Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes (Basel) ; 11(9)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825586

RESUMO

Eragrostis curvula presents mainly facultative genotypes that reproduce by diplosporous apomixis, retaining a percentage of sexual pistils that increase under drought and other stressful situations, indicating that some regulators activated by stress could be affecting the apomixis/sexual switch. Water stress experiments were performed in order to associate the increase in sexual embryo sacs with the differential expression of genes in a facultative apomictic cultivar using cytoembryology and RNA sequencing. The percentage of sexual embryo sacs increased from 4 to 24% and 501 out of the 201,011 transcripts were differentially expressed (DE) between control and stressed plants. DE transcripts were compared with previous transcriptomes where apomictic and sexual genotypes were contrasted. The results point as candidates to transcripts related to methylation, ubiquitination, hormone and signal transduction pathways, transcription regulation and cell wall biosynthesis, some acting as a general response to stress and some that are specific to the reproductive mode. We suggest that a DNA glycosylase EcROS1-like could be demethylating, thus de-repressing a gene or genes involved in the sexuality pathways. Many of the other DE transcripts could be part of a complex mechanism that regulates apomixis and sexuality in this grass, the ones in the intersection between control/stress and apo/sex being the strongest candidates.


Assuntos
Apomixia , Eragrostis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Transcriptoma , Secas , Eragrostis/fisiologia , Proteínas de Plantas/genética , Análise de Sequência de RNA , Estresse Fisiológico
2.
Plant Sci ; 274: 181-192, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30080602

RESUMO

By the end of the century, atmospheric CO2 concentration ([CO2]a) could reach 800 ppm, having risen from ∼200 ppm ∼24 Myr ago. Carbon dioxide enters plant leaves through stomata that limit CO2 diffusion and assimilation, imposing stomatal limitation (LS). Other factors limiting assimilation are collectively called non-stomatal limitations (LNS). C4 photosynthesis concentrates CO2 around Rubisco, typically reducing LS. C4-dominated savanna grasslands expanded under low [CO2]a and are metastable ecosystems where the response of trees and C4 grasses to rising [CO2]a will determine shifting vegetation patterns. How LS and LNS differ between savanna trees and C4 grasses under different [CO2]a will govern the responses of CO2 fixation and plant cover to [CO2]a - but quantitative comparisons are lacking. We measured assimilation, within soil wetting-drying cycles, of three C3 trees and three C4 grasses grown at 200, 400 or 800 ppm [CO2]a. Using assimilation-response curves, we resolved LS and LNS and show that rising [CO2]a alleviated LS, particularly for the C3 trees, but LNS was unaffected and remained substantially higher for the grasses across all [CO2]a treatments. Because LNS incurs higher metabolic costs and recovery compared with LS, our findings indicate that C4 grasses will be comparatively disadvantaged as [CO2]a rises.


Assuntos
Dióxido de Carbono/metabolismo , Pradaria , Estômatos de Plantas/metabolismo , Poaceae/metabolismo , Árvores/metabolismo , Proteínas de Arabidopsis , Combretum/crescimento & desenvolvimento , Combretum/metabolismo , Combretum/fisiologia , Eragrostis/crescimento & desenvolvimento , Eragrostis/metabolismo , Eragrostis/fisiologia , Fabaceae/crescimento & desenvolvimento , Fabaceae/metabolismo , Fabaceae/fisiologia , Complexo de Proteína do Fotossistema II , Estômatos de Plantas/fisiologia , Poaceae/crescimento & desenvolvimento , Poaceae/fisiologia , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Ulmaceae/crescimento & desenvolvimento , Ulmaceae/metabolismo , Ulmaceae/fisiologia
3.
J Dairy Sci ; 101(7): 5984-5990, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29680651

RESUMO

Groundwater depletion is one of the most pressing issues facing the dairy industry in arid regions. One strategy to improve the industry's drought resilience involves feeding drought-tolerant forage crops in place of traditional forage crops such as alfalfa and corn silage. The objective of this study was to assess the productivity of lactating dairy cows fed diets with teff hay (Eragrostis tef) as the sole forage. Teff is a warm-season annual grass native to Ethiopia that is well adapted to drought conditions. Nine multiparous Holstein cows (185 ± 31 d in milk; mean ± standard deviation) were randomly assigned to 1 of 3 diets in a 3 × 3 Latin square design with 18-d periods (14 d acclimation and 4 d sampling). Diets were either control, where dietary forage consisted of a combination of corn silage, alfalfa hay, and native grass hay, or 1 of 2 teff diets (teff-A and teff-B), where teff hay [13.97 ± 0.32% crude protein, dry matter (DM) basis] was the sole forage. All 3 diets were formulated for similar DM, crude protein, and nonfiber carbohydrate concentrations. Control and teff-A were matched for concentrations of neutral detergent fiber (NDF) from forage (18.2 ± 0.15% of DM), and teff-B included slightly less, providing 16.6% NDF from forage. Dry matter intake, milk and component production, body weight, body condition score, as well as DM and NDF digestibility were monitored and assessed using mixed model analysis, with significance declared at P < 0.05. Treatment had no effect on dry matter intake (28.1 ± 0.75 kg/d). Similarly, treatment had no effect on milk production (40.7 ± 1.8 kg/d). Concentrations of milk fat (3.90 ± 0.16%) and lactose (4.68 ± 0.07%) were also unaffected by treatment. Teff-A and teff-B increased milk protein concentration compared with the control (3.07 vs. 3.16 ± 0.09%). Treatment had no effect on energy-corrected milk yield (43.4 ± 1.3 kg/d), body weight, or body condition score change. Additionally, treatment had no effect on total-tract DM or NDF digestibility. Results from this study indicate that teff hay has potential to replace alfalfa and corn silage in the diets of lactating dairy cattle without loss of productivity.


Assuntos
Bovinos/fisiologia , Dieta/veterinária , Eragrostis/fisiologia , Lactação , Ração Animal , Animais , Fibras na Dieta/metabolismo , Digestão , Eragrostis/metabolismo , Etiópia , Feminino , Fermentação , Medicago sativa , Rúmen , Silagem , Zea mays
4.
J Plant Physiol ; 224-225: 163-172, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29656008

RESUMO

Tef [Eragrostis tef (Zucc.) Trotter], a staple food crop in the Horn of Africa and particularly in Ethiopia, has several beneficial agronomical and nutritional properties, including waterlogging and drought tolerance. In this study, we performed microRNA profiling of tef using the Illumina HiSeq 2500 platform, analyzing both shoots and roots of two tef genotypes, one drought-tolerant (Tsedey) and one drought-susceptible (Alba). We obtained more than 10 million filtered reads for each of the 24 sequenced small cDNA libraries. Reads mapping to known miRNAs were more abundant in the root than shoot tissues. Thirteen and 35 miRNAs were significantly modulated in response to drought, in Alba and Tsedey roots, respectively. One miRNA was upregulated under drought conditions in both genotypes. In shoots, nine miRNAs were modulated in common between the two genotypes and all showed similar trends of expression. One-hundred and forty-seven new miRNA mature sequences were identified in silico, 22 of these were detected in all relevant samples and seven were differentially regulated when comparing drought with normal watering. Putative targets of the miRNA regulated under drought in root and shoot tissues were predicted. Among the targets were transcription factors such as CCAAT-HAP2, MADS and NAC. Verification with qRT-PCR revealed that five of six potential targets showed a pattern of expression that was consistent with the correspondent miRNA amount measured by RNA-Seq. In general, candidate miRNAs involved in the post-transcriptional regulation of the tef response to drought could be included in next-generation breeding programs.


Assuntos
Secas , Eragrostis/fisiologia , MicroRNAs/genética , RNA de Plantas/genética , Eragrostis/genética , Genótipo , MicroRNAs/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , RNA de Plantas/metabolismo
5.
PLoS One ; 12(4): e0175852, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28419145

RESUMO

To overcome environmental stress, plants develop physiological responses that are triggered by genetic or epigenetic changes, some of which involve DNA methylation. It has been proposed that apomixis, the formation of asexual seeds without meiosis, occurs through the temporal or spatial deregulation of the sexual process mediated by genetic and epigenetic factors influenced by the environment. Here, we explored whether there was a link between the occurrence of apomixis and various factors that generate stress, including drought stress, in vitro culture, and intraspecific hybridization. For this purpose, we monitored the embryo sacs of different weeping lovegrass (Eragrostis curvula [Schrad.] Nees) genotypes after the plants were subjected to these stress conditions. Progeny tests based on molecular markers and genome methylation status were analyzed following the stress treatment. When grown in the greenhouse, the cultivar Tanganyika INTA generated less than 2% of its progeny by sexual reproduction. Plants of this cultivar subjected to different stresses showed an increase of sexual embryo sacs, demonstrating an increased expression of sexuality compared to control plants. Plants of the cv. Tanganyika USDA did not demonstrate the ability to generate sexual embryo sacs under any conditions and is therefore classified as a fully apomictic cultivar. We found that this change in the prevalence of sexuality was correlated with genetic and epigenetic changes analyzed by MSAP and AFLPs profiles. Our results demonstrate that different stress conditions can alter the expression of sexual reproduction in facultative tetraploid apomictic cultivars and when the stress stops the reproductive mode shift back to the apomixis original level. These data together with previous observations allow us to generate a hypothetical model of the regulation of apomixis in weeping lovegrass in which the genetic/s region/s that condition apomixis, is/are affected by ploidy, and is/are subjected to epigenetic control.


Assuntos
Apomixia , Eragrostis/genética , Eragrostis/fisiologia , Sementes/fisiologia , Metilação de DNA , Secas , Epigênese Genética , Eragrostis/embriologia , Regulação da Expressão Gênica de Plantas , Genótipo , Hibridização Genética , Ploidias , Sementes/embriologia , Sementes/genética , Estresse Fisiológico
6.
PLoS One ; 8(11): e79398, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24255700

RESUMO

Feather lovegrass [Eragrostis tenella (L.) Beauv. Ex Roemer & J.A. Schultes] is a C4 grass weed that has the ability to grow in both lowland and upland conditions. Experiments were conducted in the laboratory and screenhouse to evaluate the effect of environmental factors on germination, emergence, and growth of this weed species. Germination in the light/dark regime was higher at alternating day/night temperatures of 30/20 °C (98%) than at 35/25 °C (83%) or 25/15 °C (62%). Germination was completely inhibited by darkness. The osmotic potential and sodium chloride concentrations required for 50% inhibition of maximum germination were -0.7 MPa and 76 mM, respectively. The highest seedling emergence (69%) was observed from the seeds sown on the soil surface and no seedlings emerged from seeds buried at depths of 0.5 cm or more. The use of residue as mulches significantly reduced the emergence and biomass of feather lovegrass seedlings. A residue amount of 0.5 t ha(-1) was needed to suppress 50% of the maximum seedlings. Because germination was strongly stimulated by light and seedling emergence was the highest for the seeds sown on the soil surface, feather lovegrass is likely to become a problematic weed in zero-till systems. The knowledge gained from this study could help in developing effective and sustainable weed management strategies.


Assuntos
Eragrostis/crescimento & desenvolvimento , Germinação , Sementes/crescimento & desenvolvimento , Eragrostis/efeitos dos fármacos , Eragrostis/fisiologia , Eragrostis/efeitos da radiação , Germinação/efeitos dos fármacos , Germinação/efeitos da radiação , Luz , Oryza/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Plântula/efeitos da radiação , Sementes/efeitos dos fármacos , Sementes/fisiologia , Sementes/efeitos da radiação , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/efeitos da radiação , Temperatura , Água/farmacologia
7.
Plant Mol Biol ; 67(1-2): 11-23, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18311543

RESUMO

The molecular nature of gene expression during the initiation and progress of diplosporous apomixis is still unknown. Moreover, the basis of the close correlation between diplospory and polyploidy is not clarified yet. A comparative expression analysis was performed based on expressed sequence tags (ESTs) sequencing and differential display in an Eragrostis curvula diplosporous tetraploid genotype (T, 4x apo), a sexual diploid derivative obtained from tissue culture (D, 2x sex) and an artificial sexual tetraploid obtained from the diploid seeds after colchicine treatment (C, 4x sex). From a total of 8,884 unigenes sequenced from inflorescence-derived libraries, 112 (1.26%) showed significant differential expression in individuals with different ploidy level and/or variable reproductive mode. Independent comparisons between plants with different reproductive mode (same ploidy) or different ploidy level (same reproductive mode) allowed the identification of genes modulated in response to diplosporous development or polyploidization, respectively. Surprisingly, a group of genes (Group 3) were differentially expressed or silenced only in the 4x sex plant, presenting similar levels of expression in the 4x apo and the 2x sex genotypes. A group of randomly selected differential genes was validated by QR-PCR. Differential display analysis showed that in general the 4x apo and 4x sex expression profiles were more related and different from the 2x sex one, but confirmed the existence of Group 3-type genes, in both inflorescences and leaves. The possible biological significance for the occurrence of this particular group of genes is discussed. In silico mapping onto the rice genome was used to identify candidates mapping to the region syntenic to the diplospory locus.


Assuntos
Eragrostis/genética , Genes de Plantas , Ploidias , Mapeamento Cromossômico , Biologia Computacional , Eragrostis/fisiologia , Etiquetas de Sequências Expressas , Flores/genética , Perfilação da Expressão Gênica , Biblioteca Gênica , Genótipo , Oryza/genética , Folhas de Planta/genética , Reação em Cadeia da Polimerase , Reprodução/genética
8.
Plant Cell Rep ; 25(12): 1287-93, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16832620

RESUMO

Tef [Eragrostis tef (Zucc.) Trotter] is the most important cereal in Ethiopia. In its wild relative E. mexicana, regeneration of six green plants resulted from culture of 121 non-pollinated immature pistils. In the allotetraploid crop species tef, however, only callus and root formation was obtained by this method. By contrast, immature spikelets and panicle segments of E. tef proved amenable to gynogenic plant regeneration. Upon step-wise optimization of the protocol, efficient plant formation was achieved in all three cultivars tested. In cv. DZ-01-196, culture of 1305 immature spikelets resulted in formation of 159 green plants. Flow cytometric analysis revealed (di)haploid, triploid, tetraploid and octoploid regenerants, from which the vast majority was tetraploid. Tef-breeding programs will likely benefit substantially from efficient generation of true-breeding plants.


Assuntos
Eragrostis/fisiologia , Flores/fisiologia , Pólen/fisiologia , Regeneração , Temperatura Baixa , Eragrostis/efeitos dos fármacos , Eragrostis/genética , Eragrostis/crescimento & desenvolvimento , Citometria de Fluxo , Flores/efeitos dos fármacos , Flores/genética , Genoma de Planta , Reguladores de Crescimento de Plantas/farmacologia , Ploidias , Regeneração/efeitos dos fármacos , Técnicas de Cultura de Tecidos
9.
Ann Bot ; 97(6): 985-91, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16621860

RESUMO

BACKGROUND AND AIMS: Previous studies on grass leaf tensile properties (behaviour during mechanical stress) have focused on agricultural applications such as resistance to trampling and palatability; no investigations have directly addressed mechanical properties during water stress, and hence these are the subject of this study. METHODS: Critical (lethal) relative water contents were determined for three species of grass in the genus Eragrostis varying in their tolerance to drought. Measurements were taken for leaf tensile strength, elastic modulus, toughness and failure load under different conditions of hydration, and light microscopy and histochemical analyses were undertaken. KEY RESULTS: Leaf tensile strength of fully hydrated leaves for the drought-intolerant E. capensis, the moderately drought-tolerant E. tef and the drought-tolerant E. curvula correlated well with drought tolerance (critical relative water content). Eragrostis curvula had higher tensile strength values than E. tef, which in turn had higher values than E. capensis. Measurements on the drought-tolerant grass E. curvula when fully hydrated and when dried to below its turgor loss point showed that tensile strength, toughness and the elastic modulus all increased under conditions of turgor loss, while the failure load remained unchanged. Additional tests of 100 mm segments along the lamina of E. curvula showed that tensile strength, toughness and the elastic modulus all decreased with distance from the base of the lamina, while again the failure load was unaffected. This decrease in mechanical parameters correlated with a reduction in the size of the vascular bundles and the amount of lignification, as viewed in lamina cross-sections. CONCLUSIONS: The results confirm that leaf mechanical properties are affected by both water status and position along the lamina, and suggest a positive correlation between leaf internal architecture, tensile strength, cell wall chemistry and tolerance to dehydration for grasses.


Assuntos
Eragrostis/fisiologia , Folhas de Planta/fisiologia , Água/fisiologia , Eragrostis/anatomia & histologia , Folhas de Planta/anatomia & histologia , Resistência à Tração
10.
J Exp Bot ; 55(397): 651-61, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14966222

RESUMO

During dehydration, numerous metabolites accumulate in vegetative desiccation-tolerant tissues. This is thought to be important in mechanically stabilizing the cells and membranes in the desiccated state. Non-aqueous fractionation of desiccated leaf tissues of the resurrection grass Eragrostis nindensis (Ficalho and Hiern) provided an insight into the subcellular localization of the metabolites (because of the assumptions necessary in the calculations the data must be treated with some caution). During dehydration of the desiccant-tolerant leaves, abundant small vacuoles are formed in the bundle sheath cells, while cell wall folding occurs in the thin-walled mesophyll and epidermal cells, leading to a considerable reduction in the cross-sectional area of these cells. During dehydration, proline, protein, and sucrose accumulate in similar proportions in the small vacuoles in the bundle sheath cells. In the mesophyll cells high amounts of sucrose accumulate in the cytoplasm, with proline and proteins being present in both the cytoplasm and the large central vacuole. In addition to the replacement of water by compatible solutes, high permeability of membranes to water may be critical to reduce the mechanical strain associated with the influx of water on rehydration. The immunolocalization of a possible TIP 3;1 to the small vacuoles in the bundle sheath cells may be important in both increased water permeability as well as in the mobilization of solutes from the small vacuoles on rehydration. This is the first report of a possible TIP 3;1 in vegetative tissues (previously only reported in orthodox seeds).


Assuntos
Dessecação , Eragrostis/fisiologia , Proteínas de Plantas/metabolismo , Fracionamento Celular/métodos , Eragrostis/crescimento & desenvolvimento , Eragrostis/ultraestrutura , Frutose/metabolismo , Glucose/metabolismo , Prolina/metabolismo , África do Sul , Frações Subcelulares/metabolismo , Frações Subcelulares/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA