Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(9): 790, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110262

RESUMO

Heavy metal pollution, especially in freshwater, is a serious problem for aquatic organisms and human health. In this study, the scales of Capoeta capoeta living in the Karasu River (Turkey), which is estimated to be contaminated with pollutants, especially heavy metals, were examined for structural anomalies. Two stations on the river were selected for this purpose. Fish and surface water samples were taken at the stations. The heavy metal analyses were carried out in the water and the fish tissue. Heavy metal pollution was detected in the surface water. It was also observed that some heavy metals (As, Cu, Cd, Cr, Mn, Pb, Ni, Zn) accumulate in the fish tissue. Significant structural differences were observed on the dorsal surface of the scales, such as interrupted primary radii, damaged circuli, damaged focus, damaged anterior scale margin, broken focus, deformed scale structure, scattered chromatophores, dilatation of primary radii, loss of focus, damaged annuli, symmetry shift in the lateral line canal, eroded circuli, damaged posterior scale margin, double focus, branching in the primary radii, asymmetric circuli, incomplete annuli and interrupted secondary radii in each of the fish collected from the contaminated site. Heavy metals are suspected to be responsible for the structural anomalies in the scales. Based on these observations, it can be said that fish scales can be used as an effective indicator of water quality.


Assuntos
Monitoramento Ambiental , Metais Pesados , Rios , Poluentes Químicos da Água , Metais Pesados/análise , Poluentes Químicos da Água/análise , Rios/química , Animais , Turquia , Escamas de Animais/química
2.
ACS Biomater Sci Eng ; 10(8): 5108-5121, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996181

RESUMO

Commercial mammalian collagen-based membranes used for guided tissue regeneration (GTR) in periodontal defect repair still face significant challenges, including ethical concerns, cost-effectiveness, and limited capacity for periodontal bone regeneration. Herein, an enhanced biomimetic mineralized hydroxyapatite (HAp)-fish-scale collagen (FCOL)/chitosan (CS) nanofibrous membrane was developed. Specifically, eco-friendly and biocompatible collagen extracted from grass carp fish scales was co-electrospun with CS to produce a biomimetic extracellular matrix membrane. An enhanced biomimetic mineralized HAp coating provided abundant active calcium and phosphate sites, which promoted cell osteogenic differentiation, and showed greater in vivo absorption. In vitro experiments demonstrated that the HAp-FCOL/CS membranes exhibited desirable properties with no cytotoxicity, provided a mimetic microenvironment for stem cell recruitment, and induced periodontal ligament cell osteogenic differentiation. In rat periodontal defects, HAp-FCOL/CS membranes significantly promoted new periodontal bone formation and regeneration. The results of this study indicate that low-cost, eco-friendly, and biomimetic HAp-FCOL/CS membranes could be promising alternatives to GTR membranes for periodontal regeneration in the clinic.


Assuntos
Materiais Biomiméticos , Quitosana , Colágeno , Durapatita , Nanofibras , Osteogênese , Animais , Quitosana/química , Quitosana/farmacologia , Osteogênese/efeitos dos fármacos , Durapatita/química , Durapatita/farmacologia , Nanofibras/química , Nanofibras/uso terapêutico , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Colágeno/química , Ratos , Diferenciação Celular/efeitos dos fármacos , Membranas Artificiais , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/citologia , Ligamento Periodontal/fisiologia , Ratos Sprague-Dawley , Escamas de Animais/química , Regeneração Óssea/efeitos dos fármacos , Regeneração Tecidual Guiada Periodontal/métodos , Humanos , Masculino
3.
Int J Biol Macromol ; 274(Pt 2): 133172, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880458

RESUMO

In the field of bone tissue repair, the treatment of bone defects has always posed a significant challenge. In recent years, the advancement of bone tissue engineering and regenerative medicine has sparked great interest in the development of innovative bone grafting materials. In this study, a novel hydroxyapatite (HA) material was successfully prepared and comprehensively characterized. Antimicrobial experiments and biological evaluations were conducted to determine its efficacy. Based on the aforementioned research findings, 3D printing technology was employed to fabricate HA/chitosan (CS)/ polycaprolactone (PCL) scaffolds. The composition of the scaffold materials was confirmed through X-ray diffractometer (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) tests, while the influence of different HA ratios on the scaffold surface morphology was observed. Additionally, antimicrobial experiments demonstrated the favorable antimicrobial activity of the scaffolds containing 30%HA + 5%CS + PCL. Furthermore, the water contact angle measurements confirmed the superhydrophilicity of the scaffolds. Finally, the excellent bioactivity and ability to promote tissue regeneration of the scaffolds were further confirmed by in vitro and in vivo experiments. This study provides new options for future repair and regeneration of bone tissue and clinical applications.


Assuntos
Quitosana , Durapatita , Poliésteres , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Quitosana/química , Durapatita/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Poliésteres/química , Osso e Ossos/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Escamas de Animais/química , Peixes , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Environ Res ; 257: 119289, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823608

RESUMO

The presence of harmful substances such as dyes in water systems poses a direct threat to the quality of people's lives and other organisms living in the ecosystem. Orange G (OG) is considered a hazardous dye. The existing paper attempts to evaluate a low-cost adsorbent for the effective removal of OG dye. The developed adsorbent Polyaniline@Hydroxyapatite extracted from Cilus Gilberti fish Scale (PANI@FHAP) was elaborated through the application of the in situ chemical polymerization method to incorporate PANI on the surface of naturally extracted hydroxyapatite FHAP. The good synthesis of PANI@FHAP was evaluated through multiple techniques including X-ray diffraction (XRD), Scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM/EDS), Fourier Transforms Infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) coupled with thermal differential analysis (DTA) analysis. The results reveal a highly ordered disposition of PANI chains on FHAP, resulting in a well-coated FHAP in the PANI matrix. Furthermore, the presence of functional groups on the surface of PANI such as amine (-NH2) and imine (=NH) groups would facilitate the removal of OG dye from contaminated water. The adsorption of OG onto PANI@FHAP was conducted in batch mode and optimized through response surface methodology coupled with box-Behnken design (RSM/BBD) to investigate the effect of time, adsorbent dose, and initial concentration. The outcomes proved that OG adsorption follows a quadratic model (R2 = 0.989). The kinetic study revealed that the adsorption of OG fits the pseudo-second-order model. On the other hand, the isotherm study declared that the Freundlich model is best suited to the description of OG adsorption. For thermodynamic study, the adsorption of OG is spontaneous in nature and exothermic. Furthermore, the regeneration-reusability study indicates that PANI@FHAP could be regenerated and reused up to five successive cycles. Based on the FTIR spectrum of PANI@FHAP after OG adsorption, the mechanism governing OG adsorption is predominantly driven by π-π interaction, electrostatic interaction, and hydrogen bonding interactions. The obtained results suppose that PANI@FHAP adsorbent can be a competitive material in large-scale applications.


Assuntos
Compostos de Anilina , Durapatita , Águas Residuárias , Poluentes Químicos da Água , Compostos de Anilina/química , Durapatita/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Águas Residuárias/química , Corantes/química , Compostos Azo/química , Benzenossulfonatos/química , Animais , Escamas de Animais/química , Purificação da Água/métodos , Cinética , Eliminação de Resíduos Líquidos/métodos
5.
Food Res Int ; 190: 114612, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945620

RESUMO

Iron deficiency is widespread throughout the world, supplementing sufficient iron or improving the bioavailability of iron is the fundamental strategy to solve the problem of iron scarcity. Herein, we explored a new form of iron supplement, iron chelates of silver carp scales (SCSCP-Fe) were prepared from collagen peptide of silver carp scales (SCSCP) and FeCl2·4H2O, the effects of external environment and simulated gastrointestinal digestive environment on the stability of SCSCP-Fe and the structural changes of peptide iron chelates during digestion were investigated. The results of in vitro iron absorption promotion showed that the iron bioavailability of SCSCP-Fe was higher than that of FeSO4. Two potential high iron chelating peptides DTSGGYDEY (DY) and LQGSNEIEIR (LR) were screened and synthesized from the SCSCP sequence by molecular dynamics and LC-MS/MS techniques. The FTIR results displayed that the binding sites of DY and LR for Fe2+ were the carboxyl group, the amino group, and the nitrogen atom on the amide group on the peptide. ITC results indicated that the chelation reactions of DY and LR with Fe2+ were mainly dominated by electrostatic interactions, forming chelates in stoichiometric ratios of 1:2 and 1:1, respectively. Both DY and LR had a certain ability to promote iron absorption. The transport of DY-Fe chelate may be a combination of the three pathways: PepT1 vector pathway, cell bypass, and endocytosis, while LR-Fe chelate was dominated by bivalent metal ion transporters. This study is expected to provide theoretical reference and technical support for the high-value utilization of silver carp scales and the development of novel iron supplements.


Assuntos
Carpas , Colágeno , Digestão , Quelantes de Ferro , Carpas/metabolismo , Animais , Quelantes de Ferro/química , Colágeno/química , Colágeno/metabolismo , Ferro/química , Ferro/metabolismo , Escamas de Animais/química , Escamas de Animais/metabolismo , Disponibilidade Biológica , Peptídeos/química , Peptídeos/metabolismo , Absorção Intestinal , Humanos , Proteínas de Peixes/metabolismo , Proteínas de Peixes/química , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Espectrometria de Massas em Tandem
6.
Colloids Surf B Biointerfaces ; 240: 113991, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815311

RESUMO

Diabetes mellitus is a chronic metabolic disease with prolonged low-grade inflammation and impaired cellular function, leading to poor wound healing. The treatment of diabetic wounds remains challenging due to the complex wound microenvironment. In view of the prominence of fish scales in traditional Chinese medicine and their wide application in modern medicine, we isolated the intercellular components in the scales of sea bass, obtained a natural composite hydrogel, fish scales gel (FSG), and applied it to diabetic chronic wounds. FSG was rich in collagen-like proteins, and possessed low-temperature gelation properties. In vitro, FSG was biocompatible and promoted fibroblast proliferation by approximately 40 %, endothelial cell migration by approximately 20 % and activated the M1 macrophages. In addition, FSG restored the function of fibroblasts and vascular endothelial cells damaged by high glucose. Importantly, FSG normalized the acute inflammatory response to impaired macrophages in a high-glucose microenvironment. Transcriptome analysis implies that this mechanism may involve enhanced cell signaling and cellular communication, improved sensitivity to cytokines, and activation of the TNF signaling pathway. Animal experiments confirmed that FSG significantly improved wound closure by approximately 15 % in diabetic rats, showing similar effects to acute wounds. In conclusion, the regulation of multiple cellular functions by FSG, especially the counterintuitive ability to induce acute inflammation, promoted diabetic wound healing and provides a novel therapeutic strategy for wound repair in diabetic patients.


Assuntos
Diabetes Mellitus Experimental , Hidrogéis , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Ratos , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Escamas de Animais/química , Ratos Sprague-Dawley , Proliferação de Células/efeitos dos fármacos , Masculino , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Movimento Celular/efeitos dos fármacos , Camundongos , Peixes
7.
Acta Biomater ; 179: 1-12, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561073

RESUMO

Vertebrate mineralized tissues, present in bones, teeth and scales, have complex 3D hierarchical structures. As more of these tissues are characterized in 3D using mainly FIB SEM at a resolution that reveals the mineralized collagen fibrils and their organization into collagen fibril bundles, highly complex and diverse structures are being revealed. In this perspective we propose an approach to analyzing these tissues based on the presence of modular structures: material textures, pore shapes and sizes, as well as extents of mineralization. This modular approach is complimentary to the widely used hierarchical approach for describing these mineralized tissues. We present a series of case studies that show how some of the same structural modules can be found in different mineralized tissues, including in bone, dentin and scales. The organizations in 3D of the various structural modules in different tissues may differ. This approach facilitates the framing of basic questions such as: are the spatial relations between modular structures the same or similar in different mineralized tissues? Do tissues with similar sets of modules carry out similar functions or can similar functions be carried out using a different set of modular structures? Do mineralized tissues with similar sets of modules have a common developmental or evolutionary pathway? STATEMENT OF SIGNIFICANCE: 3D organization studies of diverse vertebrate mineralized tissues are revealing detailed, but often confusing details about the material textures, the arrangements of pores and differences in the extent of mineralization within a tissue. The widely used hierarchical scheme for describing such organizations does not adequately provide a basis for comparing these tissues, or addressing issues such as structural components thought to be characteristic of bone, being present in dermal tissues and so on. The classification scheme we present is based on identifying structural components within a tissue that can then be systematically compared to other vertebrate mineralized tissues. We anticipate that this classification approach will provide insights into structure-function relations, as well as the evolution of these tissues.


Assuntos
Calcificação Fisiológica , Vertebrados , Animais , Osso e Ossos , Dente/química , Humanos , Dentina/química , Escamas de Animais/química
8.
Int J Biol Macromol ; 267(Pt 1): 131183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580016

RESUMO

Corneal blindness is commonly treated through corneal replacement with allogeneic corneal donors, which may face shortage. Regarding this issue, xenogeneic alternatives are explored. Fish scale-derived scaffolds (FSSs) are among the alternatives due to the lower risk of infection and abundant sources of raw materials. Unfortunately, the information about mechanical, optical, chemical, and biological performances of FSSs for corneal replacements is still scattered, as well as about the fabrication techniques. This study aims to gather scattered pieces of information about the mentioned performances and fabrication techniques of FSSs for corneal replacements. Sorted from four scientific databases and using the PRISMA checklist, eleven relevant articles are collected. FSSs are commonly fabricated using decellularization and decalcification processes, generating FSSs with parallel multilayers or crossed fibers with topographic microchannels. In the collected studies, similar mechanical properties of FSSs to native tissues are discovered, as well as good transparency, light remittance, but poorer refractive indexes than native tissues. Biological evaluations mostly discuss histology, cell proliferations, and immune responses on FSSs, while only a few studies examine the vascularization. No studies completed comprehensive evaluations on the four properties. The current progress of FSS developments demonstrates the potential of FSS use for corneal replacements.


Assuntos
Córnea , Alicerces Teciduais , Animais , Alicerces Teciduais/química , Córnea/cirurgia , Humanos , Transplante de Córnea/métodos , Escamas de Animais/química , Peixes , Engenharia Tecidual/métodos
9.
Sci Rep ; 11(1): 19567, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599250

RESUMO

Mosquitoes are a great menace for humankind since they transmit pathogenic organisms causing Malaria, Dengue, Chikungunya, Elephantiasis and Japanese encephalitis. There is an urgent need to discover new and novel biological tools to mitigate mosquito-borne diseases. To develop bioinsecticides through newly developed nanotechnology is another option in the present research scenario. In this study we synthesize and characterize sardine fish scales with silver nitrate by adopting various instrumental techniques such as UV- and FTIR-spectroscopy, energy-dispersive X-ray (EDAX), X-ray diffraction analyses (XRD) and scanning electron microscopy (SEM). Toxicity bioassays were conducted with young developmental stages of mosquito vectors. Significant mortality appeared after different life stages of mosquito vectors (young larval and pupal instars were exposed to the nanomaterials). LC50 values were 13.261 ppm for young first instar larvae and 32.182 ppm for pupae. Feeding and predatory potential of G. affinis, before and after exposure to nanoparticles against mosquito larval (I & II) instars of the mosquitoes showed promising results in laboratory experiments. Feeding potential of mosquito fish without nanoparticle treatment was 79.7% and 70.55% for the first and second instar larval populations respectively. At the nanoparticle-exposed situation the predatory efficiency of mosquitofish was 94.15% and 84.3%, respectively. Antioxidant enzymes like (SOD), (CAT), and (LPO) were estimated in the gill region of sardine fish in control and experimental waters. A significant reduction of egg hatchability was evident after nanoparticle application. It became evident from this study that the nano-fabricated materials provide suitable tools to control the malaria vector Anopheles stephensi in the aquatic phase of its life cycle. This finding suggests an effective novel approach to mosquito control.


Assuntos
Escamas de Animais/química , Anopheles/efeitos dos fármacos , Peixes , Inseticidas/química , Inseticidas/farmacologia , Nanopartículas Metálicas/química , Prata , Animais , Anopheles/parasitologia , Fenômenos Químicos , Concentração Inibidora 50 , Insetos Vetores/efeitos dos fármacos , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/parasitologia , Testes de Sensibilidade Parasitária , Prata/química , Análise Espectral
10.
Mar Drugs ; 19(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068988

RESUMO

Fish gelatin and its hydrolysates exhibit a variety of biological characteristics, which include antihypertensive and antioxidant properties. In this study, fish gelatins were extracted from extrusion-pretreated tilapia scales, and then subjected to analyses to determine the physicochemical properties and antioxidant activity of the extracted gelatins. Our findings indicate that TSG2 (preconditioned with 1.26% citric acid) possessed the greatest extraction yield, as well as higher antioxidant activities compared with the other extracted gelatins. Hence, TSG2 was subjected to further hydrolyzation using different proteases and ultrafiltration conditions, which yielded four gelatin hydrolysates: TSGH1, TSGH2, TSGH3, and TSGH4. The results showed that TSGH4 (Pepsin + Pancreatin and ultrafiltration < 3000 Da) had a higher yield and greater antioxidant activity in comparison with the other gelatin hydrolysates. As such, TSGH4 was subjected to further fractionation using a Superdex peptide column and two-stage reverse-phase column HPLC chromatography, yielding a subfraction TSGH4-6-2-b, which possessed the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity compared with the other fractions. Further LC-ESI/MS/MS analysis of TSGH4-6-2-b suggested two novel peptides (GYDEY and EPGKSGEQGAPGEAGAP), which could have potential as naturally-occurring peptides with antioxidant properties. These promising results suggest that these antioxidant peptides could have applications in food products, nutraceuticals, and cosmetics.


Assuntos
Antioxidantes/farmacologia , Ciclídeos , Gelatina/química , Gelatina/farmacologia , Escamas de Animais/química , Animais , Antioxidantes/química , Fenômenos Químicos , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Cromatografia de Fase Reversa , Proteínas de Peixes/química , Proteínas de Peixes/isolamento & purificação , Proteínas de Peixes/farmacologia , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Gelatina/isolamento & purificação , Hidrólise , Peso Molecular , Peptídeo Hidrolases/química , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Massas em Tandem , Extratos de Tecidos/análise , Extratos de Tecidos/química , Extratos de Tecidos/isolamento & purificação , Extratos de Tecidos/farmacologia
11.
Commun Biol ; 4(1): 491, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888855

RESUMO

Scales are symbolic characteristic of Lepidoptera; however, nothing is known about the contribution of cuticular proteins (CPs) to the complex patterning of lepidopteran scales. This is because scales are resistant to solubilization, thus hindering molecular studies. Here we succeeded in dissolving developing wing scales from Bombyx mori, allowing analysis of their protein composition. We identified a distinctive class of histidine rich (His-rich) CPs (6%-45%) from developing lepidopteran scales by LC-MS/MS. Functional studies using RNAi revealed CPs with different histidine content play distinct and critical roles in constructing the microstructure of the scale surface. Moreover, we successfully synthesized films in vitro by crosslinking a 45% His-rich CP (BmorCPR152) with laccase2 using N-acetyl- dopamine or N-ß-alanyl-dopamine as the substrate. This molecular study of scales provides fundamental information about how such a fine microstructure is constructed and insights into the potential application of CPs as new biomaterials.


Assuntos
Escamas de Animais/química , Bombyx/química , Proteínas de Insetos/química , Proteínas/química , Asas de Animais/química , Escamas de Animais/efeitos dos fármacos , Animais , Bombyx/efeitos dos fármacos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Asas de Animais/efeitos dos fármacos
12.
Food Chem Toxicol ; 148: 111965, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33388406

RESUMO

Peptides derived from crimson snapper scales (CSSPs) were reported to possess excellent free radical scavenging activities in vitro. In present study, the anti-aging and anti-oxidative stress effects of CSSPs were evaluated in Drosophila melanogaster models. Results showed that the addition of CSSPs in the diets of normal Drosophila could effectively extend their lifespan and improve the motor ability of aged Drosophila. Moreover, CSSPs could protect Drosophila from oxidative damage induced by H2O2, paraquat and UV irradiation. The extension of lifespan was found to be associated with the effects of CSSPs in improving the antioxidant defense system of Drosophila, manifesting as the reduction of oxidation products MDA and PCO, the elevated activities of T-SOD, CAT and GSH-Px, and the upregulated expression of antioxidant related genes after CSSPs supplemented. Furthermore, CSSPs at 6 mg/mL significantly downregulated mTOR signaling pathway and activated autophagy in aged male Drosophila, and the inhibition on mTOR activation was probably mediated by the antioxidant effects of CSSPs. Our findings suggest that CSSPs have the potential in making dietary supplements against natural aging and oxidative stress in organisms.


Assuntos
Escamas de Animais/química , Antioxidantes/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Autofagia/efeitos dos fármacos , Drosophila melanogaster/efeitos da radiação , Feminino , Peixes , Peróxido de Hidrogênio/toxicidade , Locomoção/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos da radiação , Paraquat/toxicidade , Transdução de Sinais/efeitos dos fármacos , Raios Ultravioleta
13.
Micron ; 137: 102909, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32569859

RESUMO

Dorsal crest scales and those of the tail spines of the tuatara (Sphenodon punctatus) represent different specializations involved in display and protection. Erection of the dorsal crest occurs in males during combat and courtship, but tail spines are not noticeably involved in these activities. In both scale derivatives corneous beta proteins (CBPs, formerly called beta-keratins) and intermediate filaments keratins (IFKs) were determined by immunolabelling. The dermis is dense with few sparse fibrocytes surrounded by collagen bundles, the latter rather randomly oriented in the crest scales. In the tail ridge scales banded collagen I fibrils form more regular, orthogonally aligned bundles of alternating layers with connections to the basal epidermal membrane. A conglomerate of dermal melanonophores and iridophores is present under the epidermis. The iridophores are the likely origin of the whitish colour of the crest. The epidermis shows a thicker beta-layer with serrated/indented corneocytes in the tail scales while the beta layer is reduced in the crest but contains CBPs. A relatively thick mesos layer is present in both scale derivatives, especially in the crest where its role, aside from limiting transpiration, is not known. The alpha-layer is formed by corneocytes with irregular perimeter and sparse desmosomal remnants. The high labelling intensity for CBPs in the beta-layer disappears in the mesos layer but occurs, albeit strongly reduced, in the alpha-layer as in the other body scales. The take-home message is that the dense dermis and its apical beta-layer strengthen mechanically the ridge spines while the crest is mainly supported by the firm but pliable and less dense or regular dermis.


Assuntos
Escamas de Animais/ultraestrutura , Lagartos/anatomia & histologia , Cauda/anatomia & histologia , Cauda/citologia , Escamas de Animais/química , Animais , Diferenciação Celular , Células Epidérmicas/ultraestrutura , Epiderme/ultraestrutura , Microscopia/métodos , Microscopia Eletrônica/métodos , beta-Queratinas/análise
14.
IET Nanobiotechnol ; 14(4): 289-299, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32463019

RESUMO

The extensive discomfort in the expulsion of toxic pollutants even at mild concentrations has demanded the need for prompt methods for the evacuation of dyes and heavy metals. The effective method for depuration of dye from the effluent is by sorption. Chitosan is a bio-polymer which is gaining an increasing interest as one of the sorbents. It was obtained from the crab shells by undergoing several chemical processes and used as an adsorbent for dye, metal removal and also for pharmaceutical purposes. Cross linking it with other co polymers will increase the capacity of adsorption to a maximum level. Fish scales are considered to be a major waste in the food industry and since it takes a long time for decomposing it is considered to be one of the pollutants. Hence it is utilised by converting it into activated carbon by preliminary treatment and into a muffle furnace. The obtained activated carbon is combined with chitosan by using a cross linker and utilised for adsorption mechanism. To analyse the effect of chitosan cross linked with activated carbon obtained from fish scales in adsorption of dye Reactive Blue 9 (RB9) to evaluate the adsorption studies, kinetics, mass transfer studies, thermodynamics of the bio adsorbent.


Assuntos
Escamas de Animais/química , Quitosana/química , Corantes , Nanopartículas/química , Poluentes Químicos da Água , Adsorção , Animais , Braquiúros , Carbono/química , Corantes/química , Corantes/isolamento & purificação , Peixes , Cinética , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
15.
PLoS One ; 15(4): e0232180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32343728

RESUMO

The ability to distinguish between different migratory behaviours (e.g., anadromy and potamodromy) in fish can provide important insights into the ecology, evolution, and conservation of many aquatic species. We present a simple stable carbon isotope (δ13C) approach for distinguishing between sockeye (anadromous ocean migrants) and kokanee (potamodromous freshwater residents), two migratory ecotypes of Oncorhynchus nerka (Salmonidae) that is applicable throughout most of their range across coastal regions of the North Pacific Ocean. Analyses of kokanee (n = 239) and sockeye (n = 417) from 87 sites spanning the North Pacific (Russia to California) show that anadromous and potamodromous ecotypes are broadly distinguishable on the basis of the δ13C values of their scale and bone collagen. We present three case studies demonstrating how this approach can address questions in archaeology, archival, and conservation research. Relative to conventional methods for determining migratory status, which typically apply chemical analyses to otoliths or involve genetic analyses of tissues, the δ13C approach outlined here has the benefit of being non-lethal (when applied to scales), cost-effective, widely available commercially, and should be much more broadly accessible for addressing archaeological questions since the recovery of otoliths at archaeological sites is rare.


Assuntos
Colágeno/química , Proteínas de Peixes/química , Salmão/fisiologia , Salmonidae/fisiologia , Migração Animal , Escamas de Animais/química , Animais , Arqueologia , Biodiversidade , Osso e Ossos/química , Isótopos de Carbono/análise , Conservação dos Recursos Naturais , DNA Antigo/análise , Ecótipo , Feminino , Lagos , Masculino , Oceano Pacífico , Salmão/classificação , Salmão/genética , Salmonidae/classificação , Salmonidae/genética
16.
Elife ; 92020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32254023

RESUMO

In diverse organisms, nanostructures that coherently scatter light create structural color, but how such structures are built remains mysterious. We investigate the evolution and genetic regulation of butterfly scale laminae, which are simple photonic nanostructures. In a lineage of buckeye butterflies artificially selected for blue wing color, we found that thickened laminae caused a color shift from brown to blue. Deletion of the optix patterning gene also altered color via lamina thickening, revealing shared regulation of pigments and lamina thickness. Finally, we show how lamina thickness variation contributes to the color diversity that distinguishes sexes and species throughout the genus Junonia. Thus, quantitatively tuning one dimension of scale architecture facilitates both the microevolution and macroevolution of a broad spectrum of hues. Because the lamina is an intrinsic component of typical butterfly scales, our findings suggest that tuning lamina thickness is an available mechanism to create structural color across the Lepidoptera.


From iridescent blues to vibrant purples, many butterflies display dazzling 'structural colors' created not by pigments but by microscopic structures that interfere with light. For instance, the scales that coat their wings can contain thin films of chitin, the substance that normally makes the external skeleton of insects. In slim layers, however, chitin can also scatter light to produce color, the way that oil can create iridescence at the surface of water. The thickness of the film, which is encoded by the genes of the butterfly, determines what color will be produced. Yet, little is known about how common thin films are in butterflies, exactly how genetic information codes for them, and how their thickness and the colors they produce can evolve. To investigate, Thayer et al. used a technique called Helium Ion Microscopy and examined the wings of ten related species of butterflies, showing that thin film structures were present across this sample. However, the different species have evolved many different structural colors over the past millions of years by changing the thickness of the films. Next, Thayer et al. showed that this evolution could be reproduced at a faster pace in the laboratory using common buckeye butterflies. These insects mostly have brown wings, but they can have specks of blue created by thin film structures. Individuals with more blue on their wings were mated and over the course of a year, the thickness of the film structures increased by 74%, leading to shiny blue butterflies. Deleting a gene called optix from the insects also led to blue wings. Optix was already known to control the patterns of pigments in butterflies, but it now appears that it controls structural colors as well. From solar panels to new fabrics, microscopic structures that can scatter light are useful in a variety of industries. Understanding how these elements exist and evolve in organisms may help to better design them for human purposes.


Assuntos
Escamas de Animais/química , Borboletas/genética , Cor , Regulação da Expressão Gênica , Pigmentação , Asas de Animais/anatomia & histologia , Escamas de Animais/fisiologia , Animais , Borboletas/anatomia & histologia , Evolução Molecular , Feminino , Masculino , Nanoestruturas , Fenótipo , Asas de Animais/química
17.
Mater Sci Eng C Mater Biol Appl ; 109: 110540, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32229005

RESUMO

New peptide based hybrid scaffolds were prepared by blending two different fish scale derived hydroxyapatite with functionalized peptide nanofibers for potential applications in periodontal tissue regeneration. The nanofibers were prepared by self-assembly of the newly designed peptide bolaamphiphile Bis (N-α-amido-glutamic acid) 1,7 heptane tetracarboxylate and functionalized with a segment of the tyrosine rich amylogenin peptide sequence MPLPPHPGHPGYINF followed by polygalacturnonic acid and hydroxyapatite derived from salmon or red-snapper fish scales. The binding interactions of the components of the scaffold was confirmed by FTIR spectroscopy as well as SEM imaging. Hybrids scaffolds with salmon scale derived HaP showed higher mechanical strength and Young's Modulus compared to snapper scale derived scaffolds. Our results indicated that while both the scaffolds supported cell proliferation and efficiently formed cell-scaffold matrices with gingival fibroblasts, we observed greater alignment of the cells in the case of scaffolds that contained snapper scale derived hydroxyapatite. Furthermore, higher differentiation ability into osteoblast like cells was seen in the case of the snapper scale derived HaP based scaffolds. Our studies indicate that the hybrid peptide nanofiber scaffold matrices, particularly those prepared using snapper scales may have significant utility in the development of biomaterials for periodontal tissue regeneration.


Assuntos
Escamas de Animais/química , Durapatita/química , Fibroblastos/metabolismo , Gengiva/fisiologia , Nanofibras/química , Peptídeos/química , Regeneração , Salmo salar , Alicerces Teciduais/química , Animais , Células Cultivadas , Fibroblastos/citologia , Humanos
18.
BMC Evol Biol ; 20(1): 21, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019492

RESUMO

BACKGROUND: The hybridizing field crickets, Gryllus firmus and Gryllus pennsylvanicus have several barriers that prevent gene flow between species. The behavioral pre-zygotic mating barrier, where males court conspecifics more intensely than heterospecifics, is important because by acting earlier in the life cycle it has the potential to prevent a larger fraction of hybridization. The mechanism behind such male mate preference is unknown. Here we investigate if the female cuticular hydrocarbon (CHC) profile could be the signal behind male courtship. RESULTS: While males of the two species display nearly identical CHC profiles, females have different, albeit overlapping profiles and some females (between 15 and 45%) of both species display a male-like profile distinct from profiles of typical females. We classified CHC females profile into three categories: G. firmus-like (F; including mainly G. firmus females), G. pennsylvanicus-like (P; including mainly G. pennsylvanicus females), and male-like (ML; including females of both species). Gryllus firmus males courted ML and F females more often and faster than they courted P females (p < 0.05). Gryllus pennsylvanicus males were slower to court than G. firmus males, but courted ML females more often (p < 0.05) than their own conspecific P females (no difference between P and F). Both males courted heterospecific ML females more often than other heterospecific females (p < 0.05, significant only for G. firmus males). CONCLUSIONS: Our results suggest that male mate preference is at least partially informed by female CHC profile and that ML females elicit high courtship behavior in both species. Since ML females exist in both species and are preferred over other heterospecific females, it is likely that this female type is responsible for most hybrid offspring production.


Assuntos
Escamas de Animais/química , Corte , Gryllidae/fisiologia , Hibridização Genética/fisiologia , Hidrocarbonetos/análise , Comportamento Sexual Animal/fisiologia , Escamas de Animais/metabolismo , Animais , Feminino , Gryllidae/genética , Hidrocarbonetos/metabolismo , Masculino , Reprodução/fisiologia
19.
ACS Appl Mater Interfaces ; 12(10): 12294-12304, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32040287

RESUMO

Collembola are ancient arthropods living in soil with extensive exposure to dirt, bacteria, and fungi. To protect from the harsh environmental conditions and to retain a layer of air for breathing when submerged in water, they have evolved a superhydrophobic, liquid-repelling cuticle surface. The nonfouling and self-cleaning properties of springtail cuticle make it an interesting target of biomimetic materials design. Recent research has mainly focused on the intricate microstructures at the cuticle surface. Here we study the role of the cuticle chemistry for the Collembola species Orchesella cincta (Collembola, Entomobryidae). O. cincta uses a relatively simple cuticle structure with primary granules arranged to function as plastrons. In contrast to the Collembolan cuticle featuring structures on multiple length scales that is functional irrespective of surface chemistry, we found that the O. cincta cuticle loses its hydrophobic properties after being rinsed with dichloromethane. Sum frequency generation spectroscopy and time-of-flight secondary ion mass spectrometry in combination with high-resolution mass spectrometry show that a nanometer thin triacylglycerol-containing wax layer at the cuticle surface is essential for maintaining the antiwetting properties. Removal of the wax layer exposes chitin, terpenes, and lipid layers in the cuticle. With respect to biomimetic applications, the results show that, combined with a carefully chosen surface chemistry, superhydrophobicity may be achieved using a relatively unsophisticated surface structure rather than a complex, re-entrant surface structure alone.


Assuntos
Escamas de Animais/química , Escamas de Animais/ultraestrutura , Interações Hidrofóbicas e Hidrofílicas , Insetos/química , Propriedades de Superfície , Escamas de Animais/diagnóstico por imagem , Animais , Proteínas de Insetos/química , Análise Espectral
20.
Acta Biomater ; 106: 242-255, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32084601

RESUMO

Among many dermal armors, fish scales have become a source of inspiration in the pursuit of "next-generation" structural materials. Although fish scales function in a hydrated environment, the role of water and intermolecular hydrogen bonding to their unique structural behavior has not been elucidated. Water molecules reside within and adjacent to the interpeptide locations of the collagen fibrils of the elasmodine and provide lubrication to the protein molecules during deformation. We evaluated the contributions of this lubrication and the intermolecular bonding to the mechanical behavior of elasmodine scales from the Black Carp (Mylopharyngodon piceus). Scales were exposed to polar solvents, followed by axial loading to failure and the deformation mechanisms were characterized via optical mechanics. Displacement of intermolecular water molecules by liquid polar solvents caused significant (p ≤ 0.05) increases in stiffness, strength and toughness of the scales. Removal of this lubrication decreased the capacity for non-linear deformation and toughness, which results from the increased resistance to fibril rotations and sliding caused by molecular friction. The intermolecular lubrication is a key component of the "protecto-flexibility" of scales and these natural armors as a system; it can serve as an important component of biomimetic-driven designs for flexible armor systems. STATEMENT OF SIGNIFICANCE: The natural armor of fish has become a topic of substantial scientific interest. Hydration is important to these materials as water molecules reside within the interpeptide locations of the collagen fibrils of the elasmodine and provide lubrication to the protein molecules during deformation. We explored the opportunity for tuning the mechanical behavior of scales as a model for next-generation engineering materials by adjusting the extent of hydrogen bonding with polar solvents and the corresponding interpeptide molecular lubrication. Removal of this lubrication decreased the capacity for non-linear deformation and toughness due to an increase in resistance to fibril rotations and sliding as imparted by molecular friction. We show that intermolecular lubrication is a key component of the "protecto-flexibility" of natural armors and it is an essential element of biomimetic approaches to develop flexible armor systems.


Assuntos
Escamas de Animais/química , Água/química , Animais , Carpas , Módulo de Elasticidade , Lubrificação , Teste de Materiais , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA