RESUMO
Purpose: Investigate genetic and environmental influences on refractive errors in monozygotic (MZ) and dizygotic (DZ) twin pairs. Methods: We assessed foveal and peripheral refractions in 54 MZ and 46 DZ twins, capturing three scans across the retina. The study focused on spherical equivalent (M) at the fovea (MLOS) and changes in midperipheral (δMmid-periphery), and peripheral (δMperiphery) defocus, along with nasal-temporal asymmetry (root mean squared error [RMSEASY]) and image shell contour (RMSEAVG). Genetic and environmental contributions were analyzed using structural equation models. Results: No significant differences were observed between MZ and DZ twins for the examined variables. Intraclass correlations (ICC) indicated an important difference in genetic influence between MLOS, with the MZ twin pairs showing a higher correlation (0.83) than DZ (0.69) pairs, and δMperiphery, because the ICC for the MZ doubled (0.87) that of the DZ (0.42) pairs. Heritability estimates from the ACE model confirmed the large difference on genetic factors' influence on the variance for MLOS (0.13) and δMperiphery (0.77) change in refractive error. RMSEASY and RMSEAVG metrics showed significant genetic impact, particularly pronounced in the peripheral measurements, revealing high genetic control. Conclusions: The study delineates a marked environmental impact on central refractive errors, whereas genetic factors had a more significant influence on peripheral refractive variance and retinal image traits. Findings of the ACE model highlight the intricate genetic and environmental interplay in refractive error development, with a notable genetic dominance in peripheral vision characteristics. This suggests potential genetic targets for interventions in myopia management and emphasizes the need for personalized approaches based on genetic predispositions. Translational Relevance: Understanding the impact of genetics and environment on peripheral refraction is essential for deepening our fundamental knowledge of myopia and guiding the development of advanced myopia control strategies.
Assuntos
Refração Ocular , Erros de Refração , Gêmeos Dizigóticos , Gêmeos Monozigóticos , Humanos , Gêmeos Monozigóticos/genética , Gêmeos Dizigóticos/genética , Masculino , Feminino , Adulto , Refração Ocular/genética , Erros de Refração/genética , Pessoa de Meia-Idade , Interação Gene-Ambiente , Adulto Jovem , Doenças em Gêmeos/genéticaRESUMO
PURPOSE: This study investigated the differential gene expression of BMPs in chick retinal pigment epithelium (RPE) during recovery from short term exposure to optical defocus and form-deprivation (FD) treatments. METHODS: 14-day old White-Leghorn chicks wore either monocular +10 or -10 D lenses, or diffusers for 2 or 48 h, after which eyes were allowed unobstructed vision for up to 96 h. Over this recovery period, refractive errors and choroidal thickness (ChT) were tracked using retinoscopy and high-frequency A-scan ultrasonography. Real-time PCR was used to examine the expression of BMP2, 4, and 7 genes in RPE samples collected 0, 15 min, 2, 24, 48, and 96 h after the termination of treatments. Expression levels in treated eyes and their contralateral control eyes were compared. RESULTS: After the termination of the lens and diffuser treatments, eyes gradually recovered from induced shifts in refractive error. With all three treatments, ChT changes reached statistical significance after 48 h of treatment, be it thinning with the -10 D lens and diffuser treatments (-0.06 ± 0.03mm, p < 0.05; -0.11 ± 0.04 mm, p < 0.05, resp.), or thickening with the +10 D lens (0.31 ± 0.04 mm, p < 0.001). BMP2 gene expression was rapidly upregulated in eyes wearing the +10 D lens, being statistical significance after 2 h, as well as 48 h of treatment. With the 2 h treatment, the latter gene expression pattern persisted for 15 min into the recovery period, before decreasing to the same level as that of contralateral control eyes, with a short-lived rebound, i.e., upregulation, 24 h into the recovery period. With the longer, 48 h treatment, BMP2 gene expression decreased more gradually, from 739 ± 121% at the end of the treatment period, to 72 ± 14% after 48 h of recovery. Two and 48 h of both -10 D and FD treatments resulted in BMP2 gene expression downregulation, with the time taken for gene expression levels to fully recover varying with the duration of initial treatments. In both cases, BMP2 gene expression downregulation persisted for 15 min into the recovery period, but reversed to upregulation by 2 h. Similar gene expression patterns were also observed for BMP4, although the changes were smaller. CONCLUSIONS: The observed changes in BMP gene expression in chick RPE imply dynamic, albeit complex regulation, with the duration of exposure and recovery being critical variables for all three types of visual manipulations. This study provides further evidence for a role of the RPE as an important signal relay linking the retina to the choroid and sclera in eye growth regulation.
Assuntos
Galinhas , Regulação da Expressão Gênica , Epitélio Pigmentado da Retina , Animais , Epitélio Pigmentado da Retina/metabolismo , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Erros de Refração/genética , Erros de Refração/metabolismo , Corioide/metabolismo , Corioide/diagnóstico por imagemRESUMO
PURPOSE: The aim of this study is to investigate the distribution of spherical equivalent and axial length in the general population and to analyze the influence of education on spherical equivalent with a focus on ocular biometric parameters. METHODS: The Gutenberg Health Study is a population-based cohort study in Mainz, Germany. Participants underwent comprehensive ophthalmologic examinations as part of the 5-year follow-up examination in 2012-2017 including genotyping. The spherical equivalent and axial length distributions were modeled with gaussian mixture models. Regression analysis (on person-individual level) was performed to analyze associations between biometric parameters and educational factors. Mendelian randomization analysis explored the causal effect between spherical equivalent, axial length, and education. Additionally, effect mediation analysis examined the link between spherical equivalent and education. RESULTS: A total of 8532 study participants were included (median age: 57 years, 49% female). The distribution of spherical equivalent and axial length follows a bi-Gaussian function, partially explained by the length of education (i.e., < 11 years education vs. 11-20 years). Mendelian randomization indicated an effect of education on refractive error using a genetic risk score of education as an instrument variable (- 0.35 diopters per SD increase in the instrument, 95% CI, - 0.64-0.05, p = 0.02) and an effect of education on axial length (0.63 mm per SD increase in the instrument, 95% CI, 0.22-1.04, p = 0.003). Spherical equivalent, axial length and anterior chamber depth were associated with length of education in regression analyses. Mediation analysis revealed that the association between spherical equivalent and education is mainly driven (70%) by alteration in axial length. CONCLUSIONS: The distribution of axial length and spherical equivalent is represented by subgroups of the population (bi-Gaussian). This distribution can be partially explained by length of education. The impact of education on spherical equivalent is mainly driven by alteration in axial length.
Assuntos
Comprimento Axial do Olho , Escolaridade , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Alemanha/epidemiologia , Comprimento Axial do Olho/patologia , Distribuição Normal , Biometria/métodos , Refração Ocular/fisiologia , Seguimentos , Erros de Refração/fisiopatologia , Erros de Refração/diagnóstico , Erros de Refração/genética , Idoso , AdultoRESUMO
This study aims to determine the risk associated with early age-related macular degeneration (AMD) due to refractive errors (RE) using an analysis of genome-wide association study (GWAS) data through the two-sample Mendelian randomization approach. Single-nucleotide polymorphisms (SNPs) linked to refractive errors (RE) were obtained from numerous GWAS studies involving individuals of European descent. The data for early AMD was obtained from a diverse, multiethnic GWAS meta-analysis that included 105,248 participants (14,034 cases and 91,214 controls). The primary outcome measure focused on the rise in early AMD risk corresponding to a 1-diopter alteration in spherical power and cylindrical power. In the main Mendelian randomization analysis, inverse-variance weighting (IVW) methods were applied for the evaluation. Mendelian Randomization (MR) study revealed a substantial impact of refractive error (RE) on early AMD risk, with a 1-diopter increase in hypermetropia being related to a 1.16 odds ratio (OR) for a greater risk of early AMD (95% CI, 1.10-1.23; P < 0.01). This conclusion was further supported by four supplementary approaches, namely, Weighted mode, Weighted-median, Simple mode, and MR-Egger. The results suggest a heightened risk of early AMD correlated with hyperopia, necessitating further research to thoroughly elucidate this potential causal relationship.
Assuntos
Hiperopia , Degeneração Macular , Erros de Refração , Humanos , Estudo de Associação Genômica Ampla , Degeneração Macular/genética , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Erros de Refração/genética , Metanálise como AssuntoRESUMO
Ophthalmological conditions are underreported in patients with KBG syndrome, which is classically described as presenting with dental, developmental, intellectual, skeletal, and craniofacial abnormalities. This study analyzed the prevalence of four ophthalmological conditions (strabismus, astigmatism, myopia, hyperopia) in 43 patients with KBG syndrome carrying variants in ANKRD11 or deletions in 16q24.3 and compared it to the literature. Forty-three patients were recruited via self-referral or a private Facebook group hosted by the KBG Foundation, with 40 of them having pathogenic or likely pathogenic variants. Virtual interviews were conducted to collect a comprehensive medical history verified by medical records. From these records, data analysis was performed to calculate the prevalence of ophthalmological conditions. Out of the 40 participants with pathogenic or likely pathogenic variants, strabismus was reported in 9 (22.5%) participants, while astigmatism, myopia, and hyperopia were reported in 11 (27.5%), 6 (15.0%), and 8 (20.0%) participants, respectively. Other reported conditions include anisometropia, amblyopia, and nystagmus. When compared to the literature, the prevalence of strabismus and refractive errors is higher than other studies. However, more research is needed to determine if variants in ANKRD11 play a role in abnormal development of the visual system. In patients with established KBG syndrome, screening for misalignment or refractive errors should be done, as interventions in patients with these conditions can improve functioning and quality of life.
Assuntos
Anormalidades Múltiplas , Astigmatismo , Doenças do Desenvolvimento Ósseo , Hiperopia , Deficiência Intelectual , Miopia , Erros de Refração , Estrabismo , Anormalidades Dentárias , Humanos , Anormalidades Múltiplas/diagnóstico , Deficiência Intelectual/diagnóstico , Doenças do Desenvolvimento Ósseo/diagnóstico , Anormalidades Dentárias/epidemiologia , Anormalidades Dentárias/genética , Anormalidades Dentárias/diagnóstico , Fácies , Hiperopia/epidemiologia , Hiperopia/genética , Qualidade de Vida , Erros de Refração/epidemiologia , Erros de Refração/genética , Erros de Refração/diagnóstico , Fatores de Transcrição , Miopia/diagnóstico , Miopia/epidemiologia , Miopia/genéticaRESUMO
Purpose: Changes in refractive error during young adulthood is common yet risk factors at this age are largely unexplored. This study explored risk factors for these changes, including gene-environmental interactions. Methods: Spherical equivalent refraction (SER) and axial length (AL) for 624 community-based adults were measured at 20 (baseline) and 28 years old. Participants were genotyped and their polygenic scores (PGS) for refractive error calculated. Self-reported screen time (computer, television, and mobile devices) from 20 to 28 years old were collected prospectively and longitudinal trajectories were generated. Past sun exposure was quantified using conjunctival ultraviolet autofluorescence (CUVAF) area. Results: Median change in SER and AL were -0.023 diopters (D)/year (interquartile range [IQR] = -0.062 to -0.008) and +0.01 mm/year (IQR = 0.000 to 0.026), respectively. Sex, baseline myopia, parental myopia, screen time, CUVAF, and PGS were significantly associated with myopic shift. Collectively, these factors accounted for approximately 20% of the variance in refractive error change, with screen time, CUVAF, and PGS each explaining approximately 1% of the variance. Four trajectories for total screen time were found: "consistently low" (n = 148), "consistently high" (n = 250), "consistently very high" (n = 76), and "increasing" (n = 150). Myopic shift was faster in those with "consistently high" or "consistently very high" screen time compared to "consistently-low" (P ≤ 0.031). For each z-score increase in PGS, changes in SER and AL increased by -0.005 D/year and 0.002 mm/year (P ≤ 0.045). Of the three types of screen time, only computer time was associated with myopic shift (P ≤ 0.040). There was no two- or three-way interaction effect between PGS, CUVAF, or screen time (P ≥ 0.26). Conclusions: Higher total or computer screen time, less sun exposure, and genetic predisposition are each independently associated with greater myopic shifts during young adulthood. Given that these factors explained only a small amount of the variance, there are likely other factors driving refractive error change during young adulthood.
Assuntos
Miopia , Erros de Refração , Adulto , Humanos , Adulto Jovem , Predisposição Genética para Doença , Tempo de Tela , Luz Solar/efeitos adversos , Erros de Refração/genética , Miopia/genética , Túnica ConjuntivaRESUMO
Genome-wide association studies (GWAS) have dissected numerous genetic factors underlying refractive errors (RE) such as myopia. Despite significant insights into understanding the genetic architecture of RE, few studies have validated and explored the functional role of candidate genes within these loci. To functionally follow-up on GWAS and characterize the potential role of candidate genes on the development of RE, we prioritized nine genes (TJP2, PDE11A, SHISA6, LAMA2, LRRC4C, KCNQ5, GNB3, RBFOX1, and GRIA4) based on biological and statistical evidence; and used CRISPR/cas9 to generate knock-out zebrafish mutants. These mutant fish were screened for abnormalities in axial length by spectral-domain optical coherence tomography and refractive status by eccentric photorefraction at the juvenile (2 months) and adult (4 months) developmental stage. We found a significantly increased axial length and myopic shift in refractive status in three of our studied mutants, indicating a potential involvement of the human orthologs (LAMA2, LRRC4C, and KCNQ5) in myopia development. Further, in-situ hybridization studies showed that all three genes are expressed throughout the zebrafish retina. Our zebrafish models provide evidence of a functional role of these three genes in refractive error development and offer opportunities to elucidate pathways driving the retina-to-sclera signaling cascade that leads to myopia.
Assuntos
Miopia , Erros de Refração , Animais , Humanos , Estudo de Associação Genômica Ampla , Miopia/genética , Erros de Refração/genética , Retina , Peixe-Zebra/genéticaRESUMO
Refractive error, measured here as mean spherical equivalent (SER), is a complex eye condition caused by both genetic and environmental factors. Individuals with strong positive or negative values of SER require spectacles or other approaches for vision correction. Common genetic risk factors have been identified by genome-wide association studies (GWAS), but a great part of the refractive error heritability is still missing. Some of this heritability may be explained by rare variants (minor allele frequency [MAF] ≤ 0.01.). We performed multiple gene-based association tests of mean Spherical Equivalent with rare variants in exome array data from the Consortium for Refractive Error and Myopia (CREAM). The dataset consisted of over 27,000 total subjects from five cohorts of Indo-European and Eastern Asian ethnicity. We identified 129 unique genes associated with refractive error, many of which were replicated in multiple cohorts. Our best novel candidates included the retina expressed PDCD6IP, the circadian rhythm gene PER3, and P4HTM, which affects eye morphology. Future work will include functional studies and validation. Identification of genes contributing to refractive error and future understanding of their function may lead to better treatment and prevention of refractive errors, which themselves are important risk factors for various blinding conditions.
Assuntos
Miopia , Erros de Refração , Humanos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Miopia/genética , Erros de Refração/genética , População Branca , População do Leste AsiáticoRESUMO
Myopia most often develops during school age, with the highest incidence in countries with intensive education systems. Interactions between genetic variants and educational exposure are hypothesized to confer susceptibility to myopia, but few such interactions have been identified. Here, we aimed to identify genetic variants that interact with education level to confer susceptibility to myopia. Two groups of unrelated participants of European ancestry from UK Biobank were studied. A 'Stage-I' sample of 88,334 participants whose refractive error (avMSE) was measured by autorefraction and a 'Stage-II' sample of 252,838 participants who self-reported their age-of-onset of spectacle wear (AOSW) but who did not undergo autorefraction. Genetic variants were prioritized via a 2-step screening process in the Stage-I sample: Step 1 was a genome-wide association study for avMSE; Step 2 was a variance heterogeneity analysis for avMSE. Genotype-by-education interaction tests were performed in the Stage-II sample, with University education coded as a binary exposure. On average, participants were 58 years-old and left full-time education when they were 18 years-old; 35% reported University level education. The 2-step screening strategy in the Stage-I sample prioritized 25 genetic variants (GWAS P < 1e-04; variance heterogeneity P < 5e-05). In the Stage-II sample, 19 of the 25 (76%) genetic variants demonstrated evidence of variance heterogeneity, suggesting the majority were true positives. Five genetic variants located near GJD2, RBFOX1, LAMA2, KCNQ5 and LRRC4C had evidence of a genotype-by-education interaction in the Stage-II sample (P < 0.002) and consistent evidence of a genotype-by-education interaction in the Stage-I sample. For all 5 variants, University-level education was associated with an increased effect of the risk allele. In this cohort, additional years of education were associated with an enhanced effect of genetic variants that have roles including axon guidance and the development of neuronal synapses and neural circuits.
Assuntos
Miopia , Erros de Refração , Humanos , Pessoa de Meia-Idade , Adolescente , Estudo de Associação Genômica Ampla , Miopia/genética , Escolaridade , Erros de Refração/genética , Alelos , Fatores de Processamento de RNA/genéticaRESUMO
PURPOSE: Genetic variants identified through population-based genome-wide studies are generally of high frequency, exerting their action in the central part of the refractive error spectrum. However, the power to identify associations with variants of lower minor allele frequency is greatly reduced, requiring considerable sample sizes. Here we aim to assess the impact of rare variants on genetic variation of refractive errors in a very large general population cohort. METHODS: Genetic association analyses of non-cyclopaedic autorefraction calculated as mean spherical equivalent (SPHE) used whole-exome sequence genotypic information from 50,893 unrelated participants in the UK Biobank of European ancestry. Gene-based analyses tested for association with SPHE using an optimised SNP-set kernel association test (SKAT-O) restricted to rare variants (minor allele frequency < 1%) within protein-coding regions of the genome. All models were adjusted for age, sex and common lead variants within the same locus reported by previous genome-wide association studies. Potentially causal markers driving association at significant loci were elucidated using sensitivity analyses by sequentially dropping the most associated variants from gene-based analyses. RESULTS: We found strong statistical evidence for association of SPHE with the SIX6 (p-value = 2.15 x 10-10, or Bonferroni-Corrected p = 4.41x10-06) and the CRX gene (p-value = 6.65 x 10-08, or Bonferroni-Corrected p = 0.001). The SIX6 gene codes for a transcription factor believed to be critical to the eye, retina and optic disc development and morphology, while CRX regulates photoreceptor specification and expression of over 700 genes in the retina. These novel associations suggest an important role of genes involved in eye morphogenesis in refractive error. CONCLUSION: The results of our study support previous research highlighting the importance of rare variants to the genetic risk of refractive error. We explain some of the origins of the genetic signals seen in GWAS but also report for the first time a completely novel association with the CRX gene.
Assuntos
Estudo de Associação Genômica Ampla , Erros de Refração , Frequência do Gene , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único , Erros de Refração/genética , Fatores de Transcrição/genéticaRESUMO
Purpose: This study aimed to evaluate the associations of GJD2 (rs634990, rs524952) and RASGRF1 (rs8027411, rs4778879, rs28412916) gene polymorphisms with refractive errors. Methods: The study included 373 subjects with refractive errors (48 myopia, 239 myopia with astigmatism, 14 hyperopia, and 72 hyperopia with astigmatism patients) and 104 ophthalmologically healthy subjects in the control group. A quantitative real-time polymerase chain reaction (qPCR) method was chosen for genotyping. Statistical calculations and analysis of results were performed with IBM SPSS Statistics 27 software. Results: The correlations in monozygotic (MZ) twin pairs were higher compared to DZ pairs, indicating genetic effects on hyperopia and astigmatism. The heritability (h2) of hyperopia and astigmatism was 0.654 for the right eye and 0.492 for the left eye. The GJD2 rs634990 TT genotype increased the incidence of hyperopia with astigmatism by 2.4-fold and the CT genotype decreased the incidence of hyperopia with astigmatism by 0.51-fold (p < 0.05). The GJD2 rs524952 AT genotype reduced the incidence of hyperopia with astigmatism by 0.53-fold (p < 0.05). Haplotype analysis of SNPs in the GJD2 gene revealed two statistically significant haplotypes: ACTAGG for rs634990 and TTTAGA for rs524952, which statistically significantly reduced the incidence of hyperopia and hyperopia with astigmatism by 0.41-fold (95% CI: 0.220−0.765) and 0.383-fold (95% CI: 0.199−0.737), respectively (p < 0.05). It was also found that, in the presence of haplotypes ACTAGG for rs634990 and TATAGA for rs524952, the possibility of hyperopia was reduced by 0.4-fold (p < 0.05). Conclusions: the heritability of hyperopia and hyperopia with astigmatism was 0.654−0.492, according to different eyes in patients between 20 and 40 years. The GJD2 rs634990 was identified as an SNP, which has significant associations with the co-occurrence of hyperopia and astigmatism. Patients with the GJD2 gene rs634990 TT genotype were found to have a 2.4-fold higher risk of develop hyperopia with astigmatism.
Assuntos
Astigmatismo , Hiperopia , Miopia , Erros de Refração , Astigmatismo/epidemiologia , Conexinas , Humanos , Hiperopia/epidemiologia , Hiperopia/genética , Miopia/genética , Erros de Refração/genética , Proteína delta-2 de Junções ComunicantesRESUMO
Parents pass on both their genes and environment to offspring, prompting debate about the relative importance of nature versus nurture in the inheritance of complex traits. Advances in molecular genetics now make it possible to quantify an individual's genetic predisposition to a trait via his or her 'polygenic score'. However, part of the risk captured by an individual's polygenic score may actually be attributed to the genotype of their parents. In the most well-studied example of this indirect 'genetic nurture' effect, about half the genetic contribution to educational attainment was found to be attributed to parental alleles, even if those alleles were not inherited by the child. Refractive errors, such as myopia, are a common cause of visual impairment and pose high economic and quality-of-life costs. Despite strong evidence that refractive errors are highly heritable, the extent to which genetic risk is conferred directly via transmitted risk alleles or indirectly via the environment that parents create for their children is entirely unknown. Here, an instrumental variable analysis in 1944 pairs of adult siblings from the United Kingdom was used to quantify the proportion of the genetic risk ('single nucleotide polymorphism (SNP) heritability') of refractive error contributed by genetic nurture. We found no evidence of a contribution from genetic nurture: non-within-family SNP-heritability estimate = 0.213 (95% confidence interval 0.134-0.310) and within-family SNP-heritability estimate = 0.250 (0.152-0.372). Our findings imply the genetic contribution to refractive error is principally an intrinsic effect from alleles transmitted from parents to offspring.
Assuntos
Herança Multifatorial , Erros de Refração , Adulto , Criança , Humanos , Predisposição Genética para Doença , Genótipo , Polimorfismo de Nucleotídeo Único , Erros de Refração/genéticaRESUMO
Refractive errors are common eye disorders characterized by a mismatch between the focal power of the eye and its axial length. An increased axial length is a common cause of the refractive error myopia (nearsightedness). The substantial increase in myopia prevalence over the last decades has raised public health concerns because myopia can lead to severe ocular complications later in life. Genomewide association studies (GWAS) have made considerable contributions to the understanding of the genetic architecture of refractive errors. Among the hundreds of genetic variants identified, common variants near the gap junction delta-2 (GJD2) gene have consistently been reported as one of the top hits. GJD2 encodes the connexin 36 (Cx36) protein, which forms gap junction channels and is highly expressed in the neural retina. In this review, we provide current evidence that links GJD2(Cx36) to the development of myopia. We summarize the gap junctional communication in the eye and the specific role of GJD2(Cx36) in retinal processing of visual signals. Finally, we discuss the pathways involving dopamine and gap junction phosphorylation and coupling as potential mechanisms that may explain the role of GJD2(Cx36) in refractive error development.
Assuntos
Conexinas , Miopia , Erros de Refração , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Humanos , Miopia/genética , Miopia/metabolismo , Erros de Refração/genética , Erros de Refração/metabolismo , Retina/metabolismo , Proteína delta-2 de Junções ComunicantesRESUMO
Refractive errors, particularly myopia, are the most common eye conditions, often leading to serious visual impairment. The age of onset is correlated with the severity of refractive error in adulthood observed in epidemiological and genetic studies and can be used as a proxy in refractive error genetic studies. To further elucidate genetic factors that influence refractive error, we analysed self-reported age of refractive error correction data from the UK Biobank European and perform genome-wide time-to-event analyses on the age of first spectacle wear (AFSW). Genome-wide proportional hazards ratio analyses were conducted in 340 318 European subjects. We subsequently assessed the similarities and differences in the genetic architectures of refractive error correction from different causes. All-cause AFSW was genetically strongly correlated (rg = -0.68) with spherical equivalent (the measured strength of spectacle lens required to correct the refractive error) and was used as a proxy for refractive error. Time-to-event analyses found genome-wide significant associations at 44 independent genomic loci, many of which (GJD2, LAMA2, etc.) were previously associated with refractive error. We also identified six novel regions associated with AFSW, the most significant of which was on chromosome 17q (P = 3.06 × 10-09 for rs55882072), replicating in an independent dataset. We found that genes associated with AFSW were significantly enriched for expression in central nervous system tissues and were involved in neurogenesis. This work demonstrates the merits of time-to-event study design in the genetic investigation of refractive error and contributes additional knowledge on its genetic risk factors in the general population.
Assuntos
Miopia , Erros de Refração , Adulto , Óculos , Estudo de Associação Genômica Ampla , Humanos , Miopia/genética , Erros de Refração/genéticaRESUMO
Refractive errors are associated with a range of pathological conditions, such as myopic maculopathy and glaucoma, and are highly heritable. Studies of missense and putative loss of function (pLOF) variants identified via whole exome sequencing (WES) offer the prospect of directly implicating potentially causative disease genes. We performed a genome-wide association study for refractive error in 51 624 unrelated adults, of European ancestry, aged 40-69 years from the UK and genotyped using WES. After testing 29 179 pLOF and 495 263 missense variants, 1 pLOF and 18 missense variants in 14 distinct genomic regions were taken forward for fine-mapping analysis. This yielded 19 putative causal variants of which 18 had a posterior inclusion probability >0.5. Of the 19 putative causal variants, 12 were novel discoveries. Specific variants were associated with a more myopic refractive error, while others were associated with a more hyperopic refractive error. Association with age of onset of spectacle wear (AOSW) was examined in an independent validation sample (38 100 early AOSW cases and 74 243 controls). Of 11 novel variants that could be tested, 8 (73%) showed evidence of association with AOSW status. This work identified COL4A4 and ATM as novel candidate genes associated with refractive error. In addition, novel putative causal variants were identified in the genes RASGEF1, ARMS2, BMP4, SIX6, GSDMA, GNGT2, ZNF652 and CRX. Despite these successes, the study also highlighted the limitations of community-based WES studies compared with high myopia case-control WES studies.
Assuntos
Miopia , Erros de Refração , Adulto , Exoma/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Miopia/genética , Proteínas de Neoplasias/genética , Proteínas Citotóxicas Formadoras de Poros , Erros de Refração/genética , Sequenciamento do ExomaRESUMO
Refractive eye development is a tightly coordinated developmental process. The general layout of the eye and its various components are established during embryonic development, which involves a complex cross-tissue signaling. The eye then undergoes a refinement process during the postnatal emmetropization process, which relies heavily on the integration of environmental and genetic factors and is controlled by an elaborate genetic network. This genetic network encodes a multilayered signaling cascade, which converts visual stimuli into molecular signals that guide the postnatal growth of the eye. The signaling cascade underlying refractive eye development spans across all ocular tissues and comprises multiple signaling pathways. Notably, tissue-tissue interaction plays a key role in both embryonic eye development and postnatal eye emmetropization. Recent advances in eye biometry, physiological optics and systems genetics of refractive error have significantly advanced our understanding of the biological processes involved in refractive eye development and provided a framework for the development of new treatment options for myopia. In this review, we summarize the recent data on the mechanisms and signaling pathways underlying refractive eye development and discuss new evidence suggesting a wide-spread signal integration across different tissues and ocular components involved in visually guided eye growth.
Assuntos
Refração Ocular/fisiologia , Erros de Refração/fisiopatologia , Animais , Redes Reguladoras de Genes , Humanos , Erros de Refração/diagnóstico , Erros de Refração/genéticaRESUMO
M-opsin, encoded by opn1mw gene, is involved in green-light perception of mice. The role of M-opsin in emmetropization of mice remains uncertain. To answer the above question, 4-week-old wild-type (WT) mice were exposed to white light or green light (460-600 nm, a peak at 510 nm) for 12 weeks. Refractive development was estimated biweekly. After treatment, retinal function was assessed using electroretinogram (ERG). Dopamine (DA) in the retina was evaluated by high-performance liquid chromatography, M-opsin and S-opsin protein levels by Western blot and ELISA, and mRNA expressions of opn1mw and opn1sw by RT-PCR. Effects of M-opsin were further verified in Opn1mw-/- and WT mice raised in white light for 4 weeks. Refractive development was examined at 4, 6, and 8 weeks after birth. The retinal structure was estimated through hematoxylin and eosin staining (H&E) and transmission electron microscopy (TEM). Retinal wholemounts from WT and Opn1mw-/- mice were co-immunolabeled with M-opsin and S-opsin, their distribution and quantity were then assayed by immunofluorescence staining (IF). Expression of S-opsin protein and opn1sw mRNA were determined by Western blot, ELISA, or RT-PCR. Retinal function and DA content were analyzed by ERG and liquid chromatography tandem-mass spectrometry (LC-MS/MS), respectively. Lastly, visual cliff test was used to evaluate the depth perception of the Opn1mw-/- mice. We found that green light-treated WT mice were more myopic with increased M-opsin expression and decreased DA content than white light-treated WT mice after 12-week illumination. No electrophysiologic abnormalities were recorded in mice exposed to green light compared to those exposed to white light. A more hyperopic shift was further observed in 8-week-old Opn1mw-/- mice in white light with lower DA level and weakened cone function than the WT mice under white light. Neither obvious structural disruption of the retina nor abnormal depth perception was found in Opn1mw-/- mice. Together, these results suggested that the M-opsin-based color vision participated in the refractive development of mice. Overexposure to green light caused myopia, but less perception of the middle-wavelength components in white light promoted hyperopia in mice. Furthermore, possible dopaminergic signaling pathway was suggested in myopia induced by green light.
Assuntos
Visão de Cores/genética , Regulação da Expressão Gênica , Opsinas/genética , Refração Ocular/genética , Erros de Refração/genética , Retina/metabolismo , Animais , Modelos Animais de Doenças , Eletrorretinografia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Opsinas/biossíntese , RNA/genética , Erros de Refração/diagnóstico , Erros de Refração/metabolismo , Retina/ultraestrutura , Tomografia ÓpticaRESUMO
Myopia is the most common developmental disorder of juvenile eyes, and it has become an increasing cause of severe visual impairment. The GJD2 locus has been consistently associated with myopia in multiple independent genome-wide association studies. However, despite the strong genetic evidence, little is known about the functional role of GJD2 in refractive error development. Here, we find that depletion of gjd2a (Cx35.5) or gjd2b (Cx35.1) orthologs in zebrafish, cause changes in the biometry and refractive status of the eye. Our immunohistological and scRNA sequencing studies show that Cx35.5 (gjd2a) is a retinal connexin and its depletion leads to hyperopia and electrophysiological changes in the retina. These findings support a role for Cx35.5 (gjd2a) in the regulation of ocular biometry. Cx35.1 (gjd2b) has previously been identified in the retina, however, we found an additional lenticular role. Lack of Cx35.1 (gjd2b) led to a nuclear cataract that triggered axial elongation. Our results provide functional evidence of a link between gjd2 and refractive error.
Assuntos
Conexinas/genética , Modelos Animais de Doenças , Proteínas do Olho/genética , Mutação , Erros de Refração/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Catarata/genética , Conexinas/metabolismo , Proteínas do Olho/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Miopia/genética , RNA-Seq/métodos , Retina/metabolismo , Retina/patologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Análise de Célula Única/métodos , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismoRESUMO
Clinical relevance: Investigation of refractive errors amongst Swedish schoolchildren will help identify risk factors associated with myopia development.Background: Genetic and hereditary aspects have been linked with the development of myopia. Nevertheless, in the case of 'school myopia' some authors suggest that environmental factors may affect gene expression, causing school myopia to soar. Additional understanding about which environmental factors play a relevant role can be gained by studying refractive errors in countries like Sweden, where prevalence of myopia is expected to be low.Methods: Swedish schoolchildren aged 8-16 years were invited to participate. Participants underwent an eye examination, including cycloplegic refraction and axial length (AL) measurements. Predictors such as time spent in near work, outdoor activities and parental myopia were obtained using a questionnaire. Myopia was defined as spherical equivalent refraction (SER) ≤ -0.50D and hyperopia as SER ≥ +0.75D.Results: A total of 128 children (70 females and 58 males) participated in this study with mean age of 12.0 years (SD = 2.4). Based on cycloplegic SER of the right eye, the distribution of refractive errors was: hyperopia 48.0% (CI95 = 38.8-56.7), emmetropia 42.0% (CI95 = 33.5-51.2) and myopia 10.0%. (CI95 = 4.4-14.9). The mean AL was 23.1 mm (SD = 0.86), there was a correlation between SER and AL, r = -0.65 (p < 0.001). Participants with two myopic parents had higher myopia and increased axial length than those with one or no myopic parents. The mean time spent in near work, outside of school, was 5.3 hours-per-day (SD = 3.1), and mean outdoor time reported was 2.6 hours-per-day (SD = 2.2) for all the participants. The time spent in near work and outdoor time were different for different refractive error categories.Conclusion: The prevalence of myopia amongst Swedish schoolchildren is low. Hereditary and environmental factors are associated with refractive error categories. Further studies with this sample are warranted to investigate how refractive errors and environmental factors interact over time.
Assuntos
Hiperopia , Miopia , Erros de Refração , Comprimento Axial do Olho , Criança , Feminino , Humanos , Hiperopia/epidemiologia , Hiperopia/genética , Recém-Nascido , Masculino , Miopia/epidemiologia , Miopia/genética , Refração Ocular , Erros de Refração/epidemiologia , Erros de Refração/genética , Suécia/epidemiologiaRESUMO
Ametropia is one of the most common ocular disorders worldwide, to which almost half of visual impairments are attributed. Growing evidence has linked the development of ametropia with ambient light, including blue light, which is ubiquitous in our surroundings and has the highest photonic energy among the visible spectrum. However, the underlying mechanism of blue light-mediated ametropia remains controversial and unclear. In the present study, our data demonstrated that exposure of the retinal pigment epithelium (RPE) to blue light elevated the levels of the vital ametropia-related factor type â collagen (COL1) via ß-catenin inhibition in scleral fibroblasts, leading to axial ametropia (hyperopic shift). Herein, our study provides evidence for the vital role of blue light-induced RPE dysfunction in the process of blue light-mediated ametropia, providing intriguing insights into ametropic aetiology and pathology by proposing a link among blue light, RPE dysfunction and ametropia.