Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Sci Rep ; 10(1): 13375, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770121

RESUMO

Pediatric epilepsy caused by KCNQ2 mutations can manifest benign familial neonatal convulsions (BFNC) to neonatal-onset epileptic encephalopathy (EE). Patients might manifest mild to profound neurodevelopmental disabilities. We analysed c.853C > A (P285T) and three mutations that cause KCNQ2 protein changes in the 247 position: c.740C > T (S247L), c.740C > A (S247X), and c.740C > G (S247W). S247L, S247W, and P285T cause neonatal-onset EE and poor neurodevelopmental outcomes; S247X cause BFNC and normal outcome. We investigated the phenotypes correlated with human embryonic kidney 293 (HEK293) cell functional current changes. More cell-current changes and a worse conductance curve were present in the homomeric transfected S247X than in S247L, S247W, and P285T. But in the heteromeric channel, S247L, S247W and P285T had more current impairments than did S247X. The protein expressions of S247X were nonfunctional. The outcomes were most severe in S247L and S247W, and severity was correlated with heteromeric current. Current changes were more significant in cells with homomeric S247X, but currents were "rescued" after heteromeric transfection of KCNQ2 and KCNQ3. This was not the case in cells with S247L, S247W. Our findings support that homomeric current changes are common in KCNQ2 neonatal-onset EE and KCNQ2 BFNC; however, heteromeric functional current changes are correlated with long-term neurodevelopmental outcomes.


Assuntos
Canal de Potássio KCNQ2/metabolismo , Mutação com Perda de Função/genética , Transtornos do Neurodesenvolvimento/genética , Substituição de Aminoácidos/genética , Pré-Escolar , Eletroencefalografia , Epilepsia Neonatal Benigna/genética , Epilepsia Neonatal Benigna/metabolismo , Epilepsia Neonatal Benigna/fisiopatologia , Células HEK293 , Humanos , Lactente , Recém-Nascido , Canal de Potássio KCNQ2/genética , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/fisiopatologia
2.
Turk J Pediatr ; 61(2): 279-281, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31951342

RESUMO

Benetou C, Papailiou S, Maritsi D, Anagnostopoulou K, Kontos H, Vartzelis G. A novel de novo KCNQ2 mutation in a child with treatmentresistant early-onset epileptic encephalopathy. Turk J Pediatr 2019; 61: 279-281. Mutations in KCNQ2 gene, encoding for voltage-gated K+ channel subunit, may result in a wide spectrum of early-onset epileptic disorders. The phenotype of the disease varies from `benign familial neonatal seizures` to `severe epileptic encephalopathies`. In this report, we present a novel mutation [namely: c.683A > G (p.His228Arg)], as a presumable cause of severe infantile-onset neonatal seizures, in a 3-month old boy. The seizures have been poorly responsive to various pharmacological treatments, with phenytoin and carbamazepine presenting with the most favourable results so far. The study of our patient could help to further clarify the clinical manifestations of KCNQ2 mutations, revealing a previously unreported mutation.


Assuntos
DNA/genética , Epilepsia Neonatal Benigna/genética , Canal de Potássio KCNQ2/genética , Mutação , Análise Mutacional de DNA , Epilepsia Neonatal Benigna/diagnóstico , Epilepsia Neonatal Benigna/metabolismo , Humanos , Recém-Nascido , Canal de Potássio KCNQ2/metabolismo , Masculino , Fenótipo
3.
Biol Psychiatry ; 82(3): 224-232, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28256214

RESUMO

BACKGROUND: Variants in the SCN2A gene that disrupt the encoded neuronal sodium channel NaV1.2 are important risk factors for autism spectrum disorder (ASD), developmental delay, and infantile seizures. Variants observed in infantile seizures are predominantly missense, leading to a gain of function and increased neuronal excitability. How variants associated with ASD affect NaV1.2 function and neuronal excitability are unclear. METHODS: We examined the properties of 11 ASD-associated SCN2A variants in heterologous expression systems using whole-cell voltage-clamp electrophysiology and immunohistochemistry. Resultant data were incorporated into computational models of developing and mature cortical pyramidal cells that express NaV1.2. RESULTS: In contrast to gain of function variants that contribute to seizure, we found that all ASD-associated variants dampened or eliminated channel function. Incorporating these electrophysiological results into a compartmental model of developing excitatory neurons demonstrated that all ASD variants, regardless of their mechanism of action, resulted in deficits in neuronal excitability. Corresponding analysis of mature neurons predicted minimal change in neuronal excitability. CONCLUSIONS: This functional characterization thus identifies SCN2A mutation and NaV1.2 dysfunction as the most frequently observed ASD risk factor detectable by exome sequencing and suggests that associated changes in neuronal excitability, particularly in developing neurons, may contribute to ASD etiology.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Epilepsia Neonatal Benigna/genética , Epilepsia Neonatal Benigna/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Espasmos Infantis/genética , Espasmos Infantis/metabolismo , Córtex Cerebral/metabolismo , Simulação por Computador , Predisposição Genética para Doença , Células HEK293 , Humanos , Imuno-Histoquímica , Lactente , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Técnicas de Patch-Clamp , Células Piramidais/citologia , Células Piramidais/metabolismo , Convulsões/genética , Convulsões/metabolismo
4.
Biochim Biophys Acta Biomembr ; 1859(4): 586-597, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27818172

RESUMO

Many years of studies have established that lipids can impact membrane protein structure and function through bulk membrane effects, by direct but transient annular interactions with the bilayer-exposed surface of protein transmembrane domains, and by specific binding to protein sites. Here, we focus on how phosphatidylinositol 4,5-bisphosphate (PIP2) and polyunsaturated fatty acids (PUFAs) impact ion channel function and how the structural details of the interactions of these lipids with ion channels are beginning to emerge. We focus on the Kv7 (KCNQ) subfamily of voltage-gated K+ channels, which are regulated by both PIP2 and PUFAs and play a variety of important roles in human health and disease. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.


Assuntos
Epilepsia Neonatal Benigna/metabolismo , Perda Auditiva Bilateral/metabolismo , Canal de Potássio KCNQ1/química , Síndrome do QT Longo/metabolismo , Lipídeos de Membrana/química , Sequência de Aminoácidos , Sítios de Ligação , Membrana Celular/química , Membrana Celular/metabolismo , Epilepsia Neonatal Benigna/patologia , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Perda Auditiva Bilateral/patologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Canal de Potássio KCNQ1/deficiência , Canal de Potássio KCNQ1/metabolismo , Síndrome do QT Longo/patologia , Lipídeos de Membrana/metabolismo , Modelos Moleculares , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína
5.
Artigo em Inglês | MEDLINE | ID: mdl-27371672

RESUMO

There have been tremendous recent advances in our understanding of the biological underpinnings of epilepsy and associated comorbidities that justify its representation as a spectrum disorder. Advances in genetics, electrophysiology, and neuroimaging have greatly improved our ability to differentiate, diagnose, and treat individuals with epilepsy. However, we have made little overall progress in preventing epilepsy, and the number of patients who are cured remains small. Likewise, the comorbidities of epilepsy are often underdiagnosed or not adequately treated. In this article, we suggest a few areas in which additional research will likely pay big dividends for patients and their families.


Assuntos
Pesquisa Biomédica/tendências , Epilepsia , Revisão da Pesquisa por Pares/tendências , Fatores Etários , Transtornos Cognitivos/complicações , Comorbidade , Epilepsia/etiologia , Epilepsia/genética , Epilepsia/terapia , Epilepsia Neonatal Benigna/metabolismo , Genoma , Humanos , Publicações Periódicas como Assunto
6.
PLoS One ; 9(2): e88549, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586341

RESUMO

Knock-in mouse models have contributed tremendously to our understanding of human disorders. However, generation of knock-in animals requires a significant investment of time and effort. We addressed this problem by developing a novel knock-in system that circumvents several traditional challenges by establishing stem cells with acceptor elements enveloping a particular genomic target. Once established, these acceptor embryonic stem (ES) cells are efficient at directionally incorporating mutated target DNA using modified Cre/lox technology. This is advantageous, because knock-ins are not restricted to one a priori selected variation. Rather, it is possible to generate several mutant animal lines harboring desired alterations in the targeted area. Acceptor ES cell generation is the rate-limiting step, lasting approximately 2 months. Subsequent manipulations toward animal production require an additional 8 weeks, but this delimits the full period from conception of the genetic alteration to its animal incorporation. We call this system a "kick-in" to emphasize its unique characteristics of speed and convenience. To demonstrate the functionality of the kick-in methodology, we generated two mouse lines with separate mutant versions of the voltage-dependent potassium channel Kv7.2 (Kcnq2): p.Tyr284Cys (Y284C) and p.Ala306Thr (A306T); both variations have been associated with benign familial neonatal epilepsy. Adult mice homozygous for Y284C, heretofore unexamined in animals, presented with spontaneous seizures, whereas A306T homozygotes died early. Heterozygous mice of both lines showed increased sensitivity to pentylenetetrazole, possibly due to a reduction in M-current in CA1 hippocampal pyramidal neurons. Our observations for the A306T animals match those obtained with traditional knock-in technology, demonstrating that the kick-in system can readily generate mice bearing various mutations, making it a suitable feeder technology toward streamlined phenotyping.


Assuntos
Técnicas de Introdução de Genes/métodos , Canal de Potássio KCNQ2/genética , Animais , Comportamento Animal , Células-Tronco Embrionárias/metabolismo , Epilepsia Neonatal Benigna/induzido quimicamente , Epilepsia Neonatal Benigna/genética , Epilepsia Neonatal Benigna/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Mutação , Pentilenotetrazol/efeitos adversos , Gravidez , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Tempo
7.
Proc Natl Acad Sci U S A ; 110(11): 4386-91, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23440208

RESUMO

Mutations in the K(V)7.2 gene encoding for voltage-dependent K(+) channel subunits cause neonatal epilepsies with wide phenotypic heterogeneity. Two mutations affecting the same positively charged residue in the S4 domain of K(V)7.2 have been found in children affected with benign familial neonatal seizures (R213W mutation) or with neonatal epileptic encephalopathy with severe pharmacoresistant seizures and neurocognitive delay, suppression-burst pattern at EEG, and distinct neuroradiological features (R213Q mutation). To examine the molecular basis for this strikingly different phenotype, we studied the functional characteristics of mutant channels by using electrophysiological techniques, computational modeling, and homology modeling. Functional studies revealed that, in homomeric or heteromeric configuration with K(V)7.2 and/or K(V)7.3 subunits, both mutations markedly destabilized the open state, causing a dramatic decrease in channel voltage sensitivity. These functional changes were (i) more pronounced for channels incorporating R213Q- than R213W-carrying K(V)7.2 subunits; (ii) proportional to the number of mutant subunits incorporated; and (iii) fully restored by the neuronal K(v)7 activator retigabine. Homology modeling confirmed a critical role for the R213 residue in stabilizing the activated voltage sensor configuration. Modeling experiments in CA1 hippocampal pyramidal cells revealed that both mutations increased cell firing frequency, with the R213Q mutation prompting more dramatic functional changes compared with the R213W mutation. These results suggest that the clinical disease severity may be related to the extent of the mutation-induced functional K(+) channel impairment, and set the preclinical basis for the potential use of K(v)7 openers as a targeted anticonvulsant therapy to improve developmental outcome in neonates with K(V)7.2 encephalopathy.


Assuntos
Epilepsia Neonatal Benigna/metabolismo , Canal de Potássio KCNQ2/metabolismo , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Animais , Anticonvulsivantes/farmacologia , Células CHO , Carbamatos/farmacologia , Cricetinae , Cricetulus , Epilepsia Neonatal Benigna/genética , Epilepsia Neonatal Benigna/patologia , Genótipo , Humanos , Canal de Potássio KCNQ2/química , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo , Modelos Moleculares , Fenótipo , Fenilenodiaminas/farmacologia , Células Piramidais/metabolismo , Células Piramidais/patologia , Homologia Estrutural de Proteína
8.
Brain ; 135(Pt 10): 3144-52, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23065794

RESUMO

Benign familial neonatal epilepsy is a neuronal channelopathy most commonly caused by mutations in KCNQ2, which encodes the K(v)7.2 subunit of the slow K(+) channel. K(v)7.2 is expressed in both central and peripheral nervous systems. Seizures occur in the neonatal period, often in clusters within the first few days of life, and usually remit by 12 months of age. The mechanism of involvement of K(v)7.2 mutations in the process of seizure generation has not been established in vivo. In peripheral axons, K(v)7.2 contributes to the nodal slow K(+) current. The present study aimed to determine whether axonal excitability studies could detect changes in peripheral nerve function related to dysfunction or loss of slow potassium channel activity. Nerve excitability studies were performed on eight adults with KCNQ2 mutations and a history of benign familial neonatal epilepsy, now in remission. Studies detected distinctive changes in peripheral nerve, indicating a reduction in slow K(+) current. Specifically, accommodation to long-lasting depolarizing currents was reduced in mutation carriers by 24% compared with normal controls, and the threshold undershoot after 100 ms depolarizing currents was reduced by 22%. Additional changes in excitability included a reduction in the relative refractory period, an increase in superexcitability and a tendency towards reduced sub-excitability. Modelling of the nerve excitability changes suggested that peripheral nerve hyperexcitability may have been ameliorated by upregulation of other potassium channels. We conclude that subclinical dysfunction of K(v)7.2 in peripheral axons can be reliably detected non-invasively in adulthood. Related alterations in neuronal excitability may contribute to epilepsy associated with KCNQ2 mutations.


Assuntos
Canalopatias/genética , Canalopatias/metabolismo , Epilepsia Neonatal Benigna/genética , Epilepsia Neonatal Benigna/metabolismo , Canal de Potássio KCNQ2/antagonistas & inibidores , Canal de Potássio KCNQ2/genética , Adulto , Axônios/patologia , Axônios/fisiologia , Canalopatias/fisiopatologia , Estudos de Coortes , Epilepsia Neonatal Benigna/fisiopatologia , Feminino , Humanos , Canal de Potássio KCNQ2/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação/genética , Prevenção Secundária
9.
Ideggyogy Sz ; 61(11-12): 417-22, 2008 Nov 30.
Artigo em Húngaro | MEDLINE | ID: mdl-19070318

RESUMO

Authors summarized the etiology of convulsions in neonatal period and infancy (hypoxia, intracranial hemorrhage, infections of central nervous system, metabolic background, chromosomal abnormalities, brain developmental abnormalities, benign neonatal convulsions, benign neonatal familial convulsions, drug withdrawal, inborn error of metabolism). They suggest screening examinations after convulsion, summarized the basic principle of tandem examination and review a proposal at suspicion of inborn error of enzyme defects (aminoacidemias, defects of fatty acid oxidation, organic acidemias). They present case history of two patients suffered in extraordinary inborn error of enzyme defect (SCO2 gene mutation, propionic acidemia). Diagnosis originated in Helm P61 Hospital (settlement Madarász Hospital) with a Hungarian and international cooperation.


Assuntos
Epilepsia Neonatal Benigna/etiologia , Epilepsia Neonatal Benigna/metabolismo , Erros Inatos do Metabolismo/complicações , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Proteínas de Transporte/genética , Hemorragia Cerebral/complicações , Aberrações Cromossômicas , Eletroencefalografia , Epilepsia Neonatal Benigna/diagnóstico por imagem , Epilepsia Neonatal Benigna/genética , Feminino , Testes Genéticos , Humanos , Hipóxia/complicações , Lactente , Recém-Nascido , Doença de Leigh/complicações , Masculino , Proteínas de Membrana/genética , Erros Inatos do Metabolismo/metabolismo , Proteínas Mitocondriais/genética , Chaperonas Moleculares , Mutação , Ultrassonografia Doppler
11.
J Neurosci ; 27(18): 4919-28, 2007 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-17475800

RESUMO

Heteromeric assembly of KCNQ2 and KCNQ3 subunits underlie the M-current (I(KM)), a slowly activating and noninactivating neuronal K(+) current. Mutations in KCNQ2 and KCNQ3 genes cause benign familial neonatal convulsions (BFNCs), a rare autosomal-dominant epilepsy of the newborn. In the present study, we describe the identification of a novel KCNQ2 heterozygous mutation (c587t) in a BFNC-affected family, leading to an alanine to valine substitution at amino acid position 196 located at the N-terminal end of the voltage-sensing S(4) domain. The consequences on KCNQ2 subunit function prompted by the A196V substitution, as well as by the A196V/L197P mutation previously described in another BFNC-affected family, were investigated by macroscopic and single-channel current measurements in CHO cells transiently transfected with wild-type and mutant subunits. When compared with KCNQ2 channels, homomeric KCNQ2 A196V or A196V/L197P channels showed a 20 mV rightward shift in their activation voltage dependence, with no concomitant change in maximal open probability or single-channel conductance. Furthermore, current activation kinetics of KCNQ2 A196V channels displayed an unusual dependence on the conditioning prepulse voltage, being markedly slower when preceded by prepulses to more depolarized potentials. Heteromeric channels formed by KCNQ2 A196V and KCNQ3 subunits displayed gating changes similar to those of KCNQ2 A196V homomeric channels. Collectively, these results reveal a novel role for noncharged residues in the N-terminal end of S(4) in controlling gating of I(KM) and suggest that gating changes caused by mutations at these residues may decrease I(KM) function, thus causing neuronal hyperexcitability, ultimately leading to neonatal convulsions.


Assuntos
Epilepsia Neonatal Benigna/genética , Epilepsia Neonatal Benigna/metabolismo , Ativação do Canal Iônico/genética , Canal de Potássio KCNQ2/genética , Mutação , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Células CHO , Pré-Escolar , Cricetinae , Cricetulus , Feminino , Humanos , Lactente , Ativação do Canal Iônico/fisiologia , Canal de Potássio KCNQ2/fisiologia , Masculino , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Dados de Sequência Molecular , Linhagem
12.
Channels (Austin) ; 1(4): 228-33, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18698150

RESUMO

Almost ten years have passed since the identification of Kv7.2 and Kv7.3, the genes altered in benign familial neonatal seizures (BFNS), a familial autosomal dominant focal epilepsy of the newborn. Despite the rarity of the disease, clinical and genetic data have been gathered from more than 50 BFNS-affected families; these studies reveal that each family harbours a specific disease-causing mutation, and that the mutation-induced functional changes range from a subtle alteration in channel behaviour to a complete ablation of channel function. Prompted by the recent identification of peculiar gating changes in Kv7.2 subunits caused by novel mutations responsible for BFNS, in the present work we attempt to link, whenever possible, the specific genetic defect with the clinical evolution of the disease in the affected families on one side, and, on the other, with the functional defects revealed by expression studies. Such genotype-phenotype correlations may provide clues on the pathogenesis of the wide variety of neuropsychiatric manifestations often associated to BFNS, and should foster our attempts to gain more detailed functional information which might help to elucidate the pathogenetic mechanisms of the disease.


Assuntos
Epilepsia Neonatal Benigna/genética , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Mutação , Animais , Epilepsia Neonatal Benigna/metabolismo , Predisposição Genética para Doença , Humanos , Ativação do Canal Iônico/genética , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Potenciais da Membrana , Linhagem , Fenótipo
14.
Arch Neurol ; 60(4): 496-500, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12707061

RESUMO

Efforts in basic neuroscience and studies of rare hereditary neurological diseases are partly motivated by the hope that such work can lead to better understanding of and treatments for the common neurological disorders. An example is the progress that has resulted from identification of the genes that cause benign familial neonatal convulsions (BFNCs). Benign familial neonatal convulsions is a rare idiopathic, generalized epilepsy syndrome. In 1998, geneticists discovered that BFNC is caused by mutations in a novel potassium channel subunit, KCNQ2. Further work quickly revealed the sequences of 3 related brain channel genes KCNQ3, KCNQ4, and KCNQ5. Mutations in 2 of these genes were shown to cause BFNC (KCNQ3) and hereditary deafness (KCNQ4). Physiologists soon discovered that the KCNQ genes encoded subunits of the M-channel, a widely expressed potassium channel that mediates effects of modulatory neurotransmitters and controls repetitive neuronal discharges. Finally, pharmacologists discovered that the biological activities of 3 classes of compounds in development as treatments for Alzheimer disease, epilepsy, and stroke were mediated in part by effects on brain KCNQ channels. Cloned human KCNQ channels can now be used for high-throughput screening of additional drug candidates. Ongoing studies in humans and animal models will refine our understanding of KCNQ channel function and may reveal additional targets for therapeutic manipulation.


Assuntos
Epilepsia Neonatal Benigna/tratamento farmacológico , Epilepsia Neonatal Benigna/metabolismo , Mutação , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/genética , Epilepsia Neonatal Benigna/genética , Humanos , Indóis/farmacologia , Recém-Nascido , Canais de Potássio KCNQ , Canal de Potássio KCNQ2 , Canal de Potássio KCNQ3 , Neurotransmissores/metabolismo , Canais de Potássio/agonistas , Canais de Potássio de Abertura Dependente da Tensão da Membrana
15.
Epilepsia ; 43 Suppl 9: 36-8, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12383278

RESUMO

PURPOSE: Benign familial neonatal convulsions (BFNC), a hereditary epilepsy, occurs specifically in newborns and remits spontaneously after this period. Several mutations of either KCNQ2 or KCNQ3, members of the KCNQ-related K+-channel (KCNQ-channel) family, were identified as a cause of BFNC. Such mutations impair KCNQ-related M- current, an element of the inhibitory system in the central nervous system (CNS), and therefore are thought to result in neuronal hyperexcitability. METHODS: To clarify the pathogenesis of BFNC, this study investigated the effects of the KCNQ channel on propagation of neuronal excitability using a 64-channel multielectrode dish (MED64) system for novel two-dimensional monitoring of evoked field potentials including fiber volley (FV) and field excitatory postsynaptic potential (fEPSP). RESULTS: Dup996, a selective KCNQ-channel inhibitor, did not affect the amplitude of FV or fEPSP, but enhanced the FV and fEPSP propagation. The gamma-aminobutyric acid (GABA)A-receptor antagonist, bicuculline, enhanced their propagation, whereas alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/glutamate-receptor antagonist, DNQX, reduced both amplitude and propagation of fEPSP without affecting those of FV. Under the condition of GABAA-receptor blockade by bicuculline, Dup996 enhanced the amplitude of fEPSP and propagation of FV and fEPSP without affecting the amplitude of FV. Dup996 enhanced the stimulating effects of bicuculline on the propagation and amplitude of FV and fEPSP, but it did not affect the inhibiting effects of DNQX. CONCLUSIONS: These results suggest that the occurrence of BFNC cannot be produced by KCNQ-channel dysfunction alone but by reciprocal action between impaired KCNQ channel and the other unknown.


Assuntos
Epilepsia Neonatal Benigna/fisiopatologia , Hipocampo/fisiologia , Neurônios/fisiologia , Convulsões/fisiopatologia , Fatores Etários , Animais , Bicuculina/farmacologia , Sistema Nervoso Central/fisiopatologia , Interpretação Estatística de Dados , Eletroencefalografia , Epilepsia Neonatal Benigna/etiologia , Epilepsia Neonatal Benigna/genética , Epilepsia Neonatal Benigna/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores , Antagonistas GABAérgicos/farmacologia , Hipocampo/metabolismo , Humanos , Indóis/farmacologia , Recém-Nascido , Masculino , Camundongos , Camundongos Knockout , Microdiálise/métodos , Mutação , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Canais de Potássio/fisiologia , Piridinas/farmacologia , Quinoxalinas/farmacologia , Ratos , Ratos Wistar , Convulsões/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
16.
Am J Med Genet ; 106(2): 139-45, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11579434

RESUMO

Partial or generalized idiopathic epilepsies, which account for up to 40% of all epilepsies, are characterized by a mostly benign course and no apparent etiology other than a genetic predisposition. So far, the genetic defects underlying three different idiopathic epilepsy syndromes have been identified: mutations in the CHRNA4- or CHRNB subunits of the neuronal nicotinic acetylcholine receptor are found in familial nocturnal frontal lobe epilepsy, while defects in the voltage-gated potassium channels KCNQ2 and KCNQ3 have recently been identified in benign familial neonatal convulsions. The syndrome of "generalized epilepsy with febrile seizures plus" can be caused by mutations affecting the voltage-gated sodium channel subunits SCN1B and SCN1A or the gamma 2-subunit of the GABA(A) receptor. The results of recent molecular studies contributed largely to our understanding of the etiology and pathophysiology of idiopathic epilepsies.


Assuntos
Epilepsia/genética , Mutação/genética , Epilepsias Parciais/genética , Epilepsias Parciais/metabolismo , Epilepsia/metabolismo , Epilepsia Neonatal Benigna/genética , Epilepsia Neonatal Benigna/metabolismo , Epilepsia Generalizada/genética , Epilepsia Generalizada/metabolismo , Humanos , Mutação Puntual , Canais de Potássio/genética , Canais de Potássio/metabolismo , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Convulsões Febris/genética , Convulsões Febris/metabolismo , Canais de Sódio/genética , Canais de Sódio/metabolismo
17.
Am J Med Genet ; 106(2): 146-59, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11579435

RESUMO

Ion channels provide the basis for the regulation of excitability in the central nervous system and in other excitable tissues such as skeletal and heart muscle. Consequently, mutations in ion channel encoding genes are found in a variety of inherited diseases associated with hyper- or hypoexcitability of the affected tissue, the so-called 'channelopathies.' An increasing number of epileptic syndromes belongs to this group of rare disorders: Autosomal dominant nocturnal frontal lobe epilepsy is caused by mutations in a neuronal nicotinic acetylcholine receptor (affected genes: CHRNA4, CHRNB2), benign familial neonatal convulsions by mutations in potassium channels constituting the M-current (KCNQ2, KCNQ3), generalized epilepsy with febrile seizures plus by mutations in subunits of the voltage-gated sodium channel or the GABA(A) receptor (SCN1B, SCN1A, GABRG2), and episodic ataxia type 1-which is associated with epilepsy in a few patients--by mutations within another voltage-gated potassium channel (KCNA1). These rare disorders provide interesting models to study the etiology and pathophysiology of disturbed excitability in molecular detail. On the basis of genetic and electrophysiologic studies of the channelopathies, novel therapeutic strategies can be developed, as has been shown recently for the antiepileptic drug retigabine activating neuronal KCNQ potassium channels.


Assuntos
Epilepsia/metabolismo , Canais Iônicos/metabolismo , Ataxia/genética , Ataxia/metabolismo , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/metabolismo , Epilepsias Parciais/genética , Epilepsias Parciais/metabolismo , Epilepsia/genética , Epilepsia/terapia , Epilepsia Neonatal Benigna/genética , Epilepsia Neonatal Benigna/metabolismo , Epilepsia do Lobo Frontal/genética , Epilepsia do Lobo Frontal/metabolismo , Epilepsia Generalizada/genética , Epilepsia Generalizada/metabolismo , Genes Dominantes , Humanos , Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/genética , Mutação , Mioquimia/genética , Mioquimia/metabolismo , Convulsões Febris/genética , Convulsões Febris/metabolismo
18.
Neurosci Lett ; 294(1): 53-7, 2000 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-11044585

RESUMO

To explore the pathogenesis of benign familial neonatal convulsions (BFNC), we determined effects of KCNQ-related M-channels (KCNQ-channels) on hippocampal glutamate (Glu) and gamma-aminobutyric acid (GABA) releases using microdialysis, and propagation of evoked field-potentials (FP) using multielectrode (64-ch)-dish system as two-dimensional monitoring. KCNQ-channel inhibitor, Dup996, enhanced hippocampal K(+)-evoked Glu and GABA releases without affecting basal releases of them. Dup996 unaffected FP-amplitude, but enhanced FP-propagation. The GABA(A)-receptor antagonist, bicuculline, enhanced the stimulatory effects of Dup996 on FP-propagation, however, this stimulatory effects of Dup996 were abolished by the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/glutamate-receptor antagonist, DNQX. These results suggest that the occurrence of BFNC cannot be produced by KCNQ-channel dysfunction alone, but by reciprocal action between impaired KCNQ-channel and other unknown elements (possibly dysfunction of inhibitory neurotransmission system).


Assuntos
Epilepsia Neonatal Benigna/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Canais de Potássio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Bicuculina/farmacologia , Eletrodos , Epilepsia Neonatal Benigna/etiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Antagonistas GABAérgicos/farmacologia , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Indóis/farmacologia , Canais de Potássio KCNQ , Canal de Potássio KCNQ2 , Canal de Potássio KCNQ3 , Masculino , Microdiálise/métodos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Potássio/metabolismo , Potássio/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Piridinas/farmacologia , Quinoxalinas/farmacologia , Ratos , Ratos Wistar , Ácido gama-Aminobutírico/metabolismo
19.
Nervenarzt ; 71(8): 611-5, 2000 Aug.
Artigo em Alemão | MEDLINE | ID: mdl-10996911

RESUMO

Benign familial neonatal convulsions are a rare monogenic form of idiopathic epilepsy characterized by the onset of frequent brief seizures after the second day of life. The seizures disappear spontaneously within a few weeks, but recurrent seizures later in life are common. Linkage studies located genes to chromosome 20q13.3 and 8q24, and the voltage-gated potassium channels KCNQ2 and KCNQ3 were recently identified. Since then, several mutations have been found leading to haplosufficiency of the ion channel. Functional studies showed that KCNQ2 and KCNQ3 are able to contribute to a heteromeric channel exhibiting kinetic and pharmacological properties similar to those of the native M current, the latter playing an important role in the regulation of neuronal excitability. This overview presents a summary of the molecular, genetic, and electrophysiological findings and discusses them with respect to their clinical relevance.


Assuntos
Epilepsia Neonatal Benigna/diagnóstico , Epilepsia Neonatal Benigna/genética , Mutação , Canais de Potássio/genética , Epilepsia Neonatal Benigna/metabolismo , Ligação Genética , Marcadores Genéticos/genética , Testes Genéticos/métodos , Humanos , Recém-Nascido , Ativação do Canal Iônico/genética , Biologia Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA