Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Angew Chem Int Ed Engl ; 63(9): e202314728, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38161189

RESUMO

Echinocandins are a class of antifungal drugs that inhibit the activity of the ß-(1,3)-glucan synthase complex, which synthesizes fungal cell wall ß-(1,3)-glucan. Echinocandin resistance is linked to mutations in the FKS gene, which encodes the catalytic subunit of the glucan synthase complex. We present a molecular-docking-based model that provides insight into how echinocandins interact with the target Fks protein: echinocandins form a ternary complex with both Fks and membrane lipids. We used reductive dehydration of alcohols to generate dehydroxylated echinocandin derivatives and evaluated their potency against a panel of Candida pathogens constructed by introducing resistance-conferring mutations in the FKS gene. We found that removing the hemiaminal alcohol, which drives significant conformational alterations in the modified echinocandins, reduced their efficacy. Conversely, eliminating the benzylic alcohol of echinocandins enhanced potency by up to two orders of magnitude, in a manner dependent upon the resistance-conferring mutation. Strains that have developed resistance to either rezafungin, the most recently clinically approved echinocandin, or its dehydroxylated derivative RZF-1, exhibit high resistance to rezafungin while demonstrating moderate resistance to RZF-1. These findings provide valuable insight for combating echinocandin resistance through chemical modifications.


Assuntos
Antifúngicos , Farmacorresistência Fúngica , Antifúngicos/farmacologia , Farmacorresistência Fúngica/genética , Equinocandinas/farmacologia , Equinocandinas/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Mutação , Testes de Sensibilidade Microbiana
2.
BMC Microbiol ; 23(1): 341, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974063

RESUMO

BACKGROUND: Candida glabrata is an important cause of invasive candidiasis. Echinocandins are the first-line treatment of invasive candidiasis caused by C. glabrata. The epidemiological echinocandin sensitivity requires long-term surveillance and the understanding about whole genome characteristics of echinocandin non-susceptible isolates was limited. RESULTS: The present study investigated the echinocandin susceptibility of 1650 C. glabrata clinical isolates in China from August 2014 to July 2019. The in vitro activity of micafungin was significantly better than those of caspofungin and anidulafungin (P < 0.001), assessed by MIC50/90 values. Whole genome sequencing was conducted on non-susceptible isolates and geography-matched susceptible isolates. Thirteen isolates (0.79%) were resistant to at least one echinocandin. Six isolates (0.36%) were solely intermediate to caspofungin. Common evolutionary analysis of echinocandin-resistant and echinocandin-intermediate isolates revealed genes related with reduced caspofungin sensitivity, including previously identified sphinganine hydroxylase encoding gene SUR2. Genome-wide association study identified SNPs at subtelometric regions that were associated with echinocandin non-susceptibility. In-host evolution of echinocandin resistance of serial isolates revealed an enrichment for non-synonymous mutations in adhesins genes and loss of subtelometric regions containing adhesin genes. CONCLUSIONS: The echinocandins are highly active against C. glabrata in China with a resistant rate of 0.79%. Echinocandin non-susceptible isolates carried common evolved genes which are related with reduced caspofungin sensitivity. In-host evolution of C. glabrata accompanied intensive changing of adhesins profile.


Assuntos
Candidíase Invasiva , Equinocandinas , Humanos , Equinocandinas/farmacologia , Equinocandinas/genética , Equinocandinas/uso terapêutico , Candida glabrata/genética , Caspofungina/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Estudo de Associação Genômica Ampla , Testes de Sensibilidade Microbiana , Candidíase Invasiva/tratamento farmacológico , China , Farmacorresistência Fúngica/genética
3.
Bioprocess Biosyst Eng ; 46(7): 1045-1052, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37253987

RESUMO

Echinocandin B (ECB) is the key precursor compound of the antifungal drug Anidulafungin. The effects of the five precursor amino acids on ECB biosynthesis were firstly investigated. It showed that although L-threonine was a main compound of the hexapeptide scaffold of ECB, exogenous addition of L-threonine had no significant effect on the increase of ECB fermentation titer. Meanwhile, the ECB fermentation titer with methyl oleate showed two times higher than that of the other carbon sources. Transcription level analysis of the key genes for ECB biosynthesis indicated that the gene an655543 related to L-threonine biosynthesis showed higher value during the fermentation process, therefore, the exogenous addition of L-threonine had no obvious affection. Furthermore, it indicated that the transcription level of gene ecdA might be the main restriction factor for the ECB biosynthesis. The study provided the research foundation for the modification of the ECB producing strains in the following work.


Assuntos
Antifúngicos , Equinocandinas , Fermentação , Equinocandinas/genética , Equinocandinas/química , Antifúngicos/farmacologia , Antifúngicos/química
4.
Antimicrob Agents Chemother ; 67(4): e0124322, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36920237

RESUMO

Candida auris is resistant to multiple antifungal agents. This study investigated its antifungal susceptibility and explored FKS1 mutations across the isolates from mice enterically colonized with wild-type C. auris and treated with echinocandin. Resistant C. auris with FKS1 mutations, including S639F, S639Y, D642Y, R1354H, or R1354Y, were isolated and found to be micafungin- and caspofungin-resistant in vivo; however, the MICs of isolates with mutation in R1354 remained below the micafungin breakpoint in vitro.


Assuntos
Candida auris , Equinocandinas , Animais , Camundongos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Farmacorresistência Fúngica/genética , Equinocandinas/farmacologia , Equinocandinas/genética , Trato Gastrointestinal , Micafungina/farmacologia , Testes de Sensibilidade Microbiana , Mutação/genética
5.
Org Biomol Chem ; 21(17): 3552-3556, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807630

RESUMO

The hydroxyl groups in the amino acid residues of echinocandin B were related to the biological activity, the instability, and the drug resistance. The modification of hydroxyl groups was expected to obtain the new lead compounds for next generation of echinocandin drug development. In this work one method for heterologous production of the tetradeoxy echinocandin was achieved. A reconstructed biosynthetic gene cluster for tetradeoxy echinocandins composed of ecdA/I/K and htyE was designed and successfully hetero-expressed in Aspergillus nidulans. The target product of echinocandin E (1) together with one unexpected derivative echinocandin F (2), were isolated from the fermentation culture of engineered strain. Both of compounds were unreported echinocandin derivatives and the structures were identified on the basis of mass and NMR spectral data analysis. Compared with echinocandin B, echinocandin E demonstrated superior stability and comparable antifungal activity.


Assuntos
Aspergillus nidulans , Equinocandinas , Equinocandinas/farmacologia , Equinocandinas/química , Equinocandinas/genética , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Família Multigênica , Aminoácidos/metabolismo , Testes de Sensibilidade Microbiana
6.
Antimicrob Agents Chemother ; 66(9): e0070122, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35916517

RESUMO

Aspergillus fumigatus is the main etiological agent of aspergillosis. The antifungal drug caspofungin (CSP) can be used against A. fumigatus, and CSP tolerance is observed. We have previously shown that the transcription factor FhdA is important for mitochondrial activity. Here, we show that FhdA regulates genes transcribed by RNA polymerase II and III. FhdA influences the expression of tRNAs that are important for mitochondrial function upon CSP. Our results show a completely novel mechanism that is impacted by CSP.


Assuntos
Antifúngicos , Aspergillus fumigatus , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Caspofungina/farmacologia , Uso do Códon , Equinocandinas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lipopeptídeos/farmacologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA Polimerase II/genética , Fatores de Transcrição/genética
7.
mBio ; 13(4): e0079922, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35968956

RESUMO

Candida auris emerged as a human fungal pathogen only during the past decade. Remarkably, C. auris displays high degrees of genomic diversity and phenotypic plasticity, with four major clades causing hospital outbreaks with high mortality and morbidity rates. C. auris can show clinical resistance to all classes of antifungal drugs, including echinocandins that are usually recommended as first-line therapies for invasive candidiasis. Here, we exploit transcriptomics coupled with phenotypic profiling to characterize a set of clinical C. auris isolates displaying pronounced echinocandin resistance (ECN-R). A hot spot mutation in the echinocandin FKS1 target gene is present in all resistant isolates. Moreover, ECN-R strains share a core signature set of 362 genes differentially expressed in ECN-R isolates. Among others, mitochondrial gene expression and genes affecting cell wall function appear to be the most prominent, with the latter correlating well with enhanced adhesive traits, increased cell wall mannan content, and altered sensitivity to cell wall stress of ECN-R isolates. Moreover, ECN-R phenotypic signatures were also linked to pathogen recognition and interaction with immune cells. Hence, transcriptomics paired with phenotyping is a suitable tool to predict resistance and fitness traits as well as treatment outcomes in pathogen populations with complex phenotypic diversity. IMPORTANCE The surge in antimicrobial drug resistance in some bacterial and fungal pathogens constitutes a significant challenge to health care facilities. The emerging human fungal pathogen Candida auris has been particularly concerning, as isolates can display pan-antifungal resistance traits against all drugs, including echinocandins. However, the mechanisms underlying this phenotypic diversity remain poorly understood. We identify transcriptomic signatures in C. auris isolates resistant to otherwise fungicidal echinocandins. We identify a set of differentially expressed genes shared by resistant strains compared to unrelated susceptible isolates. Moreover, phenotyping demonstrates that resistant strains show distinct behaviors, with implications for host-pathogen interactions. Hence, this work provides a solid basis to identify the mechanistic links between antifungal multidrug resistance and fitness costs that affect the interaction of C. auris with host immune defenses.


Assuntos
Candidíase Invasiva , Equinocandinas , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida , Candida auris , Candidíase Invasiva/tratamento farmacológico , Farmacorresistência Fúngica/genética , Equinocandinas/genética , Equinocandinas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Transcriptoma
8.
J Am Chem Soc ; 144(13): 5965-5975, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35347986

RESUMO

Each year, infections caused by fungal pathogens claim the lives of about 1.6 million people and affect the health of over a billion people worldwide. Among the most recently developed antifungal drugs are the echinocandins, which noncompetitively inhibit ß-glucan synthase, a membrane-bound protein complex that catalyzes the formation of the main polysaccharide component of the fungal cell wall. Resistance to echinocandins is conferred by mutations in FKS genes, which encode the catalytic subunit of the ß-glucan synthase complex. Here, we report that selective removal of the benzylic alcohol of the nonproteinogenic amino acid 3S,4S-dihydroxy-l-homotyrosine of the echinocandins anidulafungin and rezafungin, restored their efficacy against a large panel of echinocandin-resistant Candida strains. The dehydroxylated compounds did not significantly affect the viability of human-derived cell culture lines. An analysis of the efficacy of the dehydroxylated echinocandins against resistant Candida strains, which contain mutations in the FKS1 and/or FKS2 genes of the parental strains, identified amino acids of the Fks proteins that are likely to reside in proximity to the l-homotyrosine residue of the bound drug. This study describes the first example of a chemical modification strategy to restore the efficacy of echinocandin drugs, which have a critical place in the arsenal of antifungal drugs, against resistant fungal pathogens.


Assuntos
Antifúngicos , Farmacorresistência Fúngica , Antifúngicos/farmacologia , Farmacorresistência Fúngica/genética , Equinocandinas/genética , Equinocandinas/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Mutação , Tirosina/análogos & derivados
9.
Braz J Microbiol ; 52(3): 1077-1086, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33948877

RESUMO

Fungal cell walls are composed of polysaccharide scaffold that changes in response to environment. The structure and biosynthesis of the wall are unique to fungi, with plant and mammalian immune systems evolved to recognize wall components. Additionally, the enzymes that assemble fungal cell wall components are excellent targets for antifungal chemotherapies and fungicides. Understanding changes in the cell wall are important for fundamental understanding of cell wall dynamics and for drug development. Here we describe a screening technique to monitor the gross morphological changes of two key cell wall polysaccharides of chitin and ß-1,3-glucan combined with polymerase chain reaction (PCR) genotyping. Changes in chitin and ß-1,3-glucan were detected microscopically by using the dyes calcofluor white and aniline blue. Combining PCR and fluorescence microscopy, as a quick and easy screening technique, confirmed both the phenotype and genotype of the wild-type, h chitin synthase mutants (chs1Δ and chs3Δ) and one ß-1,3-glucan synthase mutant fks2Δ from Saccharomyces cerevisiae knockout library. This combined screening method highlighted that the fks1Δ strain obtained commercially was in fact not FKS1 deletion strain, and instead had both wild-type genotype and phenotype. A new ß-1,3-glucan synthase knockout fks1::URA3 strain was created. Fluorescence microscopy confirmed its phenotype revealing that the chitin and the new ß-1,3-glucan profiles were elevated in the mother cells and in the emerging buds respectively in the fks1Δ cell walls. This combination of PCR with fluorescence microscopy is a quick and easy screening method to determine and verify morphological changes in the S. cerevisiae cell wall.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Compostos de Anilina , Benzenossulfonatos , Parede Celular , Quitina/química , Equinocandinas/genética , Glucanos/química , Glucosiltransferases/genética , Proteínas de Membrana/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
Environ Microbiol ; 22(6): 2292-2311, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32239586

RESUMO

The antifungal echinocandin lipopeptide, acrophiarin, was circumscribed in a patent in 1979. We confirmed that the producing strain NRRL 8095 is Penicillium arenicola and other strains of P. arenicola produced acrophiarin and acrophiarin analogues. Genome sequencing of NRRL 8095 identified the acrophiarin gene cluster. Penicillium arenicola and echinocandin-producing Aspergillus species belong to the family Aspergillaceae of the Eurotiomycetes, but several features of acrophiarin and its gene cluster suggest a closer relationship with echinocandins from Leotiomycete fungi. These features include hydroxy-glutamine in the peptide core instead of a serine or threonine residue, the inclusion of a non-heme iron, α-ketoglutarate-dependent oxygenase for hydroxylation of the C3 of the glutamine, and a thioesterase. In addition, P. arenicola bears similarity to Leotiomycete echinocandin-producing species because it exhibits self-resistance to exogenous echinocandins. Phylogenetic analysis of the genes of the echinocandin biosynthetic family indicated that most of the predicted proteins of acrophiarin gene cluster exhibited higher similarity to the predicted proteins of the pneumocandin gene cluster of the Leotiomycete Glarea lozoyensis than to those of the echinocandin B gene cluster from A. pachycristatus. The fellutamide gene cluster and related gene clusters are recognized as relatives of the echinocandins. Inclusion of the acrophiarin gene cluster into a comprehensive phylogenetic analysis of echinocandin gene clusters indicated the divergent evolutionary lineages of echinocandin gene clusters are descendants from a common ancestral progenitor. The minimal 10-gene cluster may have undergone multiple gene acquisitions or losses and possibly horizontal gene transfer after the ancestral separation of the two lineages.


Assuntos
Anti-Infecciosos/metabolismo , Ascomicetos , Aspergillus , Equinocandinas , Lipopeptídeos , Penicillium , Ascomicetos/genética , Aspergillus/genética , Equinocandinas/biossíntese , Equinocandinas/genética , Lipopeptídeos/biossíntese , Lipopeptídeos/genética , Família Multigênica , Penicillium/genética
11.
Prep Biochem Biotechnol ; 50(8): 745-752, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32125248

RESUMO

Echinocandin B, a kind of antimycotic with cyclic lipo-hexapeptides, was produced by fermentation with Aspergillus nidulans using fructose as main carbon source. The objective of this study was to screen a high-yield mutant capable of using cheap starch as main carbon source by atmospheric and room temperature plasma (ARTP) treatment in order to decrease the production cost of echinocandin B. A stable mutant A. nidulans ZJB19033, which can use starch as optimal carbon source instead of expensive fructose, was selected from two thousands isolates after several cycles of ARTP mutagenesis. To further increase the production of echinocandin B, the optimization of fermentation medium was performed by response surface methodology (RSM), employing Plackett-Burman design (PBD) followed by Box-Behnken design (BBD). The optimized fermentation medium provided the optimal yield of echinocandin B, 2425.9 ± 43.8 mg/L, 1.3-fold compared to unoptimized medium. The results indicated that the mutant could achieve high echinocandin B production using cheap starch as main carbon source, and the cost of carbon sources in fermentation medium reduced dramatically by about 45%.


Assuntos
Aspergillus nidulans/genética , Equinocandinas/genética , Proteínas Fúngicas/genética , Mutagênese , Amido/metabolismo , Aspergillus nidulans/metabolismo , Meios de Cultura/metabolismo , Equinocandinas/metabolismo , Fermentação , Proteínas Fúngicas/metabolismo , Microbiologia Industrial/métodos
12.
Molecules ; 24(17)2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31470665

RESUMO

Fungal infection is a leading cause of mortality in immunocompromised population; thus, it is urgent to develop new and safe antifungal agents. Different from human cells, fungi have a cell wall, which is composed mainly of polysaccharide glucan and chitin. The unique cell wall structure is an ideal target for antifungal drugs. In this research, a chemical-genetic method was used to isolate antifungal agents that target chitin synthesis in yeast cells. From a compound library, we isolated two benzothiazole compounds that showed greater toxicity to yeast mutants lacking glucan synthase Fks1 compared to wild-type yeast cells and mutants lacking chitin synthase Chs3. Both of them inhibited the activity of chitin synthase in vitro and reduced chitin level in yeast cells. Besides, these compounds showed clear synergistic antifungal effect with a glucan synthase inhibitors caspofungin. Furthermore, these compounds inhibited the growth of Saccharomyces cerevisiae and opportunistic pathogen Candida albicans. Surprisingly, the genome-wide mass-spectrometry analysis showed decreased protein level of chitin synthases in cells treated with one of these drugs, and this decrease was not a result of downregulation of gene transcription. Therefore, we successfully identified two new antifungal agents that inhibit chitin synthesis using a chemical-genetic method.


Assuntos
Antifúngicos/farmacologia , Benzotiazóis/farmacologia , Candida albicans/efeitos dos fármacos , Quitina Sintase/genética , Quitina/antagonistas & inibidores , Equinocandinas/genética , Regulação Fúngica da Expressão Gênica , Glucosiltransferases/genética , Proteínas de Membrana/genética , Proteínas de Saccharomyces cerevisiae/genética , Antifúngicos/química , Benzotiazóis/química , Candida albicans/enzimologia , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Caspofungina/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Quitina/biossíntese , Quitina Sintase/antagonistas & inibidores , Quitina Sintase/deficiência , Combinação de Medicamentos , Descoberta de Drogas , Sinergismo Farmacológico , Equinocandinas/antagonistas & inibidores , Equinocandinas/deficiência , Perfilação da Expressão Gênica , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/deficiência , Ensaios de Triagem em Larga Escala , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/deficiência , Testes de Sensibilidade Microbiana , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
13.
World J Microbiol Biotechnol ; 35(7): 109, 2019 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-31280382

RESUMO

Echinocandin B (ECB) is an important lipohexapeptide used for chemical manufacture of the antifungal agent anidulafungin. Sterigmatocystin (ST) is a polyketide mycotoxin produced by certain species of Aspergillus such as Aspergillus delacroxii SIPIW15, which could produce both ECB and ST. However, the presence of the potent carcinogen ST will greatly affect the quality and safety of ECB production. Therefore, it is essential to eliminate the ST biosynthesis and increase ECB titers in Asp. delacroxii SIPIW15. In this study, the polyketide synthase gene (stcA) required for biosynthesis of ST and its flanking region in Asp. delacroxii SIPIW15 were cloned, sequenced and analyzed firstly. Based on Agrobacterium-mediated transformation, the ΔstcA mutant AMT-1 was obtained and its yield of ECB was increased by 40% without ST detected at the same time as compared to the original strain. The results of the fed-batch experiments showed that the ECB yield of the ΔstcA strain AMT-1 was increased to 2163 ± 31 mg/l and no ST was detected in the 50 l bioreactor. This work suggested that the ΔstcA strain AMT-1 has the potential for application in ECB production improvement, and more importantly, to eliminate ST-related environmental pollution in ECB fermentation industry.


Assuntos
Aspergillus/genética , Aspergillus/metabolismo , Equinocandinas/biossíntese , Equinocandinas/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Genes Fúngicos/genética , Policetídeo Sintases/genética , Esterigmatocistina/biossíntese , Agrobacterium/genética , Anidulafungina , Antifúngicos , Sequência de Bases , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , DNA Fúngico/isolamento & purificação , Fermentação , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Metabolismo Secundário/genética , Transformação Genética
14.
Biotechnol Appl Biochem ; 66(4): 626-633, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31069846

RESUMO

The ecdB is a transcription factor, located in the echinocandin B biosynthetic gene cluster of Emericella rugulosa NRRL11440. Here, we validated the ecdB mRNA sequence for functional expression and to explore the role of EcdB protein in the echinocandin B regulation. The sequence alignment study revealed that the ecdB coding sequence was found 75 bp shorter than the reference mRNA sequence. This coding sequence encodes for EcdB protein and comprises three conserved domains; DNA binding domain (DBD), coiled-coil domain, and signature middle homology region. The full-length and DBD (truncated) DNA sequences were expressed in Escherichia coli BL21(DE3) under different tested conditions. The expression of EcdB protein was found to be toxic, which curbs the cell growth. In contrast to truncated protein (GST:EcdB1-54), the full-length (GST:EcdB) protein was expressed at very low titer and not detectable in SDS-PAGE under the varying isopropyl ß-d-1-thiogalactopyranoside (IPTG), temperature, and media conditions. However, GST:EcdB1-54 was successfully purified under standard conditions (0.5 mM IPTG at 0.5OD) with 33 kDa expected size. The functionality of GST:EcdB1-54 was attained by electrophoretic mobility shift assay study as a clear band shifting showed with ecdA promoter. Taken together, we conclude that EcdB interacts with the ecdA promoter that reflected to require for echinocandin B regulation.


Assuntos
Aspergillus nidulans/metabolismo , Equinocandinas/biossíntese , Proteínas Fúngicas/biossíntese , Família Multigênica , Aspergillus nidulans/química , Equinocandinas/genética , Equinocandinas/isolamento & purificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Família Multigênica/genética
15.
J Ind Microbiol Biotechnol ; 45(9): 767-780, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29948195

RESUMO

Metabolic profiling was used to discover mechanisms of increased pneumocandin B0 production in a high-yield strain by comparing it with its parent strain. Initially, 79 intracellular metabolites were identified, and the levels of 15 metabolites involved in six pathways were found to be directly correlated with pneumocandin B0 biosynthesis. Then by combining the analysis of key enzymes, acetyl-CoA and NADPH were identified as the main factors limiting pneumocandin B0 biosynthesis. Other metabolites, such as pyruvate, α-ketoglutaric acid, lactate, unsaturated fatty acids and previously unreported metabolite γ-aminobutyric acid were shown to play important roles in pneumocandin B0 biosynthesis and cell growth. Finally, the overall metabolic mechanism hypothesis was formulated and a rational feeding strategy was implemented that increased the pneumocandin B0 yield from 1821 to 2768 mg/L. These results provide practical and theoretical guidance for strain selection, medium optimization, and genetic engineering for pneumocandin B0 production.


Assuntos
Acetilcoenzima A/metabolismo , Ascomicetos/genética , Equinocandinas/genética , Equinocandinas/metabolismo , Glucose/química , Metabolômica , Aminoácidos/química , Antifúngicos/química , Biomassa , Ciclo do Ácido Cítrico , Ácidos Graxos/química , Ácidos Graxos Insaturados/química , Engenharia Genética , Microbiologia Industrial , Ácidos Cetoglutáricos/química , Ácido Láctico/química , Manitol/química , Modelos Teóricos , NADP/química , Via de Pentose Fosfato , Ácido Pirúvico/química
16.
Biochem Biophys Res Commun ; 500(3): 603-608, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29665361

RESUMO

FKS1 encodes a ß-1,3-glucan synthase, which is a key player in cell wall assembly in Saccharomyces cerevisiae. Here we analyzed the global transcriptomic changes in the FKS1 mutant to establish a correlation between the changes in the cell wall of the FKS1 mutant and the molecular mechanism of cell wall maintenance. These transcriptomic profiles showed that there are 1151 differentially expressed genes (DEGs) in the FKS1 mutant. Through KEGG pathway analysis of the DEGs, the MAPK pathway and seven pathways involved in carbon metabolism were significantly enriched. We found that the MAPK pathway is activated for FKS1 mutant survival and the synthesis of cell wall components are reinforced in the FKS1 mutant. Our results confirm that the FKS1 mutant has a ß-1,3-glucan defect that affects the cell wall and partly elucidate the molecular mechanism responsible for cell wall synthesis. Our greater understanding of these mechanisms helps to explain how the FKS1 mutant survives, has useful implications for the study of similar pathways in other fungi, and increases the theoretical foundation for the regulation of the cell wall in S. cerevisiae.


Assuntos
Carbono/metabolismo , Parede Celular/metabolismo , Equinocandinas/genética , Glucosiltransferases/genética , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/genética , Mutação/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Análise de Sequência de RNA , Transcriptoma/genética , Regulação Fúngica da Expressão Gênica , Glucosamina/metabolismo , Glucose/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Manose/metabolismo
17.
Int J Food Microbiol ; 278: 1-10, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-29689332

RESUMO

Results from this study explored the inhibitory effect of RHO1 gene (GenBank accession number KY859864) from the antagonistic yeast, Cryptococcus laurentii ZJU10, on the control of Penicillium expansum in pear fruit and its possible mechanism involved. The RHO1 gene was successfully cloned and overexpressed in Saccharomyces cerevisiae. Sequence analysis showed high similarity with Rho family proteins, implying a primary role of Rho1 in the cell wall integrity (CWI) signaling pathway. Gene expression of RHO1 and other five CWI-related genes (including Pkc1, Rlm1, Fks1, Fks2 and Chs3) were significant up-regulated in the treatment of SC/Rho1-induced strain (Saccharomyces cerevisiae transformed with RHO1 and induced by galactose). Meanwhile, SC/Rho1-induced treatment reduced about 61.5% of disease incidence and almost 5-times lower lesion diameter compared to the control. In addition, the growth of transformed strains was slightly lower in contrast to the wild Saccharomyces cerevisiae and the induction of fruit resistance was significantly enhanced, which was tightly linked with triggering stronger host defensive responses by priming activation. This is the first study that Rho1 has a potential function of suppressing fungal disease in harvested fruit by activating CWI signaling pathway and indicates an alternative strategy for postharvest disease management.


Assuntos
Agentes de Controle Biológico/metabolismo , Cryptococcus/metabolismo , Frutas/microbiologia , Penicillium/crescimento & desenvolvimento , Pyrus/microbiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas rho de Ligação ao GTP/genética , Parede Celular/metabolismo , China , Quitina Sintase/genética , Clonagem Molecular , Cryptococcus/genética , Equinocandinas/genética , Glucosiltransferases/genética , Proteínas de Membrana/genética , Doenças das Plantas/microbiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Transdução de Sinais , Proteínas rho de Ligação ao GTP/biossíntese
18.
mBio ; 8(3)2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28611248

RESUMO

Aspergillus fumigatus is an opportunistic fungal pathogen that causes invasive aspergillosis (IA), a life-threatening disease in immunocompromised humans. The echinocandin caspofungin, adopted as a second-line therapy in combating IA, is a ß-1,3-glucan synthase inhibitor, which, when used in high concentrations, reverts the anticipated A. fumigatus growth inhibition, a phenomenon called the "caspofungin paradoxical effect" (CPE). The CPE has been widely associated with increased chitin content in the cell wall due to a compensatory upregulation of chitin synthase-encoding genes. Here, we demonstrate that the CPE is dependent on the cell wall integrity (CWI) mitogen-activated protein kinase MpkAMPK1 and its associated transcription factor (TF) RlmARLM1, which regulate chitin synthase gene expression in response to different concentrations of caspofungin. Furthermore, the calcium- and calcineurin-dependent TF CrzA binds to and regulates the expression of specific chitin synthase genes during the CPE. These results suggest that the regulation of cell wall biosynthetic genes occurs by several cellular signaling pathways. In addition, CrzA is also involved in cell wall organization in the absence of caspofungin. Differences in the CPE were also observed between two A. fumigatus clinical isolates, which led to the identification of a novel basic leucine zipper TF, termed ZipD. This TF functions in the calcium-calcineurin pathway and is involved in the regulation of cell wall biosynthesis genes. This study therefore unraveled additional mechanisms and novel factors governing the CPE response, which ultimately could aid in developing more effective antifungal therapies.IMPORTANCE Systemic Aspergillus fumigatus infections are often accompanied by high mortality rates. The fungal cell wall is important for infection as it has immunomodulatory and immunoevasive properties. Paradoxical growth of A. fumigatus in the presence of high concentrations of the cell wall-disturbing agent caspofungin has been observed for more than a decade, although the mechanistic nature of this phenomenon remains largely uncharacterized. Here, we show that the CWI pathway components MpkA and RlmA as well as the calcium/calcineurin-responsive transcription factor CrzA regulate the expression of cell wall biosynthetic genes during the caspofungin paradoxical effect (CPE). Furthermore, an additional, novel calcium/calcineurin-responsive transcription factor was identified to play a role in cell wall biosynthesis gene expression during the CPE. This work paints a crucial role for calcium metabolism in the CPE and provides further insight into the complex regulation of cell wall biosynthesis, which could ultimately lead to the development of more efficient antifungal therapies.


Assuntos
Aspergillus fumigatus/genética , Parede Celular/metabolismo , Quitina Sintase/genética , Equinocandinas/farmacologia , Proteínas Fúngicas/metabolismo , Lipopeptídeos/farmacologia , Fatores de Transcrição/metabolismo , Aspergilose/microbiologia , Aspergillus fumigatus/efeitos dos fármacos , Caspofungina , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Quitina/metabolismo , Equinocandinas/genética , Equinocandinas/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Lipopeptídeos/genética , Lipopeptídeos/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-28242659

RESUMO

Candida guilliermondii shows intrinsic reduced echinocandin susceptibility. It harbors two polymorphisms (L633M and T634A) in the Fks1p hot spot 1 region. Our objective was to confirm that the reduced echinocandin susceptibility of C. guilliermondii is due to those naturally occurring substitutions. We constructed a Saccharomyces cerevisiae mutant in which a region of the FKS1 gene (including hot spot 1) was replaced with that from C. guilliermondii The chimeric mutants showed 32-fold increases in echinocandin MIC values, confirming the hypothesis.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candida/genética , Candidíase/tratamento farmacológico , Equinocandinas/farmacologia , Glucosiltransferases/genética , Proteínas de Membrana/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Substituição de Aminoácidos/genética , Sequência de Bases , Farmacorresistência Fúngica/genética , Equinocandinas/genética , Testes de Sensibilidade Microbiana , Polimorfismo de Nucleotídeo Único/genética , Saccharomyces cerevisiae/efeitos dos fármacos
20.
BMC Genomics ; 17: 570, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27502607

RESUMO

BACKGROUND: Echinocandins are nonribosomal lipopeptides produced by ascommycete fungi. Due to their strong inhibitory effect on fungal cell wall biosynthesis and lack of human toxicity, they have been developed to an important class of antifungal drugs. Since 2012, the biosynthetic gene clusters of most of the main echinocandin variants have been characterized. Especially the comparison of the clusters allows a deeper insight for the biosynthesis of these complex structures. RESULTS: In the genome of the echinocandin B producer Aspergillus nidulans NRRL 8112 we have identified a gene cluster (Ani) that encodes echinocandin biosynthesis. Sequence analyses showed that Ani is clearly delimited from the genomic context and forms a monophyletic lineage with the other echinocandin gene clusters. Importantly, we found that the disjunct genomic location of the echinocandin B gene cluster in A. pachycristatus NRRL 11440 on two separate subclusters, Ecd and Hty, at two loci was likely an artifact of genome misassembly in the absence of a reference sequence. We show that both sequences can be aligned resulting a single cluster with a gene arrangement collinear compared to other clusters of Aspergillus section Nidulantes. The reassembled gene cluster (Ecd/Hty) is identical to a putative gene cluster (AE) that was previously deposited at the NCBI as a sequence from A. delacroxii NRRL 3860. PCR amplification of a part of the gene cluster resulted a sequence that was very similar (97 % identity), but not identical to that of AE. CONCLUSIONS: The Echinocandin B biosynthetic cluster from A. nidulans NRRL 8112 (Ani) is particularly similar to that of A. pachycristatus NRRL 11440 (Ecd/Hty). Ecd/Hty was originally reported as two disjunct sub-clusters Ecd and Hty, but is in fact a continuous sequence with the same gene order as in Ani. According to sequences of PCR products amplified from genomic DNA, the echinocandin B producer A. delacroxii NRRL 3860 is closely related to A. pachycristatus NRRL 11440. A PCR-product from the gene cluster was very similar, but clearly distinct from the sequence published for A. delacroxii NRRL 3860 at the NCBI (No. AB720074). As the NCBI entry is virtually identical with the re-assembled Ecd/Hty cluster, it is likely that it originates from A. pachycristatus NRRL 11440 rather than A. delacroxii NRRL 3860.


Assuntos
Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Equinocandinas/biossíntese , Equinocandinas/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Família Multigênica , Sequência de Bases , Equinocandinas/química , Equinocandinas/metabolismo , Proteínas Fúngicas/química , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA