RESUMO
Echinoderms are important marine organisms that live in a wide range from the intertidal zone to the abyssal zone. Members of this phylum are prone to dramatic population fluctuations that may trigger dramatic shifts in ecosystem structure. Despite the extremely complex nature of the marine environment, the immune systems of echinoderms induce a complex innate immune response to prokaryotic and eukaryotic pathogens. Previous studies showed that many echinoderm disease outbreaks were associated with specific bacteria, whereas recent scientific investigations using newly developed technologies revealed the amazing diversity of viruses in seawater. Viruses are potential pathogens of several infectious diseases of marine echinoderms. We reviewed the discovery of viruses in echinoderms and discussed the relationship between viruses and diseases for the first time. We further summarized the research progress of the potential immune-related genes and signal pathways induced by viruses and poly (I:C). Additionally, numbers of studies showed that active substances extracted from echinoderms, or the compounds synthesized from these substances, have significant antihuman virus ability. This result suggests that the active substances derived from echinoderms provide potential antiviral protection for the organism, which may provide future research directions for the antiviral immunity of echinoderms. Thus, this review also collected information on the antiviral activities of biologically active substances from echinoderms, which may pave the way for new trends in antiviral immunity for echinoderms and antiviral drugs in humans.
Assuntos
Fatores de Restrição Antivirais/imunologia , Organismos Aquáticos/imunologia , Equinodermos/imunologia , Imunidade Inata/imunologia , Vírus/imunologia , Animais , Peptídeos Antimicrobianos/imunologia , Peptídeos Antimicrobianos/metabolismo , Fatores de Restrição Antivirais/genética , Organismos Aquáticos/genética , Organismos Aquáticos/virologia , Equinodermos/genética , Equinodermos/virologia , Ecossistema , Hemócitos/imunologia , Hemócitos/metabolismo , Hemócitos/virologia , Humanos , Imunidade Humoral/imunologia , Imunidade Inata/genética , Fagocitose/imunologia , Vírus/crescimento & desenvolvimento , Vírus/isolamento & purificaçãoRESUMO
Sea cucumbers (Holothuroidea; Echinodermata) are ecologically significant constituents of benthic marine habitats. We surveilled RNA viruses inhabiting eight species (representing four families) of holothurian collected from four geographically distinct locations by viral metagenomics, including a single specimen of Apostichopus californicus affected by a hitherto undocumented wasting disease. The RNA virome comprised genome fragments of both single-stranded positive sense and double stranded RNA viruses, including those assigned to the Picornavirales, Ghabrivirales, and Amarillovirales. We discovered an unconventional flavivirus genome fragment which was most similar to a shark virus. Ghabivirales-like genome fragments were most similar to fungal totiviruses in both genome architecture and homology and had likely infected mycobiome constituents. Picornavirales, which are commonly retrieved in host-associated viral metagenomes, were similar to invertebrate transcriptome-derived picorna-like viruses. The greatest number of viral genome fragments was recovered from the wasting A. californicus library compared to the asymptomatic A. californicus library. However, reads from the asymptomatic library recruited to nearly all recovered wasting genome fragments, suggesting that they were present but not well represented in the grossly normal specimen. These results expand the known host range of flaviviruses and suggest that fungi and their viruses may play a role in holothurian ecology.
Assuntos
Equinodermos/virologia , Flavivirus/classificação , Vírus de RNA/classificação , Pepinos-do-Mar/virologia , Viroma , Animais , Vírus de DNA , Ecologia , Flavivirus/genética , Genoma Viral , Metagenoma , Metagenômica , Vírus de RNA/genética , Água do Mar/virologiaRESUMO
Echinoderms are prone to large population fluctuations that can be mediated by pervasive disease events. For the majority of echinoderm disease events the causative pathogen is unknown. Viruses have only recently been explored as potential pathogens using culture-independent techniques though little information currently exists on echinoderm viruses. In this study, ten circular ssDNA viruses were discovered in tissues among an asteroid (Asterias forbesi), an echinoid (Strongylocentrotus droebachiensis) and a holothurian (Parastichopus californicus) using viral metagenomics. Genome architecture and sequence similarity place these viruses among the rapidly expanding circular rep-encoding single stranded (CRESS) DNA viral group. Multiple genomes from the same tissue were no more similar in sequence identity to each other than when compared to other known CRESS DNA viruses. The results from this study are the first to describe a virus from a holothurian and continue to show the ubiquity of these viruses among aquatic invertebrates.