Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
BMC Microbiol ; 24(1): 43, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291363

RESUMO

Epothilone derivatives have been recognized as one of the most powerful anticancer drugs towards solid tumors, for their unique affinity to bind with ß-tubulin microtubule arrays, stabilizing their disassembly, causing cell death. Sornagium cellulosum is the main source for Epothilone, however, the fermentation bioprocessing of this myxobacteria is the main challenge for commercial production of Epothilone. The metabolic biosynthetic potency of epothilone by Aspergillus fumigatus, an endophyte of Catharanthus roseus, raises the hope for commercial epothilone production, for their fast growth rate and feasibility of manipulating their secondary metabolites. Thus, nutritional optimization of A. fumigatus for maximizing their epothilone productivity under solid state fermentation process is the objective. The highest yield of epothilone was obtained by growing A. fumigatus on orange peels under solid state fermentation (2.2 µg/g), bioprocessed by the Plackett-Burman design. The chemical structure of the extracted epothilone was resolved from the HPLC and LC-MS/MS analysis, with molecular mass 507.2 m/z and identical molecular fragmentation pattern of epothilone B of S. cellulosum. The purified A. fumigatus epothilone had a significant activity towards HepG2 (IC50 0.98 µg/ml), Pancl (IC50 1.5 µg/ml), MCF7 (IC50 3.7 µg/ml) and WI38 (IC50 4.6 µg/ml), as well as a strong anti-tubulin polymerization activity (IC50 0.52 µg/ml) compared to Paclitaxel (2.0 µg/ml). The effect of A. fumigatus epothilone on the immigration ability of HepG2 cells was assessed, as revealed from the wound closure of the monolayer cells that was estimated by ~ 63.7 and 72.5%, in response to the sample and doxorubicin, respectively, compared to negative control. From the Annexin V-PI flow cytometry results, a significant shift of the normal cells to the apoptosis was observed in response to A. fumigatus epothilone by ~ 20 folds compared to control cells, with the highest growth arrest of the HepG2 cells at the G0-G1 stage.


Assuntos
Antineoplásicos , Epotilonas , Epotilonas/farmacologia , Epotilonas/metabolismo , Tubulina (Proteína)/metabolismo , Aspergillus fumigatus , Fermentação , Cromatografia Líquida , Polimerização , Espectrometria de Massas em Tandem , Antineoplásicos/farmacologia , Ciclo Celular
2.
Commun Biol ; 5(1): 100, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087210

RESUMO

Glycosyltransferases typically display acceptor substrate flexibility but more stringent donor specificity. BsGT-1 is a highly effective glycosyltransferase to glycosylate macrolides, including epothilones, promising antitumor compounds. Here, we show that BsGT-1 has three major regions significantly influencing the glycodiversification of epothilone B based on structural molecular docking, "hot spots" alanine scanning, and site saturation mutagenesis. Mutations in the PSPG-like motif region and the C2 loop region are more likely to expand donor preference; mutations of the flexible N3 loop region located at the mouth of the substrate-binding cavity produce novel epothilone oligosaccharides. These "hot spots" also functioned in homologues of BsGT-1. The glycosides showed significantly enhanced water solubility and decreased cytotoxicity, although the glycosyl appendages of epothilone B also reduced drug permeability and attenuated antitumor efficacy. This study laid a foundation for the rational engineering of other GTs to synthesize valuable small molecules.


Assuntos
Epotilonas/metabolismo , Glucosiltransferases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Epotilonas/química , Regulação Enzimológica da Expressão Gênica , Células Hep G2 , Hepatócitos , Humanos , Simulação de Acoplamento Molecular , Mutação , Engenharia de Proteínas
3.
J Ocul Pharmacol Ther ; 37(7): 399-411, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34227869

RESUMO

Purpose: To determine the impact of hypothermia on the barrier function of donor corneal endothelium, thereby enhancing the success of corneal transplantation. Methods: Primary cultures of porcine endothelial cells were subjected to hypothermia (15 h; 4°C). The impact on microtubule assembly, peri-junctional actomyosin ring (PAMR), and ZO-1 was assessed by immunocytochemistry with and without pretreatment with a microtubule-stabilizing agent (Epothilone B; EpoB; 100 nM) and a p38 MAP kinase inhibitor (SB-203580; 20 µM). In addition, EpoB-loaded PLGA nanoparticles (ENPs) prepared by nanoprecipitation technique and coated with poly-L-lysine (PLL-ENPs) were administered one-time for sustained intracellular delivery of EpoB. Results: Exposure to hypothermia led to microtubule disassembly concomitant with the destruction of PAMR and the displacement of ZO-1 at the cellular periphery, suggesting a loss in barrier integrity. These adverse effects were attenuated by pretreatment with EpoB or SB-203580. PLL-ENPs possessed a zeta potential of ∼26 mV and a size of ∼110 nm. Drug loading and entrapment efficiency were 5% (w/w) and ∼87%, respectively, and PLL-ENPs showed a biphasic release in vitro: burst phase (1 day), followed by a sustained phase (∼4 weeks). Pretreatment with PLL-ENPs (0.4 mg/mL) for 24 h stabilized the microtubules and opposed the hypothermia-induced damage to PAMR and the redistribution of ZO-1. Conclusions: Hypothermia induces microtubule disassembly via activation of p38 MAP kinase and subsequently breaks down the barrier function of the endothelium. Sustained intracellular delivery of EpoB using nanoparticles has the potential to overcome endothelial barrier failure during prolonged cold storage of donor cornea.


Assuntos
Citoesqueleto/metabolismo , Endotélio Corneano/metabolismo , Hipotermia/metabolismo , Microtúbulos/metabolismo , Animais , Células Cultivadas , Epotilonas/química , Epotilonas/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo , Suínos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Chem Biol Drug Des ; 96(2): 768-772, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32167676

RESUMO

Epothilone is a macrolide secondary metabolite which has the same anticancer effect as paclitaxel. Based on a series of single-factor experiments, four factors, temperature, initial pH, rotation speed, and inoculum quantity, which have the greatest influence on yield, were determined. Four factors were designed and orthogonal experiments were carried out to optimize the fermentation conditions. Finally, the best experimental conditions were obtained as follows: 250 ml flapper triangular flask was used. The yield of epothilone B was 39.76 mg/L at 30℃, initial pH = 7.4, rotating speed 200 r/min, inoculation amount 10%, liquid loading amount 50 ml/250 ml, fermentation time 6 days and seed age 60 hr.


Assuntos
Antineoplásicos/química , Antineoplásicos/metabolismo , Epotilonas/química , Epotilonas/metabolismo , Antineoplásicos/farmacologia , Técnicas de Cultura de Células , Epotilonas/farmacologia , Fermentação , Concentração de Íons de Hidrogênio , Oxigênio/metabolismo , Metabolismo Secundário , Sorangium/metabolismo , Temperatura , Fatores de Tempo
5.
Microb Biotechnol ; 12(4): 763-774, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31069998

RESUMO

Glycosylation of natural products can influence their pharmacological properties, and efficient glycosyltransferases (GTs) are critical for this purpose. The polyketide epothilones are potent anti-tumour compounds, and YjiC is the only reported GT for the glycosylation of epothilone. In this study, we phylogenetically analysed 8261 GTs deposited in CAZy database and revealed that YjiC locates in a subbranch of the Macrolide I group, forming the YjiC-subbranch with 160 GT sequences. We demonstrated that the YjiC-subbranch GTs are normally efficient in epothilone glycosylation, but some showed low glycosylation activities. Sequence alignment of YjiC-subbranch showed that the 66th and 77th amino acid residues, which were close to the catalytic cavity in molecular docking model, were conserved in five high-active GTs (Q66 and P77) but changed in two low-efficient GTs. Site-directed residues swapping at the two positions in the two low-active GTs (BssGT and BamGT) and the high-active GT BsGT-1 demonstrated that the two amino acid residues played an important role in the catalytic efficiency of epothilone glycosylation. This study highlights that the potent GTs for appointed compounds are phylogenetically grouped with conserved residues for the catalytic efficiency.


Assuntos
Epotilonas/metabolismo , Glicosiltransferases/metabolismo , Moduladores de Tubulina/metabolismo , Biotransformação , Domínio Catalítico , Sequência Conservada , Glicosilação , Glicosiltransferases/classificação , Glicosiltransferases/genética , Cinética , Simulação de Acoplamento Molecular , Filogenia , Alinhamento de Sequência
6.
J Chem Inf Model ; 59(5): 2218-2230, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30855963

RESUMO

Epothilones are among the most potent chemotherapeutic drugs used for the treatment of cancer. Epothilone A (EpoA), a natural product, is a macrocyclic molecule containing 34 non-hydrogen atoms and a thiazole side chain. NMR studies of EpoA in aqueous solution, unbound as well as bound to αß-tubulin, and unbound in dimethyl sulfoxide (DMSO) solution have delivered sets of nuclear Overhauser effect (NOE) atom-atom distance bounds, but no structures based on NMR data are present in structural data banks. X-ray diffraction of crystals has provided structures of EpoA unbound and bound to αß-tubulin. Since both crystal structures derived from X-ray diffraction intensities do not completely satisfy the three available sets of NOE distance bounds for EpoA, molecular dynamics (MD) simulations have been employed to obtain conformational ensembles in aqueous and in DMSO solution that are compatible with the respective NOE data. It was found that EpoA displays a larger conformational variability in DMSO than in water and the two conformational ensembles show little overlap. Yet, they both provide conformational scaffolds that are energetically accessible at physiological temperature and pressure.


Assuntos
Epotilonas/química , Epotilonas/metabolismo , Simulação de Dinâmica Molecular , Moduladores de Tubulina/química , Moduladores de Tubulina/metabolismo , Tubulina (Proteína)/metabolismo , Dimetil Sulfóxido/química , Ligantes , Conformação Molecular , Água/química
7.
Nat Prod Res ; 33(1): 24-33, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29393673

RESUMO

During our continual searching programme for novel bioactive metabolites from Sarcophyton trocheliophorum, collected from Red Sea, we describe herein the isolation and structural elucidation of further two new pyrane-based cembranoid diterpenes: 9-hydroxy-7,8-dehydro-sarcotrocheliol (1) and 8,9-expoy-sarcotrocheliol acetate (2), along with the well-known sarcotrocheliol acetate (3), (+)-sarcophine (4), (+)-sarcophytoxide (5) and (-)-sarcophytoxide (6). The chemical structures of compounds 1 and 2 were determined on the basis of 1D and 2D NMR (1H, 13C, 1H-1H COSY, HMQC, HMBC and NOE), mass spectra (ESI and HR-ESIMS) and by comparison with related structures. The antimicrobial activities of the reported compounds 1-6 were investigated. According to the molecular docking study of compounds 1-6 using 3D structure of α,ß tubulin in complex with taxol (PDB code 1JFF) and epothilone A (PDB code 1TVK), sarcophine (4) displayed the highest affinity towards both crystal structures, followed by 5 and 6, meanwhile pyrane-based cembranoid diterpenes (1-3) showed less affinity.


Assuntos
Antozoários/química , Anti-Infecciosos/farmacologia , Diterpenos/isolamento & purificação , 4-Butirolactona/análogos & derivados , Animais , Anti-Infecciosos/isolamento & purificação , Epotilonas/metabolismo , Oceano Índico , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Estrutura Molecular , Paclitaxel/metabolismo , Tubulina (Proteína)/metabolismo
8.
Biochemistry (Mosc) ; 83(9): 1068-1074, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30472945

RESUMO

Alzheimer's disease (AD) is the most common incurable neurodegenerative disorder that affects the processes of memory formation and storage. The loss of dendritic spines and alteration in their morphology in AD correlate with the extent of patient's cognitive decline. Tubulin had been believed to be restricted to dendritic shafts, until recent studies demonstrated that dynamically growing tubulin microtubules enter dendritic spines and promote their maturation. Abnormalities of tubulin cytoskeleton may contribute to the process of dendritic spine shape alteration and their subsequent loss in AD. In this review, association between tubulin cytoskeleton dynamics and dendritic spine morphology is discussed in the context of dendritic spine alterations in AD. Potential implications of these findings for the development of AD therapy are proposed.


Assuntos
Doença de Alzheimer/patologia , Espinhas Dendríticas/metabolismo , Microtúbulos/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Espinhas Dendríticas/patologia , Epotilonas/química , Epotilonas/metabolismo , Epotilonas/uso terapêutico , Humanos , Neurônios/metabolismo , Nocodazol/química , Nocodazol/metabolismo , Nocodazol/uso terapêutico
9.
Proc Natl Acad Sci U S A ; 115(48): E11406-E11414, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30429313

RESUMO

Drug receptor site occupancy is a central pharmacology parameter that quantitatively relates the biochemistry of drug binding to the biology of drug action. Taxanes and epothilones bind to overlapping sites in microtubules (MTs) and stabilize them. They are used to treat cancer and are under investigation for neurodegeneration. In cells, they cause concentration-dependent inhibition of MT dynamics and perturbation of mitosis, but the degree of site occupancy required to trigger different effects has not been measured. We report a live cell assay for taxane-site occupancy, and relationships between site occupancy and biological effects across four drugs and two cell lines. By normalizing to site occupancy, we were able to quantitatively compare drug activities and cell sensitivities independent of differences in drug affinity and uptake/efflux kinetics. Across all drugs and cells tested, we found that inhibition of MT dynamics, postmitotic micronucleation, and mitotic arrest required successively higher site occupancy. We also found interesting differences between cells and drugs, for example, insensitivity of the spindle assembly checkpoint to site occupancy. By extending our assay to a mouse xenograft tumor model, we estimated the initial site occupancy required for paclitaxel to completely prevent tumor growth as 80%. The most important cellular action of taxanes for cancer treatment may be formation of micronuclei, which occurs over a broad range of site occupancies.


Assuntos
Antineoplásicos/metabolismo , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Taxoides/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Transporte Biológico , Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Linhagem Celular Tumoral , Epotilonas/química , Epotilonas/metabolismo , Epotilonas/farmacologia , Humanos , Cinética , Microscopia , Microtúbulos/química , Microtúbulos/metabolismo , Taxoides/química , Taxoides/farmacologia
10.
Int J Mol Sci ; 18(7)2017 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-28698492

RESUMO

The structural information of small therapeutic compounds complexed in biological matrices is important for drug developments. However, structural studies on ligands bound to such a large and dynamic system as microtubules are still challenging. This article reports an application of the solid-state NMR technique to investigating the bioactive conformation of epothilone B, a microtubule stabilizing agent, whose analog ixabepilone was approved by the U.S. Food and Drug Administration (FDA) as an anticancer drug. First, an analog of epothilone B was designed and successfully synthesized with deuterium and fluorine labels while keeping the high potency of the drug; Second, a lyophilization protocol was developed to enhance the low sensitivity of solid-state NMR; Third, molecular dynamics information of microtubule-bound epothilone B was revealed by high-resolution NMR spectra in comparison to the non-bound epothilone B; Last, information for the macrolide conformation of microtubule-bound epothilone B was obtained from rotational-echo double-resonance (REDOR) NMR data, suggesting the X-ray crystal structure of the ligand in the P450epoK complex as a possible candidate for the conformation. Our results are important as the first demonstration of using REDOR for studying epothilones.


Assuntos
Epotilonas/química , Espectroscopia de Ressonância Magnética/métodos , Cristalografia por Raios X , Epotilonas/metabolismo , Microtúbulos/metabolismo , Conformação Molecular , Estados Unidos , United States Food and Drug Administration
11.
Chem Biol Drug Des ; 90(6): 1247-1259, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28632973

RESUMO

Molecular dynamics (MD) simulations were employed to study the tubulin-binding modes of 20 epothilone derivatives spanning a wide range of antitumor activity. Trajectory analysis revealed that active ligands shared a common region of association and similar binding poses compared to the high-resolution crystal structure of the tubulin complex with epothilone A, the stathmin-like protein RB3, and tubulin tyrosine ligase (PDB code 4I50). Conformational analysis of epothilones in aqueous solution and tubulin-bound states indicated that the bound conformations of active species can be found to a significant extent within the ensemble of conformers available in aqueous solution. On the other hand, inactive derivatives were unable to adopt bound-like conformations in aqueous solution, thus requiring an extensive conformational pre-organization to accomplish an effective interaction with the tubulin receptor. Additionally, MD results revealed that epothilone binding-induced structuring of the M-loop and local flexibility changes in protein regions involved in interdimeric contacts that are relevant for microtubule stabilization. These results provide novel, valuable structural information to increase understanding about the underlying molecular aspects of epothilones activity and support further work on the search for new active tubulin-binding agents.


Assuntos
Epotilonas/química , Moduladores de Tubulina/metabolismo , Tubulina (Proteína)/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Epotilonas/metabolismo , Ligantes , Conformação Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Termodinâmica , Tubulina (Proteína)/química , Moduladores de Tubulina/química
12.
J Biomater Sci Polym Ed ; 28(4): 394-414, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28027693

RESUMO

Patupilone, an original natural anti-cancer agent, also known as epothilone B or Epo906, has shown promise for the treatment of a variety of cancers, however, the systematic side effects of patupilone significantly impaired its clinical translation. Herein, patupilone-loaded PLG-g-mPEG micelles were prepared. Patupilone was grafted to a poly(L-glutamic acid)-graft-methoxy-poly(ethylene glycol) (PLG-g-mPEG) by Steglich esterification reaction to give PLG-g-mPEG/Epo906 that could self-assemble to form patupilone-loaded micelles (Epo906-M). The Epo906-M was able to inhibit the proliferation of A549, MCF-7 cancer cells and BEAs-2B cells in vitro. For in vivo treatment of orthotopic xenograft tumor models (MCF-7), the Epo906-M exhibited higher tumor inhibition efficiency with lower side effects as compared with free Epo906. Seventeen percent of the body weight loss appeared in the group treated with free Epo906 of 0.25 mg kg-1, while the group treated with Epo906-M of 10 mg kg-1 showed less than ten percent of body weight loss and displayed stronger tumor inhibiting effect. Therefore, the polypeptide-patupilone conjugate has improved potential for oncotherapy.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Epotilonas/química , Micelas , Polietilenoglicóis/química , Ácido Poliglutâmico/análogos & derivados , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Transporte Biológico , Linhagem Celular Tumoral , Epotilonas/metabolismo , Epotilonas/farmacologia , Humanos , Ácido Poliglutâmico/química
13.
Proc Natl Acad Sci U S A ; 113(44): 12432-12437, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27791103

RESUMO

Epothilones are thiazole-containing natural products with anticancer activity that are biosynthesized by polyketide synthase (PKS)-nonribosomal peptide synthetase (NRPS) enzymes EpoA-F. A cyclization domain of EpoB (Cy) assembles the thiazole functionality from an acetyl group and l-cysteine via condensation, cyclization, and dehydration. The PKS carrier protein of EpoA contributes the acetyl moiety, guided by a docking domain, whereas an NRPS EpoB carrier protein contributes l-cysteine. To visualize the structure of a cyclization domain with an accompanying docking domain, we solved a 2.03-Å resolution structure of this bidomain EpoB unit, comprising residues M1-Q497 (62 kDa) of the 160-kDa EpoB protein. We find that the N-terminal docking domain is connected to the V-shaped Cy domain by a 20-residue linker but otherwise makes no contacts to Cy. Molecular dynamic simulations and additional crystal structures reveal a high degree of flexibility for this docking domain, emphasizing the modular nature of the components of PKS-NRPS hybrid systems. These structures further reveal two 20-Å-long channels that run from distant sites on the Cy domain to the active site at the core of the enzyme, allowing two carrier proteins to dock with Cy and deliver their substrates simultaneously. Through mutagenesis and activity assays, catalytic residues N335 and D449 have been identified. Surprisingly, these residues do not map to the location of the conserved HHxxxDG motif in the structurally homologous NRPS condensation (C) domain. Thus, although both C and Cy domains have the same basic fold, their active sites appear distinct.


Assuntos
Epotilonas/química , Peptídeo Sintases/química , Policetídeo Sintases/química , Domínios Proteicos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/genética , Domínio Catalítico , Cristalografia por Raios X , Ciclização , Epotilonas/metabolismo , Modelos Moleculares , Myxococcales/genética , Myxococcales/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Ligação Proteica , Homologia de Sequência de Aminoácidos , Tiazóis/química , Tiazóis/metabolismo
14.
J Med Chem ; 59(7): 3499-514, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26986898

RESUMO

Photoaffinity labeling with an epothilone A photoprobe led to the identification of the ß-tubulin peptides TARGSQQY and TSRGSQQY as targets of the photoprobe for polymerized tubulin. These peptides represent residues 274-281 in different ß-tubulin isotypes. Placing the carbene producing 21-diazo/triazolo moiety of the photoprobe in the vicinity of the TARGSQQY peptide in a homology model of TBB3 predicted a binding pose and conformation of the photoprobe that are very similar to the ones reported for 1) the high resolution cocrystal structure of epothilone A with an α,ß-tubulin complex and for 2) a saturation transfer difference NMR and transferred NOESY NMR study of dimeric and polymerized tubulin. Our findings thus provide additional support for these models as physiologically the most relevant among several modes of binding that have been proposed for epothilone A in the taxane pocket of ß-tubulin.


Assuntos
Epotilonas/metabolismo , Sondas Moleculares/química , Neoplasias Ovarianas/metabolismo , Fragmentos de Peptídeos/química , Marcadores de Fotoafinidade/química , Moduladores de Tubulina/química , Tubulina (Proteína)/química , Animais , Sítios de Ligação , Encéfalo/metabolismo , Bovinos , Cristalografia por Raios X , Resistencia a Medicamentos Antineoplásicos , Epotilonas/química , Feminino , Humanos , Espectrometria de Massas , Modelos Moleculares , Conformação Molecular , Neoplasias Ovarianas/química , Polimerização , Tubulina (Proteína)/metabolismo , Células Tumorais Cultivadas
15.
ChemMedChem ; 10(12): 1974-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26447977

RESUMO

The design, synthesis, and biological evaluation of a series of epothilone analogues with novel side chains equipped with an amino group are described. Their design facilitates potential conjugation to selective drug delivery systems such as antibodies. Their synthesis proceeded efficiently via Stille coupling of a readily available vinyl iodide and heterocyclic stannanes. Cytotoxicity studies and tubulin binding assays revealed two of these analogues to be more potent than epothilones A-D and the anticancer agent ixabepilone, currently in clinical use.


Assuntos
Antineoplásicos/síntese química , Epotilonas/química , Anticorpos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Portadores de Fármacos/química , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Epotilonas/metabolismo , Epotilonas/farmacologia , Humanos , Ligação Proteica , Relação Estrutura-Atividade , Compostos de Estanho/química , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Compostos de Vinila/química
16.
Microb Cell Fact ; 14: 105, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26194479

RESUMO

BACKGROUND: Exotic genes, especially clustered multiple-genes for a complex pathway, are normally integrated into chromosome for heterologous expression. The influences of insertion sites on heterologous expression and allotropic expressions of exotic genes on host remain mostly unclear. RESULTS: We compared the integration and expression efficiencies of single and multiple exotic genes that were inserted into Myxococcus xanthus genome by transposition and attB-site-directed recombination. While the site-directed integration had a rather stable chloramphenicol acetyl transferase (CAT) activity, the transposition produced varied CAT enzyme activities. We attempted to integrate the 56-kb gene cluster for the biosynthesis of antitumor polyketides epothilones into M. xanthus genome by site-direction but failed, which was determined to be due to the insertion size limitation at the attB site. The transposition technique produced many recombinants with varied production capabilities of epothilones, which, however, were not paralleled to the transcriptional characteristics of the local sites where the genes were integrated. Comparative transcriptomics analysis demonstrated that the allopatric integrations caused selective changes of host transcriptomes, leading to varied expressions of epothilone genes in different mutants. CONCLUSIONS: With the increase of insertion fragment size, transposition is a more practicable integration method for the expression of exotic genes. Allopatric integrations selectively change host transcriptomes, which lead to varied expression efficiencies of exotic genes.


Assuntos
Myxococcus xanthus/genética , Transcriptoma , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Epotilonas/genética , Epotilonas/metabolismo , Expressão Gênica , Mutagênese Insercional , Myxococcus xanthus/metabolismo
17.
J Biomol Struct Dyn ; 33(12): 2530-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26081685

RESUMO

Using molecular modeling, we have investigated the structure and dynamic properties of epothilone B-tubulin complexes with wild-type and mutated tubulin, aimed at identifying the molecular factors involved in the emergence of drug resistance induced by four protein mutations at Phe270Val, Thr274Ile, Arg282Gln, and Gln292Glu. Our results revealed that tubulin mutations render significant changes in the protein conformation in regions involved either in the binding of the ligand or in interdimer contacts that are relevant to the assembly of stable microtubules. In addition, point mutations induce drastic changes in the binding pose of the ligand and in the interaction networks responsible for the epothilone-tubulin association. Large ligand displacements inside the binding pocket and an overall decrease in the strength of drug-receptor polar contacts suggest a looser binding of the ligand in tubulin mutants. These results explain the loss of activity for epothilone B against cancer cells that contain tubulin mutants and provide valuable information to enhance the understanding of the atomic source of epothilones' activity, which can be helpful to conduct further research on the rational design of more potent therapeutic tubulin-binding agents.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Epotilonas/química , Mutação , Estrutura Terciária de Proteína , Tubulina (Proteína)/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Epotilonas/metabolismo , Epotilonas/farmacologia , Humanos , Ligantes , Microtúbulos/química , Microtúbulos/metabolismo , Simulação de Dinâmica Molecular , Estrutura Molecular , Multimerização Proteica , Estrutura Secundária de Proteína , Termodinâmica , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
18.
ChemMedChem ; 10(7): 1240-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26018455

RESUMO

For the antitumour agent sagopilone, an epothilone analogue, a large-scale synthesis was developed to synthesise the active pharmaceutical ingredient for clinical trials, exploring enzymatic and microbial methods to produce chiral building blocks on a multi-kilogram scale. The three building blocks were identified as key intermediates in the synthesis and needed to be produced with high optical purity in yields higher than those previously published. The improved syntheses of two of these building blocks are detailed herein. For building block A, the chemical research synthesis was abandoned, and a novel chemical route was developed leading to building block A via an enzymatic hydrolysis process. For building blocks C, replacement of a chemical catalytic procedure by a microbial process meant that the development of a new starting material could be avoided, thereby accelerating the development process. For the clinical development process, a human metabolite of sagopilone was required as a reference. To accelerate the synthesis of the metabolite, no chemical synthesis was investigated; rather, we relied solely on oxidoreductases. The human metabolite of sagopilone was synthesised on a multi-gram scale in a single-step process using genetically engineered E. coli expressing human cytochrome P450 enzyme 2C19. The integration of enzymatic and microbial processes provided tools that enable the synthesis of highly functionalised intermediates and metabolites.


Assuntos
Biocatálise , Citocromo P-450 CYP2C19/metabolismo , Epotilonas/biossíntese , Oxirredutases/metabolismo , Benzotiazóis/química , Benzotiazóis/metabolismo , Citocromo P-450 CYP2C19/genética , Epotilonas/química , Epotilonas/metabolismo , Engenharia Genética , Humanos
19.
J Microbiol Biotechnol ; 25(10): 1653-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25951845

RESUMO

Epothilone, which is produced by the myxobacterium Sorangium cellulosum, contributes significant value in medicinal development. However, under submerged culture conditions, S. cellulosum will accumulate to form bacterial clumps, which hinder nutrient and metabolite transportation. Therefore, the production of epothilone by liquid fermentation is limited. In this study, diatomite-based porous ceramics were made from diatomite, paraffin, and poremaking agent (saw dust). Appropriate methods to modify the porous ceramics were also identified. After optimizing the preparation and modification conditions, we determined the optimal prescription to prepare high-performance porous ceramics. The structure of porous ceramics can provide a solid surface area where S. cellulosum can grow and metabolize to prevent the formation of bacterial clumps. S. cellulosum cells that do not form clumps will change their erratic metabolic behavior under submerged culture conditions. As a result, the unstable production of epothilone by this strain can be changed in the fermentation process, and the purpose of increasing epothilone production can be achieved. After 8 days of fermentation under optimized conditions, the epothilone yield reached 90.2 mg/l, which was increased four times compared with the fermentation without porous ceramics.


Assuntos
Cerâmica , Epotilonas/metabolismo , Myxococcales/metabolismo , Células Imobilizadas , Fermentação , Fatores de Tempo
20.
Angew Chem Int Ed Engl ; 54(8): 2370-3, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25564997

RESUMO

The gem-dimethyl groups in polyketide-derived natural products add steric bulk and, accordingly, lend increased stability to medicinal compounds, however, our ability to rationally incorporate this functional group in modified natural products is limited. In order to characterize the mechanism of gem-dimethyl group formation, with a goal toward engineering of novel compounds containing this moiety, the gem-dimethyl group producing polyketide synthase (PKS) modules of yersiniabactin and epothilone were characterized using mass spectrometry. The work demonstrated, contrary to the canonical understanding of reaction order in PKSs, that methylation can precede condensation in gem-dimethyl group producing PKS modules. Experiments showed that both PKSs are able to use dimethylmalonyl acyl carrier protein (ACP) as an extender unit. Interestingly, for epothilone module 8, use of dimethylmalonyl-ACP appeared to be the sole route to form a gem-dimethylated product, while the yersiniabactin PKS could methylate before or after ketosynthase condensation.


Assuntos
Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Proteína de Transporte de Acila/metabolismo , Epotilonas/química , Epotilonas/metabolismo , Espectrometria de Massas , Metilação , Fenóis/química , Fenóis/metabolismo , Policetídeos/química , Tiazóis/química , Tiazóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA