RESUMO
Temporal lobe epilepsy (TLE) is the most common focal epilepsy in adults, and people with TLE exhibit higher rates of reproductive endocrine dysfunction. Hypothalamic gonadotropin-releasing hormone (GnRH) neurons regulate reproductive function in mammals by regulating gonadotropin secretion from the anterior pituitary. Previous research demonstrated GnRH neuron hyperexcitability in both sexes in the intrahippocampal kainic acid (IHKA) mouse model of TLE. Fast-inactivating A-type (I A) and delayed rectifier K-type (I K) K+ currents play critical roles in modulating neuronal excitability, including in GnRH neurons. Here, we tested the hypothesis that GnRH neuron hyperexcitability is associated with reduced I A and I K conductances. At 2â months after IHKA or control saline injection, when IHKA mice exhibit chronic epilepsy, we recorded GnRH neuron excitability, I A, and I K using whole-cell patch-clamp electrophysiology. GnRH neurons from both IHKA male and diestrus female GnRH-GFP mice exhibited hyperexcitability compared with controls. In IHKA males, although maximum I A current density was increased, I K recovery from inactivation was significantly slower, consistent with a hyperexcitability phenotype. In IHKA females, however, both I A and I K were unchanged. Sex differences were not observed in I A or I K properties in controls, but IHKA mice exhibited sex effects in I A properties. These results indicate that although the emergent phenotype of increased GnRH neuron excitability is similar in IHKA males and diestrus females, the underlying mechanisms are distinct. This study thus highlights sex-specific changes in voltage-gated K+ currents in GnRH neurons in a mouse model of TLE and suggesting potential sex differences in GnRH neuron ion channel properties.
Assuntos
Modelos Animais de Doenças , Epilepsia do Lobo Temporal , Hormônio Liberador de Gonadotropina , Camundongos Transgênicos , Neurônios , Caracteres Sexuais , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Feminino , Masculino , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ácido Caínico/farmacologia , Técnicas de Patch-Clamp , Camundongos Endogâmicos C57BL , Camundongos , Agonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/metabolismoRESUMO
White matter microvascular alterations in temporal lobe epilepsy (TLE) may be relevant to acquired neurodegenerative processes and cognitive impairments associated with this condition. We quantified microvascular changes, myelin, axonal, glial and extracellular-matrix labelling in the gyral core and deep temporal lobe white matter regions in surgical resections from 44 TLE patients with or without hippocampal sclerosis. We compared this pathology data with in vivo pre-operative MRI diffusion measurements in co-registered regions and neuropsychological measures of cognitive impairment and decline. In resections, increased arteriolosclerosis was observed in TLE compared to non-epilepsy controls (greater sclerotic index, p < 0.001), independent of age. Microvascular changes included increased vascular densities in some regions but uniformly reduced mean vascular size (quantified with collagen-4, p < 0.05-0.0001), and increased pericyte coverage of small vessels and capillaries particularly in deep white matter (quantified with platelet-derived growth factor receptorß and smooth muscle actin, p < 0.01) which was more marked the longer the duration of epilepsy (p < 0.05). We noted increased glial numbers (Olig2, Iba1) but reduced myelin (MAG, PLP) in TLE compared to controls, particularly prominent in deep white matter. Gene expression analysis showed a greater reduction of myelination genes in HS than non-HS cases and with age and correlation with diffusion MRI alterations. Glial densities and vascular size were increased with increased MRI diffusivity and vascular density with white matter abnormality quantified using fixel-based analysis. Increased perivascular space was associated with reduced fractional anisotropy as well as age-accelerated cognitive decline prior to surgery (p < 0.05). In summary, likely acquired microangiopathic changes in TLE, including vascular sclerosis, increased pericyte coverage and reduced small vessel size, may indicate a functional alteration in contractility of small vessels and haemodynamics that could impact on tissue perfusion. These morphological features correlate with white matter diffusion MRI alterations and might explain cognitive decline in TLE.
Assuntos
Imagem de Difusão por Ressonância Magnética , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Substância Branca/patologia , Substância Branca/diagnóstico por imagem , Adulto Jovem , Disfunção Cognitiva/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/diagnóstico por imagem , Transtornos Cognitivos/patologia , Hipocampo/patologia , Hipocampo/diagnóstico por imagemRESUMO
OBJECTIVE: Temporal lobe epilepsy (TLE) is the most common form of refractory focal epilepsy, and the current clinical diagnosis is based on EEG, clinical neurological history and neuroimaging findings. METHODS: So far, there are no blood-based molecular biomarkers of TLE to support clinical diagnosis, despite the pathogenic mechanisms underlying TLE involving defects in the regulation of gene expression. MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of gene expression. RESULTS: Recent studies show the feasibility of detecting miRNAs in body fluids; circulating miRNAs have emerged as potential clinical biomarkers in epilepsy, although the TLE miRNA profile needs to be addressed. Here, we analysed the diagnostic potential of 8 circulating miRNAs in sera of 52 TLE patients and 40 age- and sex-matched donor controls by RT-qPCR analyses. CONCLUSION: We found that miR-34a-5p, -106b-5p, -130a-3p, -146a-5p, and -19a-3p are differently expressed in TLE compared to control subjects, suggesting a diagnostic role. Furthermore, we found that miR-34a-5p, -106b-5p, -146a-5p and miR-451a could become prognostic biomarkers, being differentially expressed between drug-resistant and drug-responsive TLE subjects. Therefore, serum miRNAs are diagnostic and drug-resistance predictive molecules of TLE.
Assuntos
Epilepsia do Lobo Temporal , MicroRNAs , Humanos , Epilepsia do Lobo Temporal/sangue , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/diagnóstico , Feminino , Masculino , MicroRNAs/sangue , Adulto , Pessoa de Meia-Idade , Biomarcadores/sangue , Epilepsia Resistente a Medicamentos/sangue , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/diagnóstico , Adulto Jovem , Anticonvulsivantes/uso terapêuticoRESUMO
The dentate gyrus (DG) plays a critical role in hippocampal circuitry, providing a "gate-like" function to the downstream cornu ammonis (CA) sectors. Despite this critical role, pathologies in DG are less commonly described than those in the CA sectors in the diagnosis of mesial temporal lobe epilepsy (mTLE). To elucidate the role of the DG in mTLE, we analysed hippocampal sclerosis (HS), no-HS, non-TLE epilepsy control, and non-epilepsy control cohorts using morphometry and gene expression profiling techniques. Morphometry techniques analysed DG cell spacing, nucleus size, and nucleus circularity. Our data show distinct DG morphometry and RNA expression profiles between HS and No-HS. Dentate granule cells are more dispersed in patients with HS, and the DG shows an elevated expression of the complement system, apoptosis, and extracellular matrix remodelling-related RNA. We also observe an overall decrease in neurogenesis-related RNA in HS DG. Interestingly, regardless of the pathological diagnosis, the DG morphometry correlates with post-operative outcomes. Increased cell spacing is observed in the DG of mTLE cases that achieve seizure freedom post-operatively. This study reveals the possible prognostic value of DG morphometry, as well as supporting the notion that HS and no-HS TLE may be distinct disease entities with differing contributing mechanisms.
Assuntos
Giro Denteado , Epilepsia do Lobo Temporal , Transcriptoma , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/genética , Humanos , Masculino , Giro Denteado/patologia , Adulto , Feminino , Pessoa de Meia-Idade , Esclerose/patologia , Perfilação da Expressão Gênica/métodos , Neurônios/patologia , Neurônios/metabolismo , Hipocampo/patologia , Hipocampo/metabolismo , Adulto JovemRESUMO
BACKGROUND: P-glycoprotein (P-gp) is an efflux transporter which is abundantly expressed at the blood-brain barrier (BBB) and which has been implicated in the pathophysiology of various brain diseases. The radiolabelled antiemetic drug [11C]metoclopramide is a P-gp substrate for positron emission tomography (PET) imaging of P-gp function at the BBB. To assess whether [11C]metoclopramide can detect increased P-gp function in the human brain, we employed drug-resistant temporal lobe epilepsy (TLE) as a model disease with a well characterised, regional P-gp up-regulation at the BBB. METHODS: Eight patients with drug-resistant (DRE) TLE, 5 seizure-free patients with drug-sensitive (DSE) focal epilepsy, and 15 healthy subjects underwent brain PET imaging with [11C]metoclopramide on a fully-integrated PET/MRI system. Concurrent with PET, arterial blood sampling was performed to generate a metabolite-corrected arterial plasma input function for kinetic modelling. The choroid plexus was outmasked on the PET images to remove signal contamination from the neighbouring hippocampus. Using a brain atlas, 10 temporal lobe sub-regions were defined and analysed with a 1-tissue-2-rate constant compartmental model to estimate the rate constants for radiotracer transfer from plasma to brain (K1) and from brain to plasma (k2), and the total volume of distribution (VT = K1/k2). RESULTS: DRE patients but not DSE patients showed significantly higher k2 values and a trend towards lower VT values in several temporal lobe sub-regions located ipsilateral to the epileptic focus as compared to healthy subjects (k2: hippocampus: +34%, anterior temporal lobe, medial part: +28%, superior temporal gyrus, posterior part: +21%). CONCLUSIONS: [11C]Metoclopramide PET can detect a seizure-induced P-gp up-regulation in the epileptic brain. The efflux rate constant k2 seems to be the most sensitive parameter to measure increased P-gp function with [11C]metoclopramide. Our study provides evidence that disease-induced alterations in P-gp expression at the BBB can lead to changes in the distribution of a central nervous system-active drug to the human brain, which could affect the efficacy and/or safety of drugs. [11C]Metoclopramide PET may be used to assess or predict the contribution of increased P-gp function to drug resistance and disease pathophysiology in various brain diseases. TRIAL REGISTRATION: EudraCT 2019-003137-42. Registered 28 February 2020.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Metoclopramida , Tomografia por Emissão de Pósitrons , Regulação para Cima , Humanos , Tomografia por Emissão de Pósitrons/métodos , Masculino , Adulto , Feminino , Regulação para Cima/fisiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Pessoa de Meia-Idade , Adulto Jovem , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/diagnóstico por imagem , Radioisótopos de Carbono/farmacocinética , Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Convulsões/metabolismo , Convulsões/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/diagnóstico por imagemRESUMO
BACKGROUND: Temporal lobe epilepsy (TLE), a prevalent chronic neurological disorder, affects millions of individuals and is often resistant to anti-epileptic drugs. Increasing evidence has shown that acetylcholine (ACh) and cholinergic neurotransmission play a role in the pathophysiology of epilepsy. Tropisetron, an antiemetic drug used for chemotherapy in clinic, has displayed potential in the treatment of Alzheimer's disease, depression, and schizophrenia in animal models. However, as a partial agonist of α7 nicotinic acetylcholine receptors (α7nAChRs), whether tropisetron possesses the therapeutic potential for TLE has not yet been determined. METHODS: In this study, tropisetron was intraperitoneally injected into pilocarpine-induced epileptic rats for 3 weeks. Alpha-bungarotoxin (α-bgt), a specific α7nAChR antagonist, was applied to investigate the mechanism of tropisetron. Rats were assessed for spontaneous recurrent seizures (SRS) and cognitive function using video surveillance and Morris's water maze testing. Hippocampal impairment and synaptic structure were evaluated by Nissl staining, immunohistochemistry, and Golgi staining. Additionally, the levels of glutamate, γ-aminobutyric acid (GABA), ACh, α7nAChRs, neuroinflammatory cytokines, glucocorticoids and their receptors, as well as synapse-associated protein (F-actin, cofilin-1) were quantified. RESULTS: The results showed that tropisetron significantly reduced SRS, improved cognitive function, alleviated hippocampal sclerosis, and concurrently suppressed synaptic remodeling and the m6A modification of cofilin-1 in TLE rats. Furthermore, tropisetron lowered glutamate levels without affecting GABA levels, reduced neuroinflammation, and increased ACh levels and α7nAChR expression in the hippocampi of TLE rats. The effects of tropisetron treatment were counteracted by α-bgt. CONCLUSION: In summary, these findings indicate that tropisetron exhibits an anti-epileptic effect and provides neuroprotection in TLE rats through the activation of α7nAChRs. The potential mechanism may involve the reduction of glutamate levels, enhancement of cholinergic transmission, and suppression of synaptic remodeling. Consequently, the present study not only highlights the potential of tropisetron as an anti-epileptic drug but also identifies α7nAChRs as a promising therapeutic target for the treatment of TLE.
Assuntos
Anticonvulsivantes , Antieméticos , Modelos Animais de Doenças , Epilepsia do Lobo Temporal , Pilocarpina , Tropizetrona , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Masculino , Ratos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Antieméticos/farmacologia , Antieméticos/uso terapêutico , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Pilocarpina/toxicidade , Ratos Sprague-Dawley , Tropizetrona/farmacologiaRESUMO
Rationale: Epilepsy affects over 70 million people globally, with temporal lobe epilepsy with hippocampal sclerosis (TLE-HS) often progressing to a drug-resistant state. Recent research has highlighted the role of reactive astrocytes and glutamate dysregulation in epilepsy pathophysiology. This study aims to investigate the involvement of astrocytic xCT, a glutamate-cystine antiporter, and its regulation by the m6A reader protein YTHDC2 in TLE-HS. Methods: A pilocarpine-induced epilepsy model in mice was used to study the role of xCT in reactive astrocytes. The expression of xCT and its regulation by YTHDC2 were assessed through various molecular and cellular techniques. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to measure mRNA and protein levels of xCT and YTHDC2, respectively; immunofluorescence was utilized to visualize their localization and expression in astrocytes. In vivo glutamate measurements were conducted using microdialysis to monitor extracellular glutamate levels in the hippocampus. RNA immunoprecipitation-qPCR (RIP-qPCR) was performed to investigate the binding of YTHDC2 to SLC7A11 mRNA, while methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) was performed to quantify m6A modifications on SLC7A11 mRNA. A dual-luciferase reporter assay was conducted to assess the effect of m6A modifications on SLC7A11 mRNA translation, and polysome profiling was employed to evaluate the translational efficiency of SLC7A11 mRNA. Inhibition experiments involved shRNA-mediated knockdown of SLC7A11 (commonly known as xCT) and YTHDC2 expression in astrocytes. Video-electroencephalogram (EEG) recordings were used to monitor seizure activity in mice. Results: The xCT transporter in reactive astrocytes significantly contributes to elevated extracellular glutamate levels, enhancing neuronal excitability and seizure activity. Increased xCT expression is influenced by the m6A reader protein YTHDC2, which regulates its expression through m6A methylation. Inhibition of xCT or YTHDC2 in astrocytes reduces glutamate levels and effectively controls seizures in a mouse model. Specifically, mice with SLC7A11- or YTHDC2-knockdown astrocytes showed decreased glutamate concentration in the hippocampus and reduced frequency and duration of epileptic seizures. Conclusions: This study highlights the therapeutic potential of targeting YTHDC2 and xCT in reactive astrocytes to mitigate epilepsy. The findings provide a novel perspective on the mechanisms of glutamate dysregulation and their implications in seizure pathophysiology, suggesting that modulation of YTHDC2 and xCT could be a promising strategy for treating TLE.
Assuntos
Sistema y+ de Transporte de Aminoácidos , Astrócitos , Modelos Animais de Doenças , Epilepsia do Lobo Temporal , Ácido Glutâmico , Animais , Astrócitos/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/fisiopatologia , Camundongos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Ácido Glutâmico/metabolismo , Masculino , Hipocampo/metabolismo , Pilocarpina , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , HumanosRESUMO
Temporal lobe epilepsy (TLE) frequently involves an intricate, extensive epileptic frontal-temporal network. This study aimed to investigate the interactions between temporal and frontal regions and the dynamic patterns of the frontal-temporal network in TLE patients with different disease durations. The magnetoencephalography data of 36 postoperative seizure-free patients with long-term follow-up of at least 1 year, and 21 age- and sex-matched healthy subjects were included in this study. Patients were initially divided into LONG-TERM (n = 18, DURATION >10 years) and SHORT-TERM (n = 18, DURATION ≤10 years) groups based on 10-year disease duration. For reliability, supplementary analyses were conducted with alternative cutoffs, creating three groups: 0 < DURATION ≤7 years (n = 11), 7 < DURATION ≤14 years (n = 11), and DURATION >14 years (n = 14). This study examined the intraregional phase-amplitude coupling (PAC) between theta phase and alpha amplitude across the whole brain. The interregional directed phase transfer entropy (dPTE) between frontal and temporal regions in the alpha and theta bands, and the interregional cross-frequency directionality (CFD) between temporal and frontal regions from the theta phase to the alpha amplitude were further computed and compared among groups. Partial correlation analysis was conducted to investigate correlations between intraregional PAC, interregional dPTE connectivity, interregional CFD, and disease duration. Whole-brain intraregional PAC analyses revealed enhanced theta phase-alpha amplitude coupling within the ipsilateral temporal and frontal regions in TLE patients, and the ipsilateral temporal PAC was positively correlated with disease duration (r = 0.38, p <.05). Interregional dPTE analyses demonstrated a gradual increase in frontal-to-temporal connectivity within the alpha band, while the direction of theta-band connectivity reversed from frontal-to-temporal to temporal-to-frontal as the disease duration increased. Interregional CFD analyses revealed that the inhibitory effect of frontal regions on temporal regions gradually increased with prolonged disease duration (r = -0.36, p <.05). This study clarified the intrinsic reciprocal connectivity between temporal and frontal regions with TLE duration. We propose a dynamically reorganized triple-stage network that transitions from balanced networks to constrained networks and further develops into imbalanced networks as the disease duration increases.
Assuntos
Conectoma , Epilepsia do Lobo Temporal , Lobo Frontal , Magnetoencefalografia , Rede Nervosa , Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/cirurgia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Masculino , Feminino , Adulto , Adulto Jovem , Lobo Frontal/fisiopatologia , Lobo Frontal/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Lobo Temporal/fisiopatologia , Lobo Temporal/diagnóstico por imagem , Pessoa de Meia-Idade , Ritmo Teta/fisiologia , Ritmo alfa/fisiologia , AdolescenteRESUMO
Temporal Lobe Epilepsy (TLE) is a chronic neurological disorder characterized by recurrent focal seizures originating in the temporal lobe. Despite the variety of antiseizure drugs currently available to treat TLE, about 30% of cases continue to have seizures. The etiology of TLE is complex and multifactorial. Increasing evidence indicates that Alzheimer's disease (AD) and drug-resistant TLE present common pathological features that may induce hyperexcitability, especially aberrant hyperphosphorylation of tau protein. Genetic polymorphic variants located in genes of the microtubule-associated protein tau (MAPT) and glycogen synthase kinase-3ß (GSK3B) have been associated with the risk of developing AD. The APOE ε4 allele is a major genetic risk factor for AD. Likewise, a gene-dose-dependent effect of ε4 seems to influence TLE. The present study aimed to investigate whether the APOE É4 allele and genetic variants located in the MAPT and GSK3B genes are associated with the risk of developing AD and drug-resistant TLE in a cohort of the Mexican population. A significant association with the APOE ε4 allele was observed in patients with AD and TLE. Additional genetic interactions were identified between this allele and variants of the MAPT and GSK3B genes.
Assuntos
Alelos , Doença de Alzheimer , Apolipoproteína E4 , Glicogênio Sintase Quinase 3 beta , Proteínas tau , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Apolipoproteína E4/genética , Adulto , Predisposição Genética para Doença , Idoso , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/tratamento farmacológico , Polimorfismo de Nucleotídeo ÚnicoRESUMO
The role of astroglial and microglial cells in the pathogenesis of epilepsy is currently under active investigation. It has been proposed that the activity of these cells may be regulated by the agonists of peroxisome proliferator-activated nuclear receptors (PPARs). This study investigated the effects of a seven-day treatment with the PPAR ß/δ agonist GW0742 (Fitorine, 5 mg/kg/day) on the behavior and gene expression of the astroglial and microglial proteins involved in the regulation of epileptogenesis in the rat brain within a lithium-pilocarpine model of temporal lobe epilepsy (TLE). TLE resulted in decreased social and increased locomotor activity in the rats, increased expression of astro- and microglial activation marker genes (Gfap, Aif1), pro- and anti-inflammatory cytokine genes (Tnfa, Il1b, Il1rn), and altered expression of other microglial (Nlrp3, Arg1) and astroglial (Lcn2, S100a10) genes in the dorsal hippocampus and cerebral cortex. GW0742 attenuated, but did not completely block, some of these impairments. Specifically, the treatment affected Gfap gene expression in the dorsal hippocampus and Aif1 gene expression in the cortex. The GW0742 injections attenuated the TLE-specific enhancement of Nlrp3 and Il1rn gene expression in the cortex. These results suggest that GW0742 may affect the expression of some genes involved in the regulation of epileptogenesis.
Assuntos
Astrócitos , Epilepsia do Lobo Temporal , Microglia , PPAR delta , PPAR beta , Tiazóis , Animais , Masculino , Ratos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Citocinas/metabolismo , Citocinas/genética , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fenóis , Pilocarpina/farmacologia , PPAR delta/agonistas , PPAR delta/genética , PPAR delta/metabolismo , PPAR beta/agonistas , PPAR beta/genética , PPAR beta/metabolismo , Compostos de Sulfidrila , Tiazóis/farmacologia , Tiazóis/uso terapêuticoRESUMO
Temporal Lobe Epilepsy (TLE) is a severe neurological condition characterized by recurrent seizures that often do not respond well to available anti-seizure medications. TLE has been associated with epileptogenesis, a process that starts during the latent period following a neurologic insult and is followed by chronic phase. Recent research has linked canonical Wnt signaling to the pathophysiology of epileptogenesis and TLE. Our previous study demonstrated differential regulation of canonical Wnt signaling during early and late stage post status epilepticus (SE) induction. Building on these findings, our current study utilized Wnt modulators: GSK-3ß inhibitor 6-bromoindirubin-3'-oxime (6-Bio) and disheveled inhibitor niclosamide and investigated their impact on canonical Wnt signaling during the early (30 days) and later stages (60 days) following SE induction. We assessed several parameters, including seizure frequency, astrogliosis, synaptic density, and neuronal counts in hippocampal tissue. We used immunohistochemistry and Nissl staining to evaluate gliosis, synaptic density, and neuronal counts in micro-dissected hippocampi. Western blotting was used to examine the expression of proteins involved in canonical Wnt/ß-catenin signaling, and real-time PCR was conducted to analyze their relative mRNA expression. Wnt modulators, 6-Bio and Niclosamide were found to reduce seizure frequency and various other parameters including behavioral parameters, hippocampal morphology, astrogliosis and synaptic density at different stages of TLE.
Assuntos
Epilepsia do Lobo Temporal , Gliose , Indóis , Fármacos Neuroprotetores , Niclosamida , Oximas , Via de Sinalização Wnt , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Animais , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Oximas/farmacologia , Oximas/uso terapêutico , Indóis/farmacologia , Indóis/uso terapêutico , Gliose/tratamento farmacológico , Gliose/patologia , Gliose/metabolismo , Niclosamida/farmacologia , Niclosamida/uso terapêutico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Ratos Sprague-Dawley , Glicogênio Sintase Quinase 3 beta/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , RatosRESUMO
BACKGROUND AND OBJECTIVES: Despite the success of presurgical network connectivity studies in predicting short-term (1-year) seizure outcomes, later seizure recurrence occurs in some patients with temporal lobe epilepsy (TLE). To uncover contributors to this recurrence, we investigated the relationship between functional connectivity and seizure outcomes at different time points after surgery in these patients. METHODS: Patients included were clinically diagnosed with unilateral mesial TLE after a standard clinical evaluation and underwent selective amygdalohippocampectomy. Healthy controls had no history of seizures or head injury. Using resting-state fMRI, we assessed the postsurgical functional connectivity node strength, computed as the node's total strength to all other nodes, between seizure-free (Engel Ia-Ib) and nonseizure-free (Engel Ic-IV) acquisitions. The change over time after surgery in different outcome groups in these nodes was also characterized. RESULTS: Patients with TLE (n = 32, mean age: 43.1 ± 11.9 years; 46.8% female) and 85 healthy controls (mean age: 37.7 ± 13.5 years; 48.2% female) were included. Resting fMRI was acquired before surgery and at least once after surgery in each patient (range 1-4 scans, 5-60 months). Differences between patients with (n = 30) and without (n = 18) seizure freedom were detected in the posterior insula ipsilateral to the resection (I-PIns: 95% CI -154.8 to -50.1, p = 2.8 × 10-4) and the bilateral central operculum (I-CO: 95% CI -163.2 to -65.1, p = 2.6 × 10-5, C-CO: 95% CI -172.7 to -55.8, p = 2.8 × 10-4). In these nodes, only those who were seizure-free had increased node strength after surgery that increased linearly over time (I-CO: 95% CI 1.0-5.2, p = 4.2 × 10-3, C-CO: 95% CI 1.0-5.2, p = 5.5 × 10-3, I-PIns: 95% CI 1.6-5.5, p = 0.9 × 10-3). Different outcome groups were not distinguished by node strength before surgery. DISCUSSION: The findings suggest that network evolution in the first 5 years after selective amygdalohippocampectomy surgery is related to seizure outcomes in TLE. This highlights the need to identify presurgical and surgical conditions that lead to disparate postsurgical trajectories between seizure-free and nonseizure-free patients to identify potential contributors to long-term seizure outcomes. However, the lack of including other surgical approaches may affect the generalizability of the results.
Assuntos
Epilepsia do Lobo Temporal , Imageamento por Ressonância Magnética , Convulsões , Humanos , Epilepsia do Lobo Temporal/cirurgia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Resultado do Tratamento , Convulsões/cirurgia , Convulsões/fisiopatologia , Convulsões/diagnóstico por imagem , Hipocampo/cirurgia , Hipocampo/diagnóstico por imagem , Hipocampo/fisiopatologia , Tonsila do Cerebelo/cirurgia , Tonsila do Cerebelo/fisiopatologia , Tonsila do Cerebelo/diagnóstico por imagemRESUMO
Among patients with epilepsy, 30-40% experience recurrent seizures even after adequate antiseizure medications therapies, making them refractory. The early identification of refractory epilepsy is important to provide timely surgical treatment for these patients. In this study, we analyze interictal electroencephalography (EEG) data to predict drug refractoriness in patients with temporal lobe epilepsy (TLE) who were treated with monotherapy at the time of the first EEG acquisition. Various EEG features were extracted, including statistical measurements and interchannel coherence. Feature selection was performed to identify the optimal features, and classification was conducted using different classifiers. Functional connectivity and graph theory measurements were calculated to identify characteristics of refractory TLE. Among the 48 participants, 34 (70.8%) were responsive, while 14 (29.2%) were refractory over a mean follow-up duration of 38.5 months. Coherence feature within the gamma frequency band exhibited the most favorable performance. The light gradient boosting model, employing the mutual information filter-based feature selection method, demonstrated the highest performance (AUROC = 0.821). Compared to the responsive group, interchannel coherence displayed higher values in the refractory group. Interestingly, graph theory measurements using EEG coherence exhibited higher values in the refractory group than in the responsive group. Our study has demonstrated a promising method for the early identification of refractory TLE utilizing machine learning algorithms.
Assuntos
Anticonvulsivantes , Eletroencefalografia , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/cirurgia , Feminino , Masculino , Adulto , Anticonvulsivantes/uso terapêutico , Pessoa de Meia-Idade , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia Resistente a Medicamentos/fisiopatologia , Adulto JovemRESUMO
The psychological states of hunger and satiety play an important role in regulating human food intake. Several lines of evidence suggest that these states rely upon declarative learning and memory processes, which are based primarily in the medial temporal lobes (MTL). The MTL, and particularly the hippocampus, is unusual in that it is especially vulnerable to insult. Consequently, we examine here the impact on hunger and satiety of conditions that: (1) are central to ingestive behaviour and where there is evidence of MTL pathology (i.e., habitual consumption of a Western-style diet, obesity, and anorexia nervosa); and (2) where there is overwhelming evidence of MTL pathology, but where ingestive behaviour is not thought central (i.e., temporal lobe epilepsy and post-traumatic stress disorder). While for some of these conditions the evidence base is currently limited, the general conclusion is that MTL impairment is linked, sometimes strongly, to dysfunctional hunger and satiety. This focus on the MTL, and declarative learning and memory processes, has implications for the development of alternative treatment approaches for the regulation of appetite.
Assuntos
Fome , Saciação , Humanos , Fome/fisiologia , Saciação/fisiologia , Obesidade/psicologia , Obesidade/fisiopatologia , Comportamento Alimentar/psicologia , Comportamento Alimentar/fisiologia , Lobo Temporal/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/psicologia , Anorexia Nervosa/psicologia , Anorexia Nervosa/fisiopatologia , Memória/fisiologia , Hipocampo/fisiologia , Aprendizagem , Ingestão de Alimentos/psicologia , Ingestão de Alimentos/fisiologia , Dieta Ocidental/efeitos adversosRESUMO
BACKGROUND AND OBJECTIVES: Despite their temporal lobe pathology, a significant subgroup of patients with temporal lobe epilepsy (TLE) is able to maintain normative cognitive functioning. In this study, we identify patients with TLE with intact vs impaired neurocognitive profiles and interrogate for the presence of both normative and highly individual intrinsic connectivity networks (ICNs)-all toward understanding the transition from impaired to intact neurocognitive status. METHODS: This retrospective cross-sectional study included patients with TLE and matched healthy controls (HCs) from the Thomas Jefferson Comprehensive Epilepsy Center. Functional MRI data were decomposed using independent component analysis to obtain individualized ICNs. In this article, we calculated the degree of match between individualized ICNs and canonical ICNs (e.g., 17 resting-state networks by Yeo et al.) and divided each participant's ICNs into normative or non-normative status based on the degree of match. RESULTS: 100 patients with TLE (mean age 42.0 [SD: 13.7] years, 47 women) and 92 HCs were included in this study. We found that the individualized networks matched to the canonical networks less well in the cognitively impaired (n = 24) compared with the cognitively intact (n = 63) patients with TLE by 2-way mixed-measures analysis of variance (impaired vs intact mean difference [MD] -0.165 [-0.317, -0.013], p = 0.028). The cognitively impaired patients showed significant abnormalities in the profiles of both normative (impaired vs intact MD -0.537 [-0.998, -0.076], p = 0.017, intact vs HC MD -0.221 [-0.536, 0.924], p = 0.220, and impaired vs HC MD -0.759 [-1.200, -0.319], p < 0.001) and non-normative networks (impaired vs intact MD 0.484 [0.030, 0.937], p = 0.033, intact vs HC MD 0.369 [0.059, 0.678], p = 0.014, and impaired vs HC MD 0.853 [0.419, 1.286], p < 0.001) while the intact patients showed abnormalities only in non-normative networks. At the same time, we found that normative networks held a strong, positive association with the neuropsychological measures, with this association negative in non-normative networks. DISCUSSION: Our data demonstrated that significant cognitive deficits are associated with the status of both canonical and highly individual ICNs, making clear that the transition from intact to impaired cognitive status is not simply the result of disruption to normative brain networks.
Assuntos
Cognição , Epilepsia do Lobo Temporal , Imageamento por Ressonância Magnética , Rede Nervosa , Humanos , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/psicologia , Feminino , Masculino , Adulto , Estudos Transversais , Pessoa de Meia-Idade , Estudos Retrospectivos , Cognição/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Testes NeuropsicológicosRESUMO
Brain resection is curative for a subset of patients with drug resistant epilepsy but up to half will fail to achieve sustained seizure freedom in the long term. There is a critical need for accurate prediction tools to identify patients likely to have recurrent postoperative seizures. Results from preclinical models and intracranial EEG in humans suggest that the window of time immediately before and after a seizure ("peri-ictal") represents a unique brain state with implications for clinical outcome prediction. Using a dataset of 294 patients who underwent temporal lobe resection for seizures, we show that machine learning classifiers can make accurate predictions of postoperative seizure outcome using 5 min of peri-ictal scalp EEG data that is part of universal presurgical evaluation (AUC 0.98, out-of-group testing accuracy > 90%). This is the first approach to seizure outcome prediction that employs a routine non-invasive preoperative study (scalp EEG) with accuracy range likely to translate into a clinical tool. Decision curve analysis (DCA) shows that compared to the prevalent clinical-variable based nomogram, use of the EEG-augmented approach could decrease the rate of unsuccessful brain resections by 20%.
Assuntos
Eletroencefalografia , Aprendizado de Máquina , Convulsões , Lobo Temporal , Humanos , Eletroencefalografia/métodos , Masculino , Feminino , Convulsões/cirurgia , Convulsões/fisiopatologia , Convulsões/diagnóstico , Adulto , Lobo Temporal/cirurgia , Lobo Temporal/fisiopatologia , Pessoa de Meia-Idade , Epilepsia do Lobo Temporal/cirurgia , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia Resistente a Medicamentos/fisiopatologia , Adulto Jovem , Algoritmos , Resultado do Tratamento , AdolescenteRESUMO
BACKGROUND: The solute carrier (SLC) superfamily, which transports solutes across biological membranes, includes four members (SLC2A1, SLC6A1, SLC9A64, and SLC35A2) that have been linked to epilepsy. This study sought to examine the DNA methylation patterns near the promoters of these genes in temporal lobe epilepsy (TLE), as DNA methylation is a crucial epigenetic modification that can impact gene expression. METHODS: The study comprised 38 individuals with TLE and 38 healthy controls. Methylation experiments were performed using peripheral blood, while demethylation experiments were carried out using SH-SY5Y cells with the DNA methylation inhibitor decitabine. RESULTS: A significant difference was observed in the DNA methylation rate of SLC6A1 between TLE patients and controls, with TLE patients showing a lower rate (4.81% vs. 5.77%, p = 0.0000), which remained significant even after Bonferroni correction (p = 0.0000). Based on the hypomethylated SLC6A1 in TLE, a predictive model was established that showed promise in distinguishing and calibrating TLE. In the TLE group, there were differences in DNA methylation rates of SLC6A1 between the young patients and the older controls (4.42% vs. 5.22%, p = 0.0004). A similar trend (p = 0.0436) was noted after adjusting for sex, age at onset, and drug response. In addition, the study found that DNA methylation had a silencing impact on the expression of the SLC6A1 gene in SH-SY5Y cells, which were treated with decitabine at a set dose gradient. CONCLUSIONS: The evidence suggests that lower methylation of SLC6A1 may stimulate transcription in TLE, however, further investigation is necessary to confirm the exact mechanism.
Assuntos
Metilação de DNA , Epilepsia do Lobo Temporal , Regiões Promotoras Genéticas , Humanos , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/metabolismo , Feminino , Adulto , Masculino , Pessoa de Meia-Idade , Epigênese Genética , Sistema A de Transporte de Aminoácidos/genética , Sistema A de Transporte de Aminoácidos/metabolismo , Adulto Jovem , Decitabina/farmacologia , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABARESUMO
Epilepsy is a disorder characterized by a predisposition to generate seizures. Levetiracetam (LEV) is an antiseizure drug that has demonstrated oxidant-antioxidant effects during the early stages of epilepsy in several animal models. However, the effect of LEV on oxidant-antioxidant activity during long-term epilepsy has not been studied. Therefore, the objective of the present study was to determine the effects of LEV on the concentrations of five antioxidant enzymes and on the levels of four oxidant stress markers in the hippocampus of rats with temporal lobe epilepsy at 5.7 months after status epilepticus (SE). The results revealed that superoxide dismutase (SOD) activity was significantly greater in the epileptic group (EPI) than in the control (CTRL), CTRL + LEV and EPI + LEV groups. No significant differences were found among the groups' oxidant markers. However, the ratios of SOD/hydrogen peroxide (H2O2), SOD/glutathione peroxidase (GPx) and SOD/GPx + catalase (CAT) were greater in the EPI group than in the CTRL and EPI + LEV groups. Additionally, there was a positive correlation between SOD activity and GPx activity in the EPI + LEV group. LEV-mediated modulation of the antioxidant system appears to be time dependent; at 5.7 months after SE, the role of LEV may be as a stabilizer of the redox state.
Assuntos
Antioxidantes , Catalase , Epilepsia do Lobo Temporal , Glutationa Peroxidase , Levetiracetam , Estresse Oxidativo , Superóxido Dismutase , Animais , Levetiracetam/farmacologia , Levetiracetam/uso terapêutico , Ratos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/metabolismo , Masculino , Superóxido Dismutase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Catalase/metabolismo , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Oxidantes/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Modelos Animais de Doenças , Peróxido de Hidrogênio/metabolismo , Ratos WistarRESUMO
The establishment of brain metabolic network is based on 18fluoro-deoxyglucose positron emission computed tomography ( 18F-FDG PET) analysis, which reflect the brain functional network connectivity in normal physiological state or disease state. It is now applied to basic and clinical brain functional network research. In this paper, we constructed a metabolic network for the cerebral cortex firstly according to 18F-FDG PET image data from patients with temporal lobe epilepsy (TLE).Then, a statistical analysis to the network properties of patients with left or right TLE and controls was performed. It is shown that the connectivity of the brain metabolic network is weakened in patients with TLE, the topology of the network is changed and the transmission efficiency of the network is reduced, which means the brain metabolic network connectivity is extensively impaired in patients with TLE. It is confirmed that the brain metabolic network analysis based on 18F-FDG PET can provide a new perspective for the diagnose and therapy of epilepsy by utilizing PET images.
Assuntos
Encéfalo , Epilepsia do Lobo Temporal , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Redes e Vias Metabólicas , Córtex Cerebral/metabolismo , Córtex Cerebral/diagnóstico por imagemRESUMO
AIMS: We aimed to investigate mesial temporal lobe abnormalities in mesial temporal lobe epilepsy (MTLE) patients with hypersynchronous (HYP) and low-voltage fast rhythms (LVF) onset identified by stereotactic electroencephalography (SEEG) and evaluate their diagnostic and prognostic value. METHODS: Fifty-one MTLE patients were categorized as HYP or LVF by SEEG. High-resolution MRI volume-based analysis and 18F-FDG-PET standard uptake values of hippocampal and amygdala subfields were quantified and compared with 57 matched controls. Further analyses were conducted to delineate the distinct pathological characteristics differentiating the two groups. Diagnostic and prognostic prediction performance of these biomarkers were assessed using receiver operating characteristic curves. RESULTS: LVF-onset individuals demonstrated ipsilateral amygdala enlargement (p = 0.048) and contralateral hippocampus hypermetabolism (p = 0.042), pathological results often accompany abnormalities in the temporal lobe cortex, while HYP-onset subjects had significant atrophy (p < 0.001) and hypometabolism (p = 0.013) in ipsilateral hippocampus and its subfields, as well as amygdala atrophy (p < 0.001), pathological results are highly correlated with hippocampal sclerosis. Severe fimbria atrophy was observed in cases of HYP-onset MTLE with poor prognosis (AUC = 0.874). CONCLUSION: Individuals with different seizure-onset patterns display specific morphological and metabolic abnormalities in the amygdala and hippocampus. Identifying these subfield abnormalities can improve diagnostic and prognostic precision, guiding surgical strategies for MTLE.