Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 670
Filtrar
1.
Seizure ; 117: 298-304, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38615369

RESUMO

BACKGROUND: Right-sided vagus nerve stimulation (RS-VNS) is indicated when the procedure was deemed not technically feasible or too risky on the indicated left side. OBJECTIVE: The present study aims to systematically review the literature on RS-VNS, assessing its effectiveness and safety. METHODS: A systematic review following PRISMA guidelines was conducted: Pubmed/MEDLINE, The Cochrane Library, Scopus, Embase and Web of science databases were searched from inception to August 13th,2023. Gray literature was searched in two libraries. Eligible studies included all studies reporting, at least, one single case of RS-VNS in patients for the treatment of drug-resistant epilepsy. RESULTS: Out of 2333 initial results, 415 studies were screened by abstract. Only four were included in the final analysis comprising seven patients with RS-VNS for a drug-resistant epilepsy. One patient experienced nocturnal asymptomatic bradycardia whereas the other six patients did not display any cardiac symptom. RS-VNS was discontinued in one case due to exercise-induced airway disease exacerbation. Decrease of epileptic seizure frequency after RS-VNS ranged from 25 % to 100 % in six cases. In the remaining case, VNS effectiveness was unclear. In one case, RS-VNS was more efficient than left-sided VNS (69 % vs 50 %, respectively) whereas in another case, RS-VNS was less efficient (50 % vs 95 %, respectively). CONCLUSION: Literature on the present topic is limited. In six out of seven patients, RS-VNS for drug-resistant epilepsy displayed reasonable effectiveness with a low complication rate. Further research, including prospective studies, is necessary to assess safety and effectiveness of RS-VNS for drug-resistant epilepsy patients.


Assuntos
Epilepsia Resistente a Medicamentos , Estimulação do Nervo Vago , Humanos , Estimulação do Nervo Vago/métodos , Epilepsia Resistente a Medicamentos/terapia
2.
Epilepsy Behav ; 154: 109743, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636110

RESUMO

OBJECTIVES: In recent years, adjunctive therapies for epilepsy management are being explored due to considerable side effects carried by antiepileptic drugs (AEDs) and widespread reports of drug-resistant epilepsy. One such approach is non-invasive musical neurostimulation. Within this context, Mozart's sonata K448 has received particular attention following reports of reduced seizure frequency and a decrease in epileptiform discharges during and after music exposure; often described as the 'Mozart effect'. However, controversy exists around the effectiveness of K448 in epilepsy and the strength and quality of the evidence supporting it. Therefore, this study aims to systematically review the available literature around the Mozart effect, in both adult and paediatric cases of epilepsy. METHODS: We carried out a literature search on PubMed, Science Direct, Scopus and Web of Science using the query string ALL= (Mozart AND epileps*). Selected clinical studies were classified based on the age of the population studied, as paediatric (0-18 years), adult (19 years or older) or a combination of the two. All the studies were evaluated using the Johns Hopkins Nursing Evidence-Based Practice (JHNEBP) rating scale to determine the strength of the evidence (level) and the quality of the research evidence. RESULTS: Out of 538 records, 25 studies were selected, grouped based on the age of the population studied and evaluated using the JHNEBP rating scale. Ten level 1 studies, which represent the strongest evidence, were identified, including six RCTs and three meta-analyses. Nine of these ten studies show a decrease in epileptiform discharges and in seizure frequency following exposure to Mozart's K448. One multiverse analysis reported lack of statistically significant evidence to support the use of K448 in epilepsy or any other medical condition. CONCLUSIONS: A growing body of evidence supports the Mozart effect on epilepsy, with notable studies including RCTs and comprehensive meta-analyses. This review identified nine level 1 studies, conducted by research groups worldwide, which endorse the use of Mozart's music to reduce seizures and epileptiform discharges in adult and paediatric epilepsy patients. However, existing research exhibits limitations like varying protocols, small sample sizes and diverse treatment regimens. Additionally, studies that combine adult and paediatric patients fail to take account of developmental differences between these two groups - particularly with regards to brain maturation and neurophysiology - which could negatively impact upon the accuracy of findings by obscuring important age-related differences in response to intervention. Adequately addressing these limitations will be crucial to demonstrating proof of concept; otherwise, a potentially valuable, non-invasive, accessible, and affordable therapeutic option for drug-resistant epilepsy will remain on the medical fringe. Further research with larger samples and stricter protocols, particularly considering patient age and drug regimens, is required.


Assuntos
Epilepsia Resistente a Medicamentos , Musicoterapia , Humanos , Epilepsia Resistente a Medicamentos/terapia , Musicoterapia/métodos , Criança , Adulto , Adolescente , Pré-Escolar
3.
Ann Clin Transl Neurol ; 11(5): 1135-1147, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38532258

RESUMO

OBJECTIVE: In parallel to standard vagus nerve stimulation (VNS), microburst stimulation delivery has been developed. We evaluated the fMRI-related signal changes associated with standard and optimized microburst stimulation in a proof-of-concept study (NCT03446664). METHODS: Twenty-nine drug-resistant epilepsy patients were prospectively implanted with VNS. Three 3T fMRI scans were collected 2 weeks postimplantation. The maximum tolerated VNS intensity was determined prior to each scan starting at 0.125 mA with 0.125 mA increments. FMRI scans were block-design with alternating 30 sec stimulation [ON] and 30 sec no stimulation [OFF]: Scan 1 utilized standard VNS and Scan 3 optimized microburst parameters to determine target settings. Semi-automated on-site fMRI data processing utilized ON-OFF block modeling to determine VNS-related fMRI activation per stimulation setting. Anatomical thalamic mask was used to derive highest mean thalamic t-value for determination of microburst stimulation parameters. Paired t-tests corrected at P < 0.05 examined differences in fMRI responses to each stimulation type. RESULTS: Standard and microburst stimulation intensities at Scans 1 and 3 were similar (P = 0.16). Thalamic fMRI responses were obtained in 28 participants (19 with focal; 9 with generalized seizures). Group activation maps showed standard VNS elicited thalamic activation while optimized microburst VNS showed widespread activation patterns including thalamus. Comparison of stimulation types revealed significantly greater cerebellar, midbrain, and parietal fMRI signal changes in microburst compared to standard VNS. These differences were not associated with seizure responses. INTERPRETATION: While standard and optimized microburst VNS elicited thalamic activation, microburst also engaged other brain regions. Relationship between these fMRI activation patterns and clinical response warrants further investigation. CLINICAL TRIAL REGISTRATION: The study was registered with clinicaltrials.gov (NCT03446664).


Assuntos
Epilepsia Resistente a Medicamentos , Imageamento por Ressonância Magnética , Tálamo , Estimulação do Nervo Vago , Humanos , Adulto , Epilepsia Resistente a Medicamentos/terapia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/fisiopatologia , Feminino , Tálamo/diagnóstico por imagem , Masculino , Estimulação do Nervo Vago/métodos , Adulto Jovem , Adolescente , Pessoa de Meia-Idade , Estudo de Prova de Conceito , Neuroimagem Funcional/normas , Neuroimagem Funcional/métodos
4.
Epilepsia ; 65(5): e61-e66, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38506370

RESUMO

Racial disparities affect multiple dimensions of epilepsy care including epilepsy surgery. This study aims to further explore these disparities by determining the utilization of invasive neuromodulation devices according to race and ethnicity in a multicenter study of patients living with focal drug-resistant epilepsy (DRE). We performed a post hoc analysis of the Human Epilepsy Project 2 (HEP2) data. HEP2 is a prospective study of patients living with focal DRE involving 10 sites distributed across the United States. There were no statistical differences in the racial distribution of the study population compared to the US population using census data except for patients reporting more than one race. Of 154 patients enrolled in HEP2, 55 (36%) underwent invasive neuromodulation for DRE management at some point in the course of their epilepsy. Of those, 36 (71%) were patients who identified as White. Patients were significantly less likely to have a device if they identified solely as Black/African American than if they did not (odds ratio = .21, 95% confidence interval = .05-.96, p = .03). Invasive neuromodulation for management of DRE is underutilized in the Black/African American population, indicating a new facet of racial disparities in epilepsy care.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Disparidades em Assistência à Saúde , Humanos , Epilepsia Resistente a Medicamentos/terapia , Masculino , Feminino , Epilepsias Parciais/terapia , Epilepsias Parciais/etnologia , Disparidades em Assistência à Saúde/estatística & dados numéricos , Disparidades em Assistência à Saúde/etnologia , Adulto , Estudos Prospectivos , Negro ou Afro-Americano/estatística & dados numéricos , Pessoa de Meia-Idade , Estados Unidos , Estimulação Encefálica Profunda/estatística & dados numéricos , Estimulação Encefálica Profunda/métodos , População Branca/estatística & dados numéricos , Adulto Jovem , Adolescente
5.
Epilepsia ; 65(5): 1360-1373, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38517356

RESUMO

OBJECTIVES: Responsive neurostimulation (RNS) is an established therapy for drug-resistant epilepsy that delivers direct electrical brain stimulation in response to detected epileptiform activity. However, despite an overall reduction in seizure frequency, clinical outcomes are variable, and few patients become seizure-free. The aim of this retrospective study was to evaluate aperiodic electrophysiological activity, associated with excitation/inhibition balance, as a novel electrographic biomarker of seizure reduction to aid early prognostication of the clinical response to RNS. METHODS: We identified patients with intractable mesial temporal lobe epilepsy who were implanted with the RNS System between 2015 and 2021 at the University of Utah. We parameterized the neural power spectra from intracranial RNS System recordings during the first 3 months following implantation into aperiodic and periodic components. We then correlated circadian changes in aperiodic and periodic parameters of baseline neural recordings with seizure reduction at the most recent follow-up. RESULTS: Seizure reduction was correlated significantly with a patient's average change in the day/night aperiodic exponent (r = .50, p = .016, n = 23 patients) and oscillatory alpha power (r = .45, p = .042, n = 23 patients) across patients for baseline neural recordings. The aperiodic exponent reached its maximum during nighttime hours (12 a.m. to 6 a.m.) for most responders (i.e., patients with at least a 50% reduction in seizures). SIGNIFICANCE: These findings suggest that circadian modulation of baseline broadband activity is a biomarker of response to RNS early during therapy. This marker has the potential to identify patients who are likely to respond to mesial temporal RNS. Furthermore, we propose that less day/night modulation of the aperiodic exponent may be related to dysfunction in excitation/inhibition balance and its interconnected role in epilepsy, sleep, and memory.


Assuntos
Ritmo Circadiano , Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/terapia , Epilepsia do Lobo Temporal/fisiopatologia , Masculino , Feminino , Adulto , Ritmo Circadiano/fisiologia , Estudos Retrospectivos , Pessoa de Meia-Idade , Epilepsia Resistente a Medicamentos/terapia , Epilepsia Resistente a Medicamentos/fisiopatologia , Convulsões/fisiopatologia , Convulsões/terapia , Estimulação Encefálica Profunda/métodos , Resultado do Tratamento , Adulto Jovem , Eletroencefalografia/métodos
6.
Brain Behav ; 14(3): e3452, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468454

RESUMO

INTRODUCTION: Invasive neuromodulation interventions such as deep brain stimulation (DBS) and vagal nerve stimulation (VNS) are important treatments for movement disorders and epilepsy, but literature focused on young patients treated with DBS and VNS is limited. This retrospective study aimed to examine naturalistic outcomes of VNS and DBS treatment of epilepsy and dystonia in children, adolescents, and young adults. METHODS: We retrospectively assessed patient demographic and outcome data that were obtained from electronic health records. Two researchers used the Clinical Global Impression scale to retrospectively rate the severity of neurologic and psychiatric symptoms before and after patients underwent surgery to implant DBS electrodes or a VNS device. Descriptive and inferential statistics were used to examine clinical effects. RESULTS: Data from 73 patients were evaluated. Neurologic symptoms improved for patients treated with DBS and VNS (p < .001). Patients treated with DBS did not have a change in psychiatric symptoms, whereas psychiatric symptoms worsened for patients treated with VNS (p = .008). The frequency of postoperative complications did not differ between VNS and DBS groups. CONCLUSION: Young patients may have distinct vulnerabilities for increased psychiatric symptoms during treatment with invasive neuromodulation. Child and adolescent psychiatrists should consider a more proactive approach and greater engagement with DBS and VNS teams that treat younger patients.


Assuntos
Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos , Distonia , Epilepsia , Estimulação do Nervo Vago , Criança , Adolescente , Adulto Jovem , Humanos , Estudos Retrospectivos , Estimulação Encefálica Profunda/efeitos adversos , Estimulação do Nervo Vago/efeitos adversos , Epilepsia/etiologia , Distonia/etiologia , Resultado do Tratamento , Epilepsia Resistente a Medicamentos/terapia
7.
Brain Stimul ; 17(2): 339-345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38490472

RESUMO

OBJECTIVE: To prospectively investigate the utility of seizure induction using systematic 1 Hz stimulation by exploring its concordance with the spontaneous seizure onset zone (SOZ) and relation to surgical outcome; comparison with seizures induced by non-systematic 50 Hz stimulation was attempted as well. METHODS: Prospective cohort study from 2018 to 2021 with ≥ 1 y post-surgery follow up at Yale New Haven Hospital. With 1 Hz, all or most of the gray matter contacts were stimulated at 1, 5, and 10 mA for 30-60s. With 50 Hz, selected gray matter contacts outside of the medial temporal regions were stimulated at 1-5 mA for 0.5-3s. Stimulation was bipolar, biphasic with 0.3 ms pulse width. The Yale Brain Atlas was used for data visualization. Variables were analyzed using Fisher's exact, χ2, or Mann-Whitney test. RESULTS: Forty-one consecutive patients with refractory epilepsy undergoing intracranial EEG for localization of SOZ were included. Fifty-six percent (23/41) of patients undergoing 1 Hz stimulation had seizures induced, 83% (19/23) habitual (clinically and electrographically). Eighty two percent (23/28) of patients undergoing 50 Hz stimulation had seizures, 65% (15/23) habitual. Stimulation of medial temporal or insular regions with 1 Hz was more likely to induce seizures compared to other regions [15/32 (47%) vs. 2/41 (5%), p < 0.001]. Sixteen patients underwent resection; 11/16 were seizure free at one year and all 11 had habitual seizures induced by 1 Hz; 5/16 were not seizure free at one year and none of those 5 had seizures with 1 Hz (11/11 vs 0/5, p < 0.0001). No patients had convulsions with 1 Hz stimulation, but four did with 50 Hz (0/41 vs. 4/28, p = 0.02). SIGNIFICANCE: Induction of habitual seizures with 1 Hz stimulation can reliably identify the SOZ, correlates with excellent surgical outcome if that area is resected, and may be superior (and safer) than 50 Hz for this purpose. However, seizure induction with 1 Hz was infrequent outside of the medial temporal and insular regions in this study.


Assuntos
Convulsões , Humanos , Masculino , Feminino , Convulsões/fisiopatologia , Convulsões/cirurgia , Adulto , Estudos Prospectivos , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/terapia , Adulto Jovem , Adolescente , Estimulação Elétrica/métodos , Pessoa de Meia-Idade , Eletrocorticografia/métodos
8.
Brain Stimul ; 17(2): 382-391, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38499287

RESUMO

BACKGROUND: Vagus nerve stimulation (VNS) at low frequencies (≤30 Hz) has been an established treatment for drug-resistant epilepsy (DRE) for over 25 years. OBJECTIVE: To examine the initial safety and efficacy performance of an investigational, high-frequency (≥250 Hz) VNS paradigm herein called "Microburst VNS" (µVNS). µVNS consists of short, high-frequency bursts of electrical pulses believed to preferentially modulate certain brain regions. METHODS: Thirty-three (33) participants were enrolled into an exploratory feasibility study, 21 with focal-onset seizures and 12 with generalized-onset seizures. Participants were titrated to a personalized target dose of µVNS using an investigational fMRI protocol. Participants were then followed for up to 12 months, with visits every 3 months, and monitored for side-effects at all time points. This study was registered as NCT03446664 on February 27th, 2018. RESULTS: The device was well-tolerated. Reported adverse events were consistent with typical low frequency VNS outcomes and tended to diminish in severity over time, including dysphonia, cough, dyspnea, and implant site pain. After 12 months of µVNS, the mean seizure frequency reduction for all seizures was 61.3% (median reduction: 70.4%; 90% CI of median: 48.9%-83.3%). The 12-month responder rate (≥50% reduction) was 63.3% (90% CI: 46.7%-77.9%) and the super-responder rate (≥80% reduction) was 40% (90% CI: 25.0%-56.6%). Participants with focal-onset seizures appeared to benefit similarly to participants with generalized-onset seizures (mean reduction in seizures at 12 months: 62.6% focal [n = 19], versus 59.0% generalized [n = 11]). CONCLUSION: Overall, µVNS appears to be safe and potentially a promising therapeutic alternative to traditional VNS. It merits further investigation in randomized controlled trials which will help determine the impact of investigational variables and which patients are most suitable for this novel therapy.


Assuntos
Epilepsia Resistente a Medicamentos , Estudos de Viabilidade , Estimulação do Nervo Vago , Humanos , Masculino , Feminino , Estimulação do Nervo Vago/métodos , Estimulação do Nervo Vago/instrumentação , Estimulação do Nervo Vago/efeitos adversos , Adulto , Epilepsia Resistente a Medicamentos/terapia , Pessoa de Meia-Idade , Adulto Jovem , Epilepsia Generalizada/terapia , Epilepsia Generalizada/fisiopatologia , Resultado do Tratamento , Epilepsias Parciais/terapia , Epilepsias Parciais/fisiopatologia , Adolescente , Imageamento por Ressonância Magnética
9.
Stem Cell Rev Rep ; 20(4): 1015-1025, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38483743

RESUMO

The broad spectrum of brain injuries in preterm newborns and the plasticity of the central nervous system prompts us to seek solutions for neurodegeneration to prevent the consequences of prematurity and perinatal problems. The study aimed to evaluate the safety and efficacy of the implantation of autologous bone marrow nucleated cells and bone marrow mesenchymal stem cells in different schemes in patients with hypoxic-ischemic encephalopathy and immunological encephalopathy. Fourteen patients received single implantation of bone marrow nucleated cells administered intrathecally and intravenously, followed by multiple rounds of bone marrow mesenchymal stem cells implanted intrathecally, and five patients were treated only with repeated rounds of bone marrow mesenchymal stem cells. Seizure outcomes improved in most cases, including fewer seizures and status epilepticus and reduced doses of antiepileptic drugs compared to the period before treatment. The neuropsychological improvement was more frequent in patients with hypoxic-ischemic encephalopathy than in the immunological encephalopathy group. Changes in emotional functioning occurred with similar frequency in both groups of patients. In the hypoxic-ischemic encephalopathy group, motor improvement was observed in all patients and the majority in the immunological encephalopathy group. The treatment had manageable toxicity, mainly mild to moderate early-onset adverse events. The treatment was generally safe in the 4-year follow-up period, and the effects of the therapy were maintained after its termination.


Assuntos
Epilepsia Resistente a Medicamentos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Masculino , Feminino , Epilepsia Resistente a Medicamentos/terapia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Hipóxia-Isquemia Encefálica/terapia , Hipóxia-Isquemia Encefálica/patologia , Lactente , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Pré-Escolar , Criança , Resultado do Tratamento
10.
Epilepsia Open ; 9(2): 785-792, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38421143

RESUMO

Neuromodulation via Responsive Neurostimulation (RNS) or Deep Brain Stimulation (DBS) is an emerging treatment strategy for pediatric drug-resistant epilepsy (DRE). Knowledge gaps exist in patient selection, surgical technique, and perioperative care. Here, we use an expert survey to clarify practices. Thirty-two members of the Pediatric Epilepsy Research Consortium were surveyed using REDCap. Respondents were from 17 pediatric epilepsy centers (missing data in one): Four centers implant RNS only while 13 implant both RNS and DBS. Thirteen RNS programs commenced in or before 2020, and 10 of 12 DBS programs began thereafter. The busiest six centers implant 6-10 new RNS devices per year; all DBS programs implant <5 annually. The youngest RNS patient was 3 years old. Most centers (11/12) utilize MP2RAGE and/or FGATIR sequences for planning. Centromedian thalamic nuclei were the unanimous target for Lennox-Gastaut syndrome. Surgeon exposure to neuromodulation occurred mostly in clinical practice (14/17). Clinically significant hemorrhage (n = 2) or infection (n = 3) were rare. Meaningful seizure reduction (>50%) was reported by 81% (13/16) of centers. RNS and DBS are rapidly evolving treatment modalities for safe and effective treatment of pediatric DRE. There is increasing interest in multicenter collaboration to gain knowledge and facilitate dialogue. PLAIN LANGUAGE SUMMARY: We surveyed 32 pediatric epilepsy centers in USA to highlight current practices of intracranial neuromodulation. Of the 17 that replied, we found that most centers are implanting thalamic targets in pediatric drug-resistant epilepsy using the RNS device. DBS device is starting to be used in pediatric epilepsy, especially after 2020. Different strategies for target identification are enumerated. This study serves as a starting point for future collaborative research.


Assuntos
Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos , Epilepsia , Núcleos Intralaminares do Tálamo , Humanos , Criança , Pré-Escolar , Estimulação Encefálica Profunda/métodos , Epilepsia/terapia , Epilepsia Resistente a Medicamentos/terapia , Convulsões/terapia
11.
Seizure ; 117: 60-66, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38330751

RESUMO

PURPOSE: Around 11% of patients with absence epilepsy develop drug-resistant absence epilepsy (DRAE), and are at increased risk for developing psychiatric and neurologic comorbidities. Current therapeutic options for DRAE are limited. The purpose of this study was to assess the efficacy of vagus nerve stimulation (VNS) in treating DRAE. METHODS: Our institution maintains a database of patients who received VNS between 2010 and 2022. We identified DRAE patients who were <18 years of age at seizure onset, were electro-clinically diagnosed with an absence epilepsy syndrome (childhood absence, juvenile absence, or Jeavons Syndrome) by an epileptologist, and had normal brain imaging. The primary outcome measure was post-VNS absence seizure frequency. RESULTS: Twenty-six patients (M/F:14/12) were identified. Median age at seizure onset was 7 years (IQR 4-10) and patients experienced seizures for 6 years (IQR 4.3-7.6) before VNS. After VNS, the median absence seizure frequency reduced to 1.5 days (IQR 0.1-3.5) per week from 7 days (IQR 7-7), a 66% reduction seizure frequency. VNS responder rate was 80%, and seven patients achieved seizure freedom. There was no significant effect on VNS efficacy between the time from DRAE diagnosis to VNS placement (p = 0.067) nor the time from first seizure onset to VNS implant (p = 0.80). The median follow-up duration was 4.1 years (IQR 2.4-6.7), without any significant association between follow-up duration and VNS efficacy (r2=0.023) CONCLUSIONS: VNS is effective in managing DRAE. The responder rate was 80%; seizure improvement was independent of age at both seizure onset and latency to VNS after meeting DRAE criteria.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia Tipo Ausência , Estimulação do Nervo Vago , Humanos , Estimulação do Nervo Vago/métodos , Epilepsia Tipo Ausência/terapia , Masculino , Feminino , Criança , Epilepsia Resistente a Medicamentos/terapia , Pré-Escolar , Resultado do Tratamento , Adolescente , Estudos Retrospectivos
12.
Rev Neurol (Paris) ; 180(4): 256-270, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38413268

RESUMO

The persistence of typical absence seizures (AS) in adolescence and adulthood may reduce the quality of life of patients with genetic generalized epilepsies (GGEs). The prevalence of drug resistant AS is probably underestimated in this patient population, and treatment options are relatively scarce. Similarly, atypical absence seizures in developmental and epileptic encephalopathies (DEEs) may be unrecognized, and often persist into adulthood despite improvement of more severe seizures. These two seemingly distant conditions, represented by typical AS in GGE and atypical AS in DEE, share at least partially overlapping pathophysiological and genetic mechanisms, which may be the target of drug and neurostimulation therapies. In addition, some patients with drug-resistant typical AS may present electroclinical features that lie in between the two extremes represented by these generalized forms of epilepsy.


Assuntos
Epilepsia Resistente a Medicamentos , Eletroencefalografia , Epilepsia Tipo Ausência , Humanos , Epilepsia Tipo Ausência/terapia , Epilepsia Tipo Ausência/fisiopatologia , Epilepsia Tipo Ausência/tratamento farmacológico , Epilepsia Tipo Ausência/epidemiologia , Epilepsia Tipo Ausência/diagnóstico , Adulto , Adolescente , Epilepsia Resistente a Medicamentos/terapia , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/epidemiologia , Epilepsia Resistente a Medicamentos/diagnóstico , Anticonvulsivantes/uso terapêutico , Convulsões/terapia , Convulsões/epidemiologia , Convulsões/diagnóstico , Convulsões/etiologia , Adulto Jovem
13.
Clin Neurophysiol ; 160: 95-107, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38412747

RESUMO

The goal of this review is to synthesize the literature on vagus nerve stimulator (VNS)-related changes in heart rate variability (HRV) in patients with drug-resistant epilepsy (DRE) and assess the role of these changes in seizure relief. A scoping literature review was performed with the following inclusion criteria: primary articles written in English, involved implantable VNS in humans, and had HRV as a primary outcome. Twenty-nine studies were retrieved, however with considerable heterogeneity in study methods. The overall depression in HRV seen in DRE patients compared to healthy controls persisted even after VNS implant, indicating that achieving "healthy" HRV is not necessary for VNS therapeutic success. Within DRE patients, changes in frequency domain parameters six months after VNS implant returned to baseline after a year. The mechanism of how VNS reduces seizure burden does not appear to be significantly related to alterations in baseline HRV. However, the subtlety of sympathetic/parasympathetic signaling likely requires a more structured approach to experimental and analytic techniques than currently found in the literature.


Assuntos
Epilepsia Resistente a Medicamentos , Estimulação do Nervo Vago , Humanos , Frequência Cardíaca/fisiologia , Estimulação do Nervo Vago/métodos , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/terapia , Convulsões , Neuroestimuladores Implantáveis , Nervo Vago , Resultado do Tratamento
14.
World Neurosurg ; 185: e631-e639, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403017

RESUMO

BACKGROUND: Surgical management of pediatric patients with nonlesional, drug-resistant epilepsy, including patients with Lennox-Gastaut syndrome (LGS), remains a challenge given the lack of resective targets in most patients and shows seizure freedom rates <50% at 5 years. The efficacy of deep brain stimulation (DBS) is less certain in children than in adults. This study examined clinical and seizure outcomes for pediatric patients with LGS undergoing DBS targeting of the centromedian thalamic nuclei (CMTN). METHODS: An institutional review board-approved retrospective analysis was performed of patients aged ≤19 years with clinical diagnosis of LGS undergoing bilateral DBS placement to the CMTN from 2020 to 2021 by a single surgeon. RESULTS: Four females and 2 males aged 6-19 years were identified. Before surgery, each child experienced at least 6 years of refractory seizures; 4 children had experienced seizures since infancy. All took antiseizure medications at the time of surgery. Five children had previous placement of a vagus nerve stimulator and 2 had a previous corpus callosotomy. The mean length of stay after DBS was 2 days. No children experienced adverse neurologic effects from implantation; the mean follow-up time was 16.3 months. Four patients had >60% reduction in seizure frequency after surgery, 1 patient experienced 10% reduction, and 1 patient showed no change. No children reported worsening seizure symptoms after surgery. CONCLUSIONS: Our study contributes to the sparse literature describing CMTN DBS for children with drug-resistant epilepsy from LGS. Our results suggest that CMTN DBS is a safe and effective therapeutic modality that should be considered as an alternative or adjuvant therapy for this challenging patient population. Further studies with larger patient populations are warranted.


Assuntos
Estimulação Encefálica Profunda , Núcleos Intralaminares do Tálamo , Síndrome de Lennox-Gastaut , Humanos , Masculino , Feminino , Estimulação Encefálica Profunda/métodos , Síndrome de Lennox-Gastaut/terapia , Adolescente , Criança , Estudos Retrospectivos , Núcleos Intralaminares do Tálamo/cirurgia , Adulto Jovem , Resultado do Tratamento , Epilepsia Resistente a Medicamentos/terapia , Epilepsia Resistente a Medicamentos/cirurgia
15.
Neurotherapeutics ; 21(3): e00308, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38177025

RESUMO

Epilepsy is a common and debilitating neurological disorder, and approximately one-third of affected individuals have ongoing seizures despite appropriate trials of two anti-seizure medications. This population with drug-resistant epilepsy (DRE) may benefit from neurostimulation approaches, such as vagus nerve stimulation (VNS), deep brain stimulation (DBS) and responsive neurostimulation (RNS). In some patient populations, these techniques are FDA-approved for treating DRE. VNS is used as adjuvant therapy for children and adults. Acting via the vagus afferent network, VNS modulates thalamocortical circuits, reducing seizures in approximately 50 â€‹% of patients. RNS uses an adaptive (closed-loop) system that records intracranial EEG patterns to activate the stimulation at the appropriate time, being particularly well-suited to treat seizures arising within eloquent cortex. For DBS, the most promising therapeutic targets are the anterior and centromedian nuclei of the thalamus, with anterior nucleus DBS being used for treating focal and secondarily generalized forms of DRE and centromedian nucleus DBS being applied for treating generalized epilepsies such as Lennox-Gastaut syndrome. Here, we discuss the indications, advantages and limitations of VNS, DBS and RNS in treating DRE and summarize the spatial distribution of neuroimaging observations related to epilepsy and stimulation using NeuroQuery and NeuroSynth.


Assuntos
Estimulação Encefálica Profunda , Epilepsia , Estimulação do Nervo Vago , Humanos , Estimulação do Nervo Vago/métodos , Estimulação Encefálica Profunda/métodos , Epilepsia/terapia , Epilepsia Resistente a Medicamentos/terapia , Epilepsia Resistente a Medicamentos/fisiopatologia
16.
Epilepsia ; 65(3): 542-555, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265348

RESUMO

We sought to perform a systematic review and individual participant data meta-analysis to identify predictors of treatment response following thalamic neuromodulation in pediatric patients with medically refractory epilepsy. Electronic databases (MEDLINE, Ovid, Embase, and Cochrane) were searched, with no language or data restriction, to identify studies reporting seizure outcomes in pediatric populations following deep brain stimulation (DBS) or responsive neurostimulation (RNS) implantation in thalamic nuclei. Studies featuring individual participant data of patients with primary or secondary generalized drug-resistant epilepsy were included. Response to therapy was defined as >50% reduction in seizure frequency from baseline. Of 417 citations, 21 articles reporting on 88 participants were eligible. Mean age at implantation was 13.07 ± 3.49 years. Fifty (57%) patients underwent DBS, and 38 (43%) RNS. Sixty (68%) patients were implanted in centromedian nucleus and 23 (26%) in anterior thalamic nucleus, and five (6%) had both targets implanted. Seventy-four (84%) patients were implanted bilaterally. The median time to last follow-up was 12 months (interquartile range = 6.75-26.25). Sixty-nine percent of patients achieved response to treatment. Age, target, modality, and laterality had no significant association with response in univariate logistic regression. Until thalamic neuromodulation gains widespread approval for use in pediatric patients, data on efficacy will continue to be limited to small retrospective cohorts and case series. The inherent bias of these studies can be overcome by using individual participant data. Thalamic neuromodulation appears to be a safe and effective treatment for epilepsy. Larger, prolonged prospective, multicenter studies are warranted to further evaluate the efficacy of DBS over RNS in this patient population where resection for curative intent is not a safe option.


Assuntos
Núcleos Anteriores do Tálamo , Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos , Epilepsia Generalizada , Epilepsia , Humanos , Criança , Adolescente , Epilepsia Resistente a Medicamentos/terapia , Estudos Prospectivos , Estudos Retrospectivos , Epilepsia/terapia , Resultado do Tratamento , Convulsões/terapia
17.
Neurosciences (Riyadh) ; 29(1): 10-17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38195125

RESUMO

OBJECTIVES: To assess the frequency of adverse effects among pediatric and adult patients and the clinical variables associated with a higher probability of developing side effects. METHODS: This retrospective study enrolled pediatric and adult patients who underwent Vagus nerve stimulation (VNS) implantation at our institution and had documented follow-up during clinic visits for at least 6 months after implantation. Data collected included demographic information, epilepsy diagnosis, and device data. RESULTS: A total of 43 patients with drug-resistant epilepsy who received a VNS device at our institution were enrolled. The median follow-up period was 12 months. Fourteen patients (32.55%) reported no side effects from VNS therapy. Side effects ranged from mild to severe, with significant side effects observed in 8 patients. Data on therapy efficacy were collected, and 10 patients (23.26%) reported no change in seizure frequency following device implantation. CONCLUSION: This study demonstrates that VNS is an important adjunct treatment option for epilepsy patients. Dysphagia and dyspnea can be significant adverse effects leading to treatment discontinuation, aspiration pneumonia, intensive care unit (ICU) admission, and prolonged hospital stay. These effects are more frequent in patients with symptomatic generalized epilepsy, global developmental delay at baseline, previous ICU admissions, abnormal brain magnetic resonance imaging findings, and seizures with multiple semiologies.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia Generalizada , Estimulação do Nervo Vago , Adulto , Humanos , Criança , Epilepsia Resistente a Medicamentos/terapia , Estudos Retrospectivos , Estimulação do Nervo Vago/efeitos adversos , Convulsões
18.
J Clin Neurophysiol ; 41(3): 195-199, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995970

RESUMO

SUMMARY: The NeuroPace responsive neurostimulation system (RNS) has revolutionized the care of patients suffering from focal epilepsy since its approval in 2014. One major advantage of this device is its innate ability to gather long-term electrocorticographic (ECoG) data that the device uses in its novel closed-loop treatment paradigm. Beyond the standard stimulation treatments, which have been demonstrated to be safe and well-tolerated, the data collected by the RNS provide valuable information, such as the long-term circadian and ultradian variations that affect seizure risk, obtained under naturalistic conditions. Additionally, these data inform future surgical procedures, supplementing clinically reported seizures by patients, assessing the response to newly added anti-seizure medications, helping to forecast the risk of future seizures, and understanding the mechanisms of certain long-term outcomes in patients with postsurgical epilepsy. By leveraging these data, the delivery of high-quality clinical care for patients with epilepsy can only be enhanced. Finally, these data open significant avenues of research, including machine learning and artificial intelligence algorithms, which may also translate to improved outcomes in patients who struggle with recurrent seizures.


Assuntos
Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Humanos , Inteligência Artificial , Epilepsia/terapia , Eletrocorticografia , Epilepsias Parciais/terapia , Epilepsia Resistente a Medicamentos/terapia
19.
Epilepsy Res ; 199: 107265, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38071911

RESUMO

OBJECTIVE: Defects in the attentional network in patients with epilepsy are influenced by factors such as the location of epileptic foci. Examining the impact of cathodal high-definition transcranial direct current stimulation (HD-tDCS) on attention components could provide insights into potential attention-related side effects of tDCS. This study aimed to investigate the effect of cathodal HD-tDCS on interictal epileptiform discharges (IEDs), auditory/visual (A/V) attention components, and reaction time (RT) in patients with intractable focal left lateral frontal lobe epilepsy (LFLE). METHODS: To control for variations in individual epilepsy syndrome, 12 adult participants diagnosed with drug-resistant left LFLE with focal cortical IEDs on C3 underwent repeated measurements at pretest, posttest, and follow-up steps. 4 × 1 ring electrodes (cathode on C3 and four anodes on F3, P3, T3, and Cz) delivered 2 mA DC for 20 min per session for 10 consecutive days. The integrated visual and auditory continuous performance test (IVA+) assessed the A/V attention components and RT. One-way repeated-measure ANOVA was used. RESULTS: The findings suggest a significant effect in reducing IEDs. The IVA+ results showed a significant improvement in auditory divided attention and visual selective and focused attention (p < 0.05). In the follow-up, these changes demonstrated lasting efficacy. A/V speed scales increased (p < 0.05), showing a significant decrease in reaction time. CONCLUSIONS: Cathodal HD-tDCS significantly reduced IEDs and improved the components of auditory divided attention, visual focused attention, and visual selective attention, with a reduction in patient reaction time. A significant lasting, side-effect-free positive effect was observed for up to one month after the intervention.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia do Lobo Frontal , Estimulação Transcraniana por Corrente Contínua , Adulto , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Epilepsia do Lobo Frontal/terapia , Lobo Frontal , Epilepsia Resistente a Medicamentos/terapia , Atenção/fisiologia , Eletrodos
20.
J Neurosurg ; 140(1): 201-209, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37329518

RESUMO

OBJECTIVE: Super-refractory status epilepticus (SRSE) has high rates of morbidity and mortality. Few published studies have investigated neurostimulation treatment options in the setting of SRSE. This systematic literature review and series of 10 cases investigated the safety and efficacy of implanting and activating the responsive neurostimulation (RNS) system acutely during SRSE and discusses the rationale for lead placement and selection of stimulation parameters. METHODS: Through a literature search (of databases and American Epilepsy Society abstracts that were last searched on March 1, 2023) and direct contact with the manufacturer of the RNS system, 10 total cases were identified that utilized RNS acutely during SE (9 SRSE cases and 1 case of refractory SE [RSE]). Nine centers obtained IRB approval for retrospective chart review and completed data collection forms. A tenth case had published data from a case report that were referenced in this study. Data from the collection forms and the published case report were compiled in Excel. RESULTS: All 10 cases presented with focal SE: 9 with SRSE and 1 with RSE. Etiology varied from known lesion (focal cortical dysplasia in 7 cases and recurrent meningioma in 1) to unknown (2 cases, with 1 presenting with new-onset refractory focal SE [NORSE]). Seven of 10 cases exited SRSE after RNS placement and activation, with a time frame ranging from 1 to 27 days. Two patients died of complications due to ongoing SRSE. Another patient's SE never resolved but was subclinical. One of 10 cases had a device-related significant adverse event (trace hemorrhage), which did not require intervention. There was 1 reported recurrence of SE after discharge among the cases in which SRSE resolved up to the defined endpoint. CONCLUSIONS: This case series offers preliminary evidence that RNS is a safe and potentially effective treatment option for SRSE in patients with 1-2 well-defined seizure-onset zone(s) who meet the eligibility criteria for RNS. The unique features of RNS offer multiple benefits in the SRSE setting, including real-time electrocorticography to supplement scalp EEG for monitoring SRSE progress and response to treatment, as well as numerous stimulation options. Further research is indicated to investigate the optimal stimulation settings in this unique clinical scenario.


Assuntos
Epilepsia Resistente a Medicamentos , Estado Epiléptico , Humanos , Estudos Retrospectivos , Recidiva Local de Neoplasia , Estado Epiléptico/terapia , Estado Epiléptico/etiologia , Resultado do Tratamento , Epilepsia Resistente a Medicamentos/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA