreased PPARγ expression. Taken together, our study suggests that TRIM27-mediated ubiquitination of PPARγ promotes Glu-induced HT22 cell apoptosis and IL-1ß release.


Assuntos
Apoptose , Encéfalo/patologia , Proteínas de Ligação a DNA/metabolismo , Epilepsia/patologia , Ácido Glutâmico/efeitos adversos , Inflamação/patologia , Proteínas Nucleares/metabolismo , PPAR gama/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Estudos de Casos e Controles , Proteínas de Ligação a DNA/genética , Epilepsia/induzido quimicamente , Epilepsia/imunologia , Epilepsia/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Proteínas Nucleares/genética , PPAR gama/genética , Ubiquitinação
19.
Cells ; 10(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466431

RESUMO

The role of autoimmunity in central nervous system (CNS) disorders is rapidly expanding. In the last twenty years, different types of autoantibodies targeting subunits of ionotropic glutamate receptors have been found in a variety of patients affected by brain disorders. Several of these antibodies are directed against NMDA receptors (NMDAR), mostly in autoimmune encephalitis, whereas a growing field of research has identified antibodies against AMPA receptor (AMPAR) subunits in patients with different types of epilepsy or frontotemporal dementia. Several in vitro and in vivo studies performed in the last decade have dramatically improved our understanding of the molecular and functional effects induced by both NMDAR and AMPAR autoantibodies at the excitatory glutamatergic synapse and, consequently, their possible role in the onset of clinical symptoms. In particular, the method by which autoantibodies can modulate the localization at synapses of specific target subunits leading to functional impairments and behavioral alterations has been well addressed in animal studies. Overall, these preclinical studies have opened new avenues for the development of novel pharmacological treatments specifically targeting the synaptic activation of ionotropic glutamate receptors.


Assuntos
Autoanticorpos/imunologia , Epilepsia/imunologia , Demência Frontotemporal/imunologia , Receptores de AMPA/imunologia , Receptores de N-Metil-D-Aspartato/imunologia , Sinapses/imunologia , Epilepsia/patologia , Demência Frontotemporal/patologia , Humanos
20.
Front Immunol ; 12: 762743, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095841

RESUMO

Epilepsy affects ~50 million people. In ~30% of patients the etiology is unknown, and ~30% are unresponsive to anti-epileptic drugs. Intractable epilepsy often leads to multiple seizures daily or weekly, lasting for years, and accompanied by cognitive, behavioral, and psychiatric problems. This multidisciplinary scientific (not clinical) 'Perspective' article discusses Autoimmune Epilepsy from immunological, neurological and basic-science angles. The article includes summaries and novel discoveries, ideas, insights and recommendations. We summarize the characteristic features of the respective antigens, and the pathological activity in vitro and in animal models of autoimmune antibodies to: Glutamate/AMPA-GluR3, Glutamate/NMDA-NR1, Glutamate/NMDA-NR2, GAD-65, GABA-R, GLY-R, VGKC, LGI1, CASPR2, and ß2 GP1, found in subpopulations of epilepsy patients. Glutamate receptor antibodies: AMPA-GluR3B peptide antibodies, seem so far as the most exclusive and pathogenic autoimmune antibodies in Autoimmune Epilepsy. They kill neural cells by three mechanisms: excitotoxicity, Reactive-Oxygen-Species, and complement-fixation, and induce and/or facilitate brain damage, seizures, and behavioral impairments. In this article we raise and discuss many more topics and new insights related to Autoimmune Epilepsy. 1. Few autoimmune antibodies tilt the balance between excitatory Glutamate and inhibitory GABA, thereby promoting neuropathology and epilepsy; 2. Many autoantigens are synaptic, and have extracellular domains. These features increase the likelihood of autoimmunity against them, and the ease with which autoimmune antibodies can reach and harm these self-proteins. 3. Several autoantigens have 'frenetic character'- undergoing dynamic changes that can increase their antigenicity; 4. The mRNAs of the autoantigens are widely expressed in multiple organs outside the brain. If translated by default to proteins, broad spectrum detrimental autoimmunity is expected; 5. The autoimmunity can precede seizures, cause them, and be detrimental whether primary or epiphenomenon; 6. Some autoimmune antibodies induce, and associate with, cognitive, behavioral and psychiatric impairments; 7. There are evidences for epitope spreading in Autoimmune Epilepsy; 8. T cells have different 'faces' in the brain, and in Autoimmune Epilepsy: Normal T cells are needed for the healthy brain. Normal T cells are damaged by autoimmune antibodies to Glutamate/AMPA GluR3, which they express, and maybe by additional autoantibodies to: Dopamine-R, GABA-R, Ach-R, Serotonin-R, and Adrenergic-R, present in various neurological diseases (summarized herein), since T cells express all these Neurotransmitter receptors. However, autoimmune and/or cytotoxic T cells damage the brain; 9. The HLA molecules are important for normal brain function. The HLA haplotype can confer susceptibility or protection from Autoimmune Epilepsy; 10. There are several therapeutic strategies for Autoimmune Epilepsy.


Assuntos
Autoimunidade/imunologia , Epilepsia/imunologia , Autoanticorpos/imunologia , Autoantígenos/imunologia , Ácido Glutâmico/imunologia , Humanos , Receptores de Glutamato/imunologia , Convulsões/imunologia , Linfócitos T Citotóxicos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA