Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
Curr Protoc ; 4(6): e1060, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923371

RESUMO

The endoplasmic reticulum (ER) is the main reservoir of Ca2+ of the cell. Accurate and quantitative measuring of Ca2+ dynamics within the lumen of the ER has been challenging. In the last decade a few genetically encoded Ca2+ indicators have been developed, including a family of fluorescent Ca2+ indicators, dubbed GFP-Aequorin Proteins (GAPs). They are based on the fusion of two jellyfish proteins, the green fluorescent protein (GFP) and the Ca2+-binding protein aequorin. GAP Ca2+ indicators exhibit a combination of several features: they are excitation ratiometric indicators, with reciprocal changes in the fluorescence excited at 405 and 470 nm, which is advantageous for imaging experiments; they exhibit a Hill coefficient of 1, which facilitates the calibration of the fluorescent signal into Ca2+ concentrations; they are insensible to variations in the Mg2+ concentrations or pH variations (in the 6.5-8.5 range); and, due to the lack of mammalian homologues, these proteins have a favorable expression in transgenic animals. A low Ca2+ affinity version of GAP, GAP3 (KD ≅ 489 µM), has been engineered to conform with the estimated [Ca2+] in the ER. GAP3 targeted to the lumen of the ER (erGAP3) can be utilized for imaging intraluminal Ca2+. The ratiometric measurements provide a quantitative method to assess accurate [Ca2+]ER, both dynamically and at rest. In addition, erGAP3 can be combined with synthetic cytosolic Ca2+ indicators to simultaneously monitor ER and cytosolic Ca2+. Here, we provide detailed methods to assess erGAP3 expression and to perform Ca2+ imaging, either restricted to the ER lumen, or simultaneously in the ER and the cytosol. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Detection of erGAP3 in the ER by immunofluorescence Basic Protocol 2: Monitoring ER Ca2+ Basic Protocol 3: Monitoring ER- and cytosolic-Ca2+ Support Protocol: Generation of a stable cell line expressing erGAP3.


Assuntos
Cálcio , Retículo Endoplasmático , Corantes Fluorescentes , Proteínas de Fluorescência Verde , Retículo Endoplasmático/metabolismo , Cálcio/metabolismo , Cálcio/análise , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Corantes Fluorescentes/química , Humanos , Equorina/metabolismo , Equorina/genética , Animais
2.
Genet Med ; 25(12): 100979, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37689994

RESUMO

PURPOSE: CNGA3 encoding the main subunit of the cyclic nucleotide-gated ion channel in cone photoreceptors is one of the major disease-associated genes for achromatopsia. Most CNGA3 variants are missense variants with the majority being functionally uncharacterized and therefore hampering genetic diagnosis. In light of potential gene therapy, objective variant pathogenicity assessment is essential. METHODS: We established a medium-throughput aequorin-based luminescence bioassay allowing mutant CNGA3 channel function assessment via quantification of CNGA3 channel-mediated calcium influx in a cell culture system, thereby enabling American College of Medical Genetics and Genomics/Association for Molecular Pathology-based variant re-classification. RESULTS: We provide functional read-out obtained for 150 yet uncharacterized CNGA3 missense substitutions of which 55 were previously categorized as variants of uncertain significance (VUS) identifying 25 as functionally normal and 125 as functionally abnormal. These data enabled the American College of Medical Genetics and Genomics/ Association for Molecular Pathology-based variant re-classification of 52/55 VUS as either benign, likely benign, or likely pathogenic reaching a VUS re-classification rate of 94.5%. CONCLUSION: Our aequorin-based bioassay allows functionally ensured clinical variant interpretation for 150 CNGA3 missense variants enabling and supporting VUS re-classification and assuring molecular diagnosis to patients affected by CNGA3-associated achromatopsia, hereby identifying patients eligible for future gene therapy trials on this disease.


Assuntos
Defeitos da Visão Cromática , Humanos , Defeitos da Visão Cromática/diagnóstico , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/patologia , Equorina/genética , Células Fotorreceptoras Retinianas Cones/patologia , Mutação de Sentido Incorreto/genética , Genômica , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética
3.
Biochim Biophys Acta Mol Cell Res ; 1870(6): 119481, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37142127

RESUMO

Over the last years, there is accumulating evidence that acidic organelles can accumulate and release Ca2+ upon cell activation. Hence, reliable recording of Ca2+ dynamics in these compartments is essential for understanding the physiopathological aspects of acidic organelles. Genetically encoded Ca2+ indicators (GECIs) are valuable tools to monitor Ca2+ in specific locations, although their use in acidic compartments is challenging due to the pH sensitivity of most available fluorescent GECIs. By contrast, bioluminescent GECIs have a combination of features (marginal pH sensitivity, low background, no phototoxicity, no photobleaching, high dynamic range and tunable affinity) that render them advantageous to achieve an enhanced signal-to-noise ratio in acidic compartments. This article reviews the use of bioluminescent aequorin-based GECIs targeted to acidic compartments. A need for more measurements in highly acidic compartments is identified.


Assuntos
Equorina , Cálcio , Equorina/genética , Organelas
4.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047842

RESUMO

Hydromedusan photoproteins responsible for the bioluminescence of a variety of marine jellyfish and hydroids are a unique biochemical system recognized as a stable enzyme-substrate complex consisting of apoprotein and preoxygenated coelenterazine, which is tightly bound in the protein inner cavity. The binding of calcium ions to the photoprotein molecule is only required to initiate the light emission reaction. Although numerous experimental and theoretical studies on the bioluminescence of these photoproteins were performed, many features of their functioning are yet unclear. In particular, which ionic state of dioxetanone intermediate decomposes to yield a coelenteramide in an excited state and the role of the water molecule residing in a proximity to the N1 atom of 2-hydroperoxycoelenterazine in the bioluminescence reaction are still under discussion. With the aim to elucidate the function of this water molecule as well as to pinpoint the amino acid residues presumably involved in the protonation of the primarily formed dioxetanone anion, we constructed a set of single and double obelin and aequorin mutants with substitutions of His, Trp, Tyr, and Ser to residues with different properties of side chains and investigated their bioluminescence properties (specific activity, bioluminescence spectra, stopped-flow kinetics, and fluorescence spectra of Ca2+-discharged photoproteins). Moreover, we determined the spatial structure of the obelin mutant with a substitution of His64, the key residue of the presumable proton transfer, to Phe. On the ground of the bioluminescence properties of the obelin and aequorin mutants as well as the spatial structures of the obelin mutants with the replacements of His64 and Tyr138, the conclusion was made that, in fact, His residue of the Tyr-His-Trp triad and the water molecule perform the "catalytic function" by transferring the proton from solvent to the dioxetanone anion to generate its neutral ionic state in complex with water, as only the decomposition of this form of dioxetanone can provide the highest light output in the light-emitting reaction of the hydromedusan photoproteins.


Assuntos
Equorina , Prótons , Equorina/genética , Equorina/química , Água , Conformação Proteica , Proteínas Luminescentes/metabolismo , Mutagênese , Cálcio/metabolismo , Medições Luminescentes
5.
Biochem Biophys Res Commun ; 624: 23-27, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-35932575

RESUMO

The bright bioluminescence of ctenophores inhabiting the oceans worldwide is caused by light-sensitive Ca2+-regulated photoproteins. By now, the cDNAs encoding photoproteins from the four different ctenophore species have been cloned and the recombinant proteins have been characterized to some extent. In this work, we report on the specific activity and the quantum yield of bioluminescence reaction as well as the absorbance characteristics of high-purity recombinant berovin. To determine those, we applied the amino acid composition analysis to accurately measure berovin concentration and the recombinant aequorin as a light standard to convert relative light units to quanta. The extinction coefficient of 1% berovin solution at 435 nm was found to be 1.82. The one can be employed to precisely determine the protein concentration of active photoproteins from other ctenophore species. The specific activity and the bioluminescence quantum yield were respectively found to be 1.98 × 1015 quanta/mg and 0.083. These values appeared to be several times lower than those of the cnidarian photoproteins, which is obviously due to differences in amino acid environments of the substrate in active sites of these photoproteins.


Assuntos
Ctenóforos , Equorina/genética , Equorina/metabolismo , Aminoácidos/metabolismo , Animais , Cálcio/metabolismo , Ctenóforos/química , Ctenóforos/genética , Medições Luminescentes , Proteínas Luminescentes/metabolismo
6.
Methods Mol Biol ; 2524: 271-280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821478

RESUMO

We introduce how to image calcium ion levels in the heart of zebrafish embryos and larvae up to 5 days post-fertilization with the photoprotein green fluorescent protein (GFP)-aequorin (GA) in the transgenic line Tg(myl7:GA). Incubation of the embryos with CTZ to obtain the functional photoprotein yields few emission counts, suggesting that, when the heart is beating, the rate of aequorin consumption is faster than that of the reconstitution with CTZ. In this chapter, we present an improved aequorin reconstitution protocol. We further describe the experimental procedure as well as the bioluminescence data analysis and processing.


Assuntos
Equorina , Peixe-Zebra , Equorina/genética , Equorina/metabolismo , Animais , Animais Geneticamente Modificados , Cálcio/metabolismo , Íons/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Peixe-Zebra/metabolismo
7.
Plant J ; 109(4): 1014-1027, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34837294

RESUMO

Precise measurements of dynamic changes in free Ca2+ concentration in the lumen of the plant endoplasmic reticulum (ER) have been lacking so far, despite increasing evidence for the contribution of this intracellular compartment to Ca2+ homeostasis and signalling in the plant cell. In the present study, we targeted an aequorin chimera with reduced Ca2+ affinity to the ER membrane and facing the ER lumen. To this aim, the cDNA for a low-Ca2+ -affinity aequorin variant (AEQmut) was fused to the nucleotide sequence encoding a non-cleavable N-terminal ER signal peptide (fl2). The correct targeting of fl2-AEQmut was confirmed by immunocytochemical analyses in transgenic Arabidopsis thaliana (Arabidopsis) seedlings. An experimental protocol well-established in animal cells - consisting of ER Ca2+ depletion during photoprotein reconstitution followed by ER Ca2+ refilling - was applied to carry out ER Ca2+ measurements in planta. Rapid and transient increases of the ER luminal Ca2+ concentration ([Ca2+ ]ER ) were recorded in response to different environmental stresses, displaying stimulus-specific Ca2+ signatures. The comparative analysis of ER and chloroplast Ca2+ dynamics indicates a complex interplay of these organelles in shaping cytosolic Ca2+ signals during signal transduction events. Our data highlight significant differences in basal [Ca2+ ]ER and Ca2+ handling by plant ER compared to the animal counterpart. The set-up of an ER-targeted aequorin chimera extends and complements the currently available toolkit of organelle-targeted Ca2+ indicators by adding a reporter that improves our quantitative understanding of Ca2+ homeostasis in the plant endomembrane system.


Assuntos
Equorina/metabolismo , Arabidopsis/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Equorina/genética , Animais , Arabidopsis/genética , Cloroplastos/metabolismo , Citosol/metabolismo , Homeostase , Proteínas Luminescentes/metabolismo , Plântula/metabolismo
8.
STAR Protoc ; 2(2): 100558, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34041505

RESUMO

Environmental stimuli evoke transient increases of the cytosolic Ca2+ level. To identify upstream components of Ca2+ signaling, we have optimized two forward genetic screening systems based on Ca2+ reporter aequorin. AEQsig6 and AEQub plants were used for generating ethyl methanesulfonate (EMS)-mutagenized libraries. The AEQsig6 EMS-mutagenized library was preferably used to screen the mutants with reduced Ca2+ signal response due to its high effectiveness, while the AEQub EMS-mutagenized library was used for screening of the mutants with altered Ca2+ signal response. For complete details on the use and execution of this protocol, please refer to Chen et al. (2020) and Zhu et al. (2013).


Assuntos
Equorina , Proteínas de Arabidopsis , Arabidopsis/genética , Sinalização do Cálcio/genética , Mutação/genética , Equorina/genética , Equorina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biblioteca Gênica , Medições Luminescentes , Sequenciamento Completo do Genoma
9.
Mol Pharmacol ; 99(6): 460-468, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33827965

RESUMO

Trafficking deficiency caused by missense mutations is a well known phenomenon that occurs for mutant, misfolded proteins. Typically, the misfolded protein is retained by the protein quality-control system and degraded by the endoplasmic reticulum-associated protein degradation pathway and thus does not reach its destination, although residual function of the protein may be preserved. Chemical and pharmacological chaperones can improve the targeting of trafficking-deficient proteins and thus may be promising candidates for therapeutic applications. Here, we report the application of a cellular bioassay based on the bioluminescent calcium reporter aequorin to quantify surface expression of mutant CNGA3 channels associated with the autosomal recessively inherited retinal disease achromatopsia. A screening of 77 compounds enabled the identification of effective chemical and pharmacological chaperones that result in a 1.5- to 4.8-fold increase of surface expression of mutant CNGA3. Using selected compounds, we confirmed that the rescue of the defective trafficking is not limited to a single mutation in CNGA3. Active compounds and our structure-activity correlated data for the dihydropyridine compound class may provide valuable information for developing a treatment of the trafficking defect in achromatopsia. SIGNIFICANCE STATEMENT: This study describes a novel luminescence-based assay to detect the surface expression of mutant trafficking-deficient CNGA3 channels based on the calcium-sensitive photoprotein aequorin. Using this assay for a compound screening, this study identifies novel chemical and pharmacological chaperones that restore the surface localization of mutant trafficking-deficient CNGA3 channels. The results from this work may serve as starting point for the development of potent compounds that rescue trafficking deficiencies in the autosomal recessively inherited retinal disease achromatopsia.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/efeitos dos fármacos , Mutação de Sentido Incorreto , Equorina/genética , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Defeitos da Visão Cromática/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Di-Hidropiridinas/farmacologia , Genes Recessivos , Células HEK293 , Humanos , Transporte Proteico
10.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105848

RESUMO

Considerable efforts have been focused on shifting the wavelength of aequorin Ca2+-dependent blue bioluminescence through fusion with fluorescent proteins. This approach has notably yielded the widely used GFP-aequorin (GA) Ca2+ sensor emitting green light, and tdTomato-aequorin (Redquorin), whose bioluminescence is completely shifted to red, but whose Ca2+ sensitivity is low. In the present study, the screening of aequorin mutants generated at twenty-four amino acid positions in and around EF-hand Ca2+-binding domains resulted in the isolation of six aequorin single or double mutants (AequorinXS) in EF2, EF3, and C-terminal tail, which exhibited markedly higher Ca2+ sensitivity than wild-type aequorin in vitro. The corresponding Redquorin mutants all showed higher Ca2+ sensitivity than wild-type Redquorin, and four of them (RedquorinXS) matched the Ca2+ sensitivity of GA in vitro. RedquorinXS mutants exhibited unaltered thermostability and peak emission wavelengths. Upon stable expression in mammalian cell line, all RedquorinXS mutants reported the activation of the P2Y2 receptor by ATP with higher sensitivity and assay robustness than wt-Redquorin, and one, RedquorinXS-Q159T, outperformed GA. Finally, wide-field bioluminescence imaging in mouse neocortical slices showed that RedquorinXS-Q159T and GA similarly reported neuronal network activities elicited by the removal of extracellular Mg2+. Our results indicate that RedquorinXS-Q159T is a red light-emitting Ca2+ sensor suitable for the monitoring of intracellular signaling in a variety of applications in cells and tissues, and is a promising candidate for the transcranial monitoring of brain activities in living mice.


Assuntos
Equorina/genética , Cálcio/metabolismo , Proteínas Luminescentes/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Equorina/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Células CHO , Cálcio/farmacologia , Cricetulus , Motivos EF Hand , Células HEK293 , Humanos , Medições Luminescentes , Proteínas Luminescentes/genética , Camundongos Endogâmicos C57BL , Mutação , Rede Nervosa , Técnicas de Cultura de Órgãos , Estabilidade Proteica , Receptores Purinérgicos P2Y2/genética , Receptores Purinérgicos P2Y2/metabolismo , Proteínas Recombinantes de Fusão/genética
11.
J Vis Exp ; (162)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32804167

RESUMO

Forward genetic screens have been important tools in the unbiased identification of genetic components involved in several biological pathways. The basis of the screen is to generate a mutant population that can be screened with a phenotype of interest. EMS (ethyl methane sulfonate) is a commonly used alkylating agent for inducing random mutation in a classical forward genetic screen to identify multiple genes involved in any given process. Cytosolic calcium (Ca2+) elevation is a key early signaling pathway that is activated upon stress perception. However the identity of receptors, channels, pumps and transporters of Ca2+ is still elusive in many study systems. Aequorin is a cellular calcium reporter protein isolated from Aequorea victoria and stably expressed in Arabidopsis. Exploiting this, we designed a forward genetic screen in which we EMS-mutagenized the aequorin transgenic. The seeds from the mutant plants were collected (M1) and screening for the phenotype of interest was carried out in the segregating (M2) population. Using a 96-well high-throughput Ca2+ measurement protocol, several novel mutants can be identified that have a varying calcium response and are measured in real time. The mutants with the phenotype of interest are rescued and propagated till a homozygous mutant plant population is obtained. This protocol provides a method for forward genetic screens in Ca2+ reporter background and identify novel Ca2+ regulated targets.


Assuntos
Equorina/genética , Sinalização do Cálcio , Cálcio/metabolismo , Genes Reporter , Testes Genéticos , Transgenes , Equorina/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Mutagênese/genética , Mutação/genética , Fenótipo , Plantas Geneticamente Modificadas , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/metabolismo
12.
J Plant Physiol ; 252: 153190, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32688165

RESUMO

Calcium (Ca) is an essential element for all organisms. In animal cells, the plasma membrane-localized Ca receptor CaSR coupled to a phospholipase C (PLC)-dependent signaling cascade monitors extracellular Ca2+ concentrations ([Ca2+]ext) and responds with increases in cytosolic calcium concentrations ([Ca2+]cyt). Plant roots encounter variable soil conditions, but how they sense changes in [Ca2+]ext is largely unknown. In this study, we demonstrate that increasing [Ca2+]ext evokes a transient increase in [Ca2+] in the cytosol, mitochondria, and nuclei of Arabidopsis thaliana root cells. These increases were strongly desensitized to repeat applications of [Ca2+]ext, a typical feature of receptor-mediated cellular signaling in animal and plant cells. Treatment with gadolinium (Gd3+), a CaSR activator in animal cells, induced concentration-dependent increases in [Ca2+]cyt in roots, which showed self-desensitization and cross-desensitization to [Ca2+]ext-induced increases in [Ca2+]cyt (EICC). EICC was sensitive to extracellular H+, K+, Na+, and Mg2+ levels. Treatment with the PLC inhibitor neomycin suppressed EICC and Ca accumulation in roots. The inhibitory effect of neomycin on root elongation was fully rescued by increasing [Ca2+]ext but not [Mg2+] or [K+] in the growth medium. These results suggest that [Ca2+]ext and the movement of Ca2+ into the cytosol of plant roots are regulated by a receptor-mediated signaling pathway involving PLC.


Assuntos
Arabidopsis/enzimologia , Cálcio/metabolismo , Neomicina/farmacologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Inibidores da Síntese de Proteínas/farmacologia , Fosfolipases Tipo C/antagonistas & inibidores , Equorina/genética , Equorina/metabolismo , Arabidopsis/crescimento & desenvolvimento , Citosol/metabolismo , Genes Reporter , Proteínas de Plantas/antagonistas & inibidores , Raízes de Plantas/enzimologia , Transdução de Sinais
13.
Anal Chem ; 91(20): 12768-12774, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31500415

RESUMO

Although the superoxide anion (O2-·) is generated during normal cellular respiration and has fundamental roles in a wide range of cellular processes, such as cell proliferation, migration, apoptosis, and homeostasis, its dysregulation is associated with a variety of diseases. Regarding these prominent roles in biological systems, the development of accurate methods for quantification of superoxide anion has attracted tremendous research attention. Here, we evaluated aequorin, a calcium-dependent photoprotein, as a potential bioluminescent reporter protein of superoxide anion. The mechanism is based on the measurement of aequorin bioluminescence, where the lower the concentration of coelenterazine under the oxidation of superoxide anion, the lower the amount aequorin regeneration, leading to a decrease in bioluminescence. The bioluminescence intensity of aequorin was proportional to the concentration of superoxide anion in the range from 4 to 40 000 pM with a detection limit (S/N = 3) of 1.2 pM, which was 5000-fold lower than those of the chemiluminescence methods. The proposed method exhibited high sensitivity and has been successfully applied to the determination of superoxide anion in the plant cell samples. The results could suggest a photoprotein-based bioluminescence system as a highly sensitive, specific, and simple bioluminescent probe for in vitro detection of superoxide anion.


Assuntos
Equorina/química , Medições Luminescentes/métodos , Superóxidos/análise , Equorina/genética , Equorina/metabolismo , Imidazóis/química , Limite de Detecção , Pirazinas/química , Reprodutibilidade dos Testes , Superóxidos/química , Nicotiana/classificação , Nicotiana/metabolismo
14.
Analyst ; 144(10): 3250-3259, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31049499

RESUMO

The trend for improved more precise diagnostics and management of disease heavily relies on the measurement of panels of biomarkers in physiological samples of patients. Ideally, the ultimate goal would be to detect as many clinically relevant biomarkers as possible in a single drop of blood, achieving quick, sensitive, reproducible, and affordable detection in small volume physiological samples. Bioluminescent (BL) proteins provide many of the desired characteristics required for such labels, including detection at extremely low concentrations, no interference from physiological fluids leading to excellent detection limits, and compatibility with many miniaturized systems. However, to date the use of BL proteins has been restricted by their limited multiplexing capabilities. BL proteins typically exhibit a single emission profile and decay kinetics making the simultaneous detection of multiple analytes difficult. Recent progresses in this area include the use of two different engineered luminescent proteins to achieve resolved signals via one-dimensional time resolution. This approach, however, to date only lead to a dual analyte detection. Herein, we have demonstrated that using a two-dimensional approach that combines both temporal and spatial resolution, we can expand the multiplexing capabilities of bioluminescent proteins. To that end, the photoprotein aequorin (AEQ) has been employed for the simultaneous detection of three separate analytes in a single well, differentiated through the use of three discrete time/wavelength windows. Through a combination of site-specific mutations and synthetic coelenterazines "semi-synthetic" AEQ variants have been developed with altered emission profiles and decay kinetics. In this study, two AEQ mutant proteins were genetically conjugated to three pro-inflammatory cytokines (tumor necrosis factor alpha, interleukins 6 and 8) resulting in AEQ-labeled cytokines. These fusion proteins were combined with synthetic coelenterazines resulting in proteins with differing emission maxima and half-lives to allow for the simultaneous detection of all three cytokines in a single sample. The validity of the assay was demonstrated in serum by employing human physiological samples and comparing our results with commercially available individual tests for each of the three cytokines.


Assuntos
Equorina/química , Interleucina-6/sangue , Interleucina-9/sangue , Fator de Necrose Tumoral alfa/sangue , Equorina/genética , Animais , Cabras , Humanos , Hidrozoários/química , Imidazóis/química , Imunoensaio/métodos , Imunoglobulina G/imunologia , Interleucina-6/imunologia , Interleucina-9/imunologia , Limite de Detecção , Luminescência , Medições Luminescentes/métodos , Camundongos , Mutação , Pirazinas/química , Reprodutibilidade dos Testes , Fator de Necrose Tumoral alfa/imunologia
15.
Int J Mol Sci ; 19(9)2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30200468

RESUMO

Trichoderma filamentous fungi are increasingly used as biocontrol agents and plant biostimulants. Growing evidence indicates that part of the beneficial effects is mediated by the activity of fungal metabolites on the plant host. We have investigated the mechanism of plant perception of HYTLO1, a hydrophobin abundantly secreted by Trichoderma longibrachiatum, which may play an important role in the early stages of the plant-fungus interaction. Aequorin-expressing Lotus japonicus suspension cell cultures responded to HYTLO1 with a rapid cytosolic Ca2+ increase that dissipated within 30 min, followed by the activation of the defence-related genes MPK3, WRK33, and CP450. The Ca2+-dependence of these gene expression was demonstrated by using the extracellular Ca2+ chelator EGTA and Ned-19, a potent inhibitor of the nicotinic acid adenine dinucleotide phosphate (NAADP) receptor in animal cells, which effectively blocked the HYTLO1-induced Ca2+ elevation. Immunocytochemical analyses showed the localization of the fungal hydrophobin at the plant cell surface, where it forms a protein film covering the plant cell wall. Our data demonstrate the Ca2+-mediated perception by plant cells of a key metabolite secreted by a biocontrol fungus, and provide the first evidence of the involvement of NAADP-gated Ca2+ release in a signalling pathway triggered by a biotic stimulus.


Assuntos
Agentes de Controle Biológico , Sinalização do Cálcio , Cálcio/metabolismo , Proteínas Fúngicas/metabolismo , Lotus/metabolismo , Lotus/microbiologia , NADP/análogos & derivados , Trichoderma/fisiologia , Equorina/genética , Equorina/metabolismo , Clonagem Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Genes Reporter/genética , Interações entre Hospedeiro e Microrganismos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NADP/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia
16.
Prep Biochem Biotechnol ; 48(6): 483-489, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29958068

RESUMO

Escherichia coli is a common host that is widely used for producing recombinant proteins. However, it is a simple approach for production of heterologous proteins; the major drawbacks in using this organism include incorrect protein folding and formation of disordered aggregated proteins as inclusion bodies. Co-expression of target proteins with certain molecular chaperones is a rational approach for this problem. Aequorin is a calcium-activated photoprotein that is often prone to form insoluble inclusion bodies when overexpressed in E. coli cells resulting in low active yields. Therefore, in the present research, our main aim is to increase the soluble yield of aequorin as a model protein and minimize its inclusion body content in the bacterial cells. We have applied the chaperone-assisted protein folding strategy for enhancing the yield of properly folded protein with the assistance of artemin as an efficient molecular chaperone. The results here indicated that the content of the soluble form of aequorin was increased when it was co-expressed with artemin. Moreover, in the co-expressing cells, the bioluminescence activity was higher than the control sample. We presume that this method might be a potential tool to promote the solubility of other aggregation-prone proteins in bacterial cells.


Assuntos
Equorina/genética , Proteínas de Artrópodes/genética , Escherichia coli/genética , Proteínas de Ligação ao Ferro/genética , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/genética , Equorina/metabolismo , Animais , Artemia/metabolismo , Proteínas de Artrópodes/metabolismo , Western Blotting , Eletroforese em Gel de Poliacrilamida , Vetores Genéticos , Corpos de Inclusão/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Luminescência , Ligação Proteica , Dobramento de Proteína , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidade
17.
J Biochem ; 164(3): 247-255, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29796619

RESUMO

cf3-Aequorin is one of the semi-synthetic aequorins that was produced by replacing 2-peroxycoelenterazine (CTZ-OOH) in native aequorin with a 2-peroxycoelenterazine analog, and it was prepared using the C2-modified trifluoromethyl analog of coelenterazine (cf3-CTZ) and the histidine-tagged apoaequorin expressed in Escherichia coli cells. The purified cf3-aequorin showed a slow luminescence pattern with half-decay time of maximum intensities of luminescence of 5.0 s. This is much longer than that of 0.9 s for native aequorin, and its luminescence capacity was estimated to be 72.8% of that of native aequorin. The crystal structure of cf3-aequorin was determined at 2.15 Å resolution. The light source of 2-peroxytrifluoromethylcoelenterazine (cf3-CTZ-OOH) was stabilized by the hydrogen-bonding interactions at the C2-peroxy moiety and the p-hydroxy moiety at the C6-phenyl group. In native aequorin, three water molecules contribute to stabilizing CTZ-OOH through hydrogen bonds. However, cf3-aequorin only contained one water molecule, and the trifluoromethyl moiety at the C2-benzyl group of cf3-CTZ-OOH interacted with the protein by van der Waals interactions. The slow luminescence kinetics of cf3-aequorin could be explained by slow conformational changes due to the bulkiness of the trifluoromethyl group, which might hinder the smooth cleavage of hydrogen bonds at the C2-peroxy moiety after the binding of Ca2+ to cf3-aequorin.


Assuntos
Equorina/química , Equorina/genética , Equorina/isolamento & purificação , Sequência de Aminoácidos , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Ligação de Hidrogênio , Imidazóis/química , Cinética , Luminescência , Conformação Proteica , Água/química
18.
Plant Physiol ; 177(1): 38-51, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29559589

RESUMO

Chloroplasts require a fine-tuned control of their internal Ca2+ concentration, which is crucial for many aspects of photosynthesis and for other chloroplast-localized processes. Increasing evidence suggests that calcium regulation within chloroplasts also may influence Ca2+ signaling pathways in the cytosol. To investigate the involvement of thylakoids in Ca2+ homeostasis and in the modulation of chloroplast Ca2+ signals in vivo, we targeted the bioluminescent Ca2+ reporter aequorin as a YFP fusion to the lumen and the stromal surface of thylakoids in Arabidopsis (Arabidopsis thaliana). Thylakoid localization of aequorin-based probes in stably transformed lines was confirmed by confocal microscopy, immunogold labeling, and biochemical analyses. In resting conditions in the dark, free Ca2+ levels in the thylakoid lumen were maintained at about 0.5 µm, which was a 3- to 5-fold higher concentration than in the stroma. Monitoring of chloroplast Ca2+ dynamics in different intrachloroplast subcompartments (stroma, thylakoid membrane, and thylakoid lumen) revealed the occurrence of stimulus-specific Ca2+ signals, characterized by unique kinetic parameters. Oxidative and salt stresses initiated pronounced free Ca2+ changes in the thylakoid lumen. Localized Ca2+ increases also were observed on the thylakoid membrane surface, mirroring transient Ca2+ changes observed for the bulk stroma, but with specific Ca2+ dynamics. Moreover, evidence was obtained for dark-stimulated intrathylakoid Ca2+ changes, suggesting a new scenario for light-to-dark-induced Ca2+ fluxes inside chloroplasts. Hence, thylakoid-targeted aequorin reporters can provide new insights into chloroplast Ca2+ storage and signal transduction. These probes represent novel tools with which to investigate the role of thylakoids in Ca2+ signaling networks within chloroplasts and plant cells.


Assuntos
Arabidopsis/metabolismo , Cálcio/metabolismo , Cloroplastos/metabolismo , Tilacoides/metabolismo , Equorina/genética , Equorina/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escuridão , Luz , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Estresse Oxidativo , Plantas Geneticamente Modificadas , Estresse Salino
19.
J Photochem Photobiol B ; 174: 97-105, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28756158

RESUMO

Bioluminescence of a variety of marine coelenterates is determined by Ca2+-regulated photoproteins. A strong interest in these proteins is for their wide analytical potential as intracellular calcium indicators and labels for in vitro binding assays. The presently known hydromedusan Ca2+-regulated photoproteins contain three (aequorin and clytin) or five (obelin and mitrocomin) cysteine residues with one of them strictly conserved. We have constructed Cys-free aequorin and obelin by substitution of all cysteines to serine residues. Such mutants should be of interest for researchers by the possibility to avoid the incubation with dithiothreitol (or ß-mercaptoethanol) required for producing an active photoprotein that is important for some prospective analytical assays in which the photoprotein is genetically fused with a target protein sensitive to the reducing agents. Cys-free mutants were expressed in Escherichia coli, purified, and characterized regarding the efficiency of photoprotein complex formation, functional activity, and conformational stability. The replacement of cysteine residues has been demonstrated to affect different properties of aequorin and obelin. Cys-free aequorin displays a two-fold lower specific bioluminescence activity but preserves similar activation properties and light emission kinetics compared to the wild-type aequorin. In contrast, Cys-free obelin retains only ~10% of the bioluminescence activity of wild-type obelin as well as binding coelenterazine and forming active photoprotein much less effectively. In addition, the substitution of Cys residues drastically changes the bioluminescence kinetics of obelin completely eliminating a "fast" component from the light signal decay curve. At the same time, the replacement of Cys residues increases conformational flexibility of both aequorin and obelin molecules, but again, the effect is more prominent in the case of obelin. The values of thermal midpoints of unfolding (Tm) were determined to be 53.3±0.2 and 44.6±0.4°C for aequorin and Cys-free aequorin, and 49.1±0.1 and 28.8±0.3°C for obelin and Cys-free obelin, respectively. Thus, so far only Cys-free aequorin is suitable as a partner for fusing with a tag sensitive to reducing agents since the aequorin mutant preserves almost 50% of the bioluminescent activity and can be produced with a substantial yield.


Assuntos
Equorina/química , Equorina/metabolismo , Cálcio/metabolismo , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Equorina/genética , Sequência de Aminoácidos , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Medições Luminescentes , Proteínas Luminescentes/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica
20.
Cell Death Differ ; 24(5): 761-773, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28282037

RESUMO

Mitochondrial calcium ([Ca2+]m) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca2+]m uptake upon SK channel activation as detected by time lapse mitochondrial Ca2+ measurements with the Ca2+-binding mitochondria-targeted aequorin and FRET-based [Ca2+]m probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca2+]m uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.


Assuntos
Cálcio/metabolismo , Complexo I de Transporte de Elétrons/genética , Mitocôndrias/metabolismo , Neurônios/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Equorina/genética , Equorina/metabolismo , Animais , Apamina/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Indóis/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Oximas/farmacologia , Técnicas de Patch-Clamp , Cultura Primária de Células , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ratos , Transdução de Sinais , Canais de Potássio Ativados por Cálcio de Condutância Baixa/agonistas , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA