Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.088
Filtrar
1.
Nature ; 628(8009): 901-909, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570679

RESUMO

Capsular polysaccharides (CPSs) fortify the cell boundaries of many commensal and pathogenic bacteria1. Through the ABC-transporter-dependent biosynthesis pathway, CPSs are synthesized intracellularly on a lipid anchor and secreted across the cell envelope by the KpsMT ABC transporter associated with the KpsE and KpsD subunits1,2. Here we use structural and functional studies to uncover crucial steps of CPS secretion in Gram-negative bacteria. We show that KpsMT has broad substrate specificity and is sufficient for the translocation of CPSs across the inner bacterial membrane, and we determine the cell surface organization and localization of CPSs using super-resolution fluorescence microscopy. Cryo-electron microscopy analyses of the KpsMT-KpsE complex in six different states reveal a KpsE-encaged ABC transporter, rigid-body conformational rearrangements of KpsMT during ATP hydrolysis and recognition of a glycolipid inside a membrane-exposed electropositive canyon. In vivo CPS secretion assays underscore the functional importance of canyon-lining basic residues. Combined, our analyses suggest a molecular model of CPS secretion by ABC transporters.


Assuntos
Cápsulas Bacterianas , Proteínas de Escherichia coli , Escherichia coli , Polissacarídeos Bacterianos , Trifosfato de Adenosina/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/química , Cápsulas Bacterianas/ultraestrutura , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Glicolipídeos/química , Glicolipídeos/metabolismo , Hidrólise , Microscopia de Fluorescência , Modelos Moleculares , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/química , Especificidade por Substrato
2.
Photodiagnosis Photodyn Ther ; 42: 103337, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36813143

RESUMO

Good management practices such as post-dipping applications (post-milking immersion bath) contribute to the dairy cattle health during lactation and minimize the appearance of mastitis (an infection in the mammary gland). The post-dipping procedure is performed conventionally using iodine-based solutions. The search for therapeutic modalities that are not invasive and do not cause resistance to the microorganisms that cause bovine mastitis instigates the interest of the scientific community. In this regard, antimicrobial Photodynamic Therapy (aPDT) is highlighted. The aPDT is based on combining a photosensitizer (PS) compound, light of adequate wavelength, and molecular oxygen (3O2), which triggers a series of photophysical processes and photochemical reactions that generate reactive oxygen species (ROS) responsible for the inactivation of microorganisms. The present investigation explored the photodynamic efficiency of two natural PS: Chlorophyll-rich spinach extract (CHL) and Curcumin (CUR), both incorporated into the Pluronic® F127 micellar copolymer. They were applied in post-dipping procedures in two different experiments. The photoactivity of formulations mediated through aPDT was conducted against Staphylococcus aureus, and obtained a minimum inhibitory concentration (MIC) of 6.8 mg mL-1 for CHL-F127 and 0.25 mg mL-1 for CUR-F127. Only CUR-F127 inhibited Escherichia coli growth with MIC 0.50 mg mL-1. Concerning the count of microorganisms during the days of the application, a significant difference was observed between the treatments and control (Iodine) when the teat surface of cows was evaluated. For CHL-F127 there was a difference for Coliform and Staphylococcus (p < 0.05). For CUR-F127 there was a difference for aerobic mesophilic and Staphylococcus (p < 0.05). Such application decreased bacterial load and maintained the milk quality, being evaluated via total microorganism count, physical-chemical composition, and somatic cell count (SCC).


Assuntos
Criação de Animais Domésticos , Bovinos , Mastite Bovina , Micelas , Fotoquimioterapia , Feminino , Animais , Mastite Bovina/prevenção & controle , Mastite Bovina/terapia , Sistemas de Liberação de Medicamentos/veterinária , Criação de Animais Domésticos/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Fotoquimioterapia/métodos , Fotoquimioterapia/veterinária , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/efeitos da radiação , Staphylococcus aureus/ultraestrutura , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Escherichia coli/ultraestrutura , Luz , Leite/microbiologia , Microscopia Eletrônica de Varredura
3.
Nature ; 613(7945): 783-789, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631609

RESUMO

Efficient and accurate termination is required for gene transcription in all living organisms1,2. Cellular RNA polymerases in both bacteria and eukaryotes can terminate their transcription through a factor-independent termination pathway3,4-called intrinsic termination transcription in bacteria-in which RNA polymerase recognizes terminator sequences, stops nucleotide addition and releases nascent RNA spontaneously. Here we report a set of single-particle cryo-electron microscopy structures of Escherichia coli transcription intrinsic termination complexes representing key intermediate states of the event. The structures show how RNA polymerase pauses at terminator sequences, how the terminator RNA hairpin folds inside RNA polymerase, and how RNA polymerase rewinds the transcription bubble to release RNA and then DNA. These macromolecular snapshots define a structural mechanism for bacterial intrinsic termination and a pathway for RNA release and DNA collapse that is relevant for factor-independent termination by all RNA polymerases.


Assuntos
DNA Bacteriano , RNA Polimerases Dirigidas por DNA , Escherichia coli , RNA Bacteriano , Terminação da Transcrição Genética , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/ultraestrutura , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Bacteriano/ultraestrutura , Regiões Terminadoras Genéticas/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Bacteriano/ultraestrutura
4.
Nature ; 609(7928): 808-814, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104567

RESUMO

Complex I is the first enzyme in the respiratory chain, which is responsible for energy production in mitochondria and bacteria1. Complex I couples the transfer of two electrons from NADH to quinone and the translocation of four protons across the membrane2, but the coupling mechanism remains contentious. Here we present cryo-electron microscopy structures of Escherichia coli complex I (EcCI) in different redox states, including catalytic turnover. EcCI exists mostly in the open state, in which the quinone cavity is exposed to the cytosol, allowing access for water molecules, which enable quinone movements. Unlike the mammalian paralogues3, EcCI can convert to the closed state only during turnover, showing that closed and open states are genuine turnover intermediates. The open-to-closed transition results in the tightly engulfed quinone cavity being connected to the central axis of the membrane arm, a source of substrate protons. Consistently, the proportion of the closed state increases with increasing pH. We propose a detailed but straightforward and robust mechanism comprising a 'domino effect' series of proton transfers and electrostatic interactions: the forward wave ('dominoes stacking') primes the pump, and the reverse wave ('dominoes falling') results in the ejection of all pumped protons from the distal subunit NuoL. This mechanism explains why protons exit exclusively from the NuoL subunit and is supported by our mutagenesis data. We contend that this is a universal coupling mechanism of complex I and related enzymes.


Assuntos
Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons , Escherichia coli , Animais , Transporte de Elétrons , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/ultraestrutura , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli , Mutação , NAD/metabolismo , NADH Desidrogenase , Oxirredução , Subunidades Proteicas , Prótons , Quinonas/química , Quinonas/metabolismo , Eletricidade Estática , Água/química
5.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35101979

RESUMO

The secondary active transporter CitS shuttles citrate across the cytoplasmic membrane of gram-negative bacteria by coupling substrate translocation to the transport of two Na+ ions. Static crystal structures suggest an elevator type of transport mechanism with two states: up and down. However, no dynamic measurements have been performed to substantiate this assumption. Here, we use high-speed atomic force microscopy for real-time visualization of the transport cycle at the level of single transporters. Unexpectedly, instead of a bimodal height distribution for the up and down states, the experiments reveal movements between three distinguishable states, with protrusions of ∼0.5 nm, ∼1.0 nm, and ∼1.6 nm above the membrane, respectively. Furthermore, the real-time measurements show that the individual protomers of the CitS dimer move up and down independently. A three-state elevator model of independently operating protomers resembles the mechanism proposed for the aspartate transporter GltPh Since CitS and GltPh are structurally unrelated, we conclude that the three-state elevators have evolved independently.


Assuntos
Membrana Celular , Proteínas de Escherichia coli , Escherichia coli , Microscopia de Força Atômica , Simportadores , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Simportadores/genética , Simportadores/metabolismo , Simportadores/ultraestrutura
6.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163484

RESUMO

Bacterial cryptic prophage (defective prophage) genes are known to drastically influence host physiology, such as causing cell growth arrest or lysis, upon expression. Many phages encode lytic proteins to destroy the cell envelope. As natural antibiotics, only a few lysis target proteins were identified. ydfD is a lytic gene from the Qin cryptic prophage that encodes a 63-amino-acid protein, the ectopic expression of which in Escherichia coli can cause nearly complete cell lysis rapidly. The bacterial 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is responsible for synthesizing the isoprenoids uniquely required for sustaining bacterial growth. In this study, we provide evidence that YdfD can interact with IspG, a key enzyme involved in the MEP pathway, both in vivo and in vitro. We show that intact YdfD is required for the interaction with IspG to perform its lysis function and that the mRNA levels of ydfD increase significantly under certain stress conditions. Crucially, the cell lysis induced by YdfD can be abolished by the overexpression of ispG or the complementation of the IspG enzyme catalysis product methylerythritol 2,4-cyclodiphosphate. We propose that YdfD from the Qin cryptic prophage inhibits IspG to block the MEP pathway, leading to a compromised cell membrane and cell wall biosynthesis and eventual cell lysis.


Assuntos
Biocatálise , Eritritol/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Prófagos/metabolismo , Fosfatos Açúcares/metabolismo , Proteínas Virais/metabolismo , Sequência Conservada , Cisteína/química , Eritritol/metabolismo , Escherichia coli/ultraestrutura , Modelos Biológicos , Ligação Proteica , Estrutura Secundária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Soluções , Estresse Fisiológico , Proteínas Virais/química
7.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35012978

RESUMO

Preventing pathogenic viral and bacterial transmission in the human environment is critical, especially in potential outbreaks that may be caused by the release of ancient bacteria currently trapped in the permafrost. Existing commercial disinfectants present issues such as a high carbon footprint. This study proposes a sustainable alternative, a bioliquid derived from biomass prepared by hydrothermal liquefaction. Results indicate a high inactivation rate of pathogenic virus and bacteria by the as-prepared bioliquid, such as up to 99.99% for H1N1, H5N1, H7N9 influenza A virus, and Bacillus subtilis var. niger spores and 99.49% for Bacillus anthracis Inactivation of Escherichia coli and Staphylococcus epidermidis confirmed that low-molecular-weight and low-polarity compounds in bioliquid are potential antibacterial components. High temperatures promoted the production of antibacterial substances via depolymerization and dehydration reactions. Moreover, bioliquid was innoxious as confirmed by the rabbit skin test, and the cost per kilogram of the bioliquid was $0.04427, which is notably lower than that of commercial disinfectants. This study demonstrates the potential of biomass to support our biosafety with greater environmental sustainability.


Assuntos
Biomassa , Contenção de Riscos Biológicos , Meio Ambiente , Energia Renovável , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/ultraestrutura , Humanos , Testes de Sensibilidade Microbiana , Peso Molecular , Pandemias , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/ultraestrutura
8.
Nat Commun ; 13(1): 197, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017467

RESUMO

To dissect the antibiotic role of nanostructures from chemical moieties belligerent to both bacterial and mammalian cells, here we show the antimicrobial activity and cytotoxicity of nanoparticle-pinched polymer brushes (NPPBs) consisting of chemically inert silica nanospheres of systematically varied diameters covalently grafted with hydrophilic polymer brushes that are non-toxic and non-bactericidal. Assembly of the hydrophilic polymers into nanostructured NPPBs doesn't alter their amicability with mammalian cells, but it incurs a transformation of their antimicrobial potential against bacteria, including clinical multidrug-resistant strains, that depends critically on the nanoparticle sizes. The acquired antimicrobial potency intensifies with small nanoparticles but subsides quickly with large ones. We identify a threshold size (dsilica ~ 50 nm) only beneath which NPPBs remodel bacteria-mimicking membrane into 2D columnar phase, the epitome of membrane pore formation. This study illuminates nanoengineering as a viable approach to develop nanoantibiotics that kill bacteria upon contact yet remain nontoxic when engulfed by mammalian cells.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Nanopartículas/química , Antibacterianos/síntese química , Eritrócitos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/ultraestrutura , Células HEK293 , Hemólise/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Nanopartículas/ultraestrutura , Especificidade de Órgãos , Tamanho da Partícula , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/ultraestrutura
9.
Mol Microbiol ; 117(1): 102-120, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415624

RESUMO

In organisms from all domains of life, multi-enzyme assemblies play central roles in defining transcript lifetimes and facilitating RNA-mediated regulation of gene expression. An assembly dedicated to such roles, known as the RNA degradosome, is found amongst bacteria from highly diverse lineages. About a fifth of the assembly mass of the degradosome of Escherichia coli and related species is predicted to be intrinsically disordered - a property that has been sustained for over a billion years of bacterial molecular history and stands in marked contrast to the high degree of sequence variation of that same region. Here, we characterize the conformational dynamics of the degradosome using a hybrid structural biology approach that combines solution scattering with ad hoc ensemble modelling, cryo-electron microscopy, and other biophysical methods. The E. coli degradosome can form punctate bodies in vivo that may facilitate its functional activities, and based on our results, we propose an electrostatic switch model to account for the propensity of the degradosome to undergo programmable puncta formation.


Assuntos
Endorribonucleases , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Complexos Multienzimáticos , Polirribonucleotídeo Nucleotidiltransferase , RNA Helicases , RNA Bacteriano/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , Ensaio de Desvio de Mobilidade Eletroforética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/genética , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Estruturais , Mutação , Processamento Pós-Transcricional do RNA , RNA Bacteriano/genética , Ribonucleases/genética , Ribonucleases/metabolismo , Eletricidade Estática , Tomografia
10.
Cells ; 10(12)2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34943812

RESUMO

The invention of a scanning electron microscopy (SEM) pushed the imaging methods and allowed for the observation of cell details with a high resolution. Currently, SEM appears as an extremely useful tool to analyse the morphology of biological samples. The aim of this paper is to provide a set of guidelines for using SEM to analyse morphology of prokaryotic and eukaryotic cells, taking as model cases Escherichia coli bacteria and B-35 rat neuroblastoma cells. Herein, we discuss the necessity of a careful sample preparation and provide an optimised protocol that allows to observe the details of cell ultrastructure (≥ 50 nm) with a minimum processing effort. Highlighting the versatility of morphometric descriptors, we present the most informative parameters and couple them with molecular processes. In this way, we indicate the wide range of information that can be collected through SEM imaging of biological materials that makes SEM a convenient screening method to detect cell pathology.


Assuntos
Células Eucarióticas/ultraestrutura , Guias como Assunto , Microscopia Eletrônica de Varredura , Células Procarióticas/ultraestrutura , Animais , Escherichia coli/ultraestrutura , Humanos , Modelos Biológicos
11.
J Biol Chem ; 297(6): 101404, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34774797

RESUMO

After transcription termination, cellular RNA polymerases (RNAPs) are occasionally trapped on DNA, impounded in an undefined post-termination complex (PTC), limiting the free RNAP pool and subsequently leading to inefficient transcription. In Escherichia coli, a Swi2/Snf2 family of ATPase called RapA is known to be involved in countering such inefficiency through RNAP recycling; however, the precise mechanism of this recycling is unclear. To better understand its mechanism, here we determined the structures of two sets of E. coli RapA-RNAP complexes, along with the RNAP core enzyme and the elongation complex, using cryo-EM. These structures revealed the large conformational changes of RNAP and RapA upon their association that has been implicated in the hindrance of PTC formation. Our results along with DNA-binding assays reveal that although RapA binds RNAP away from the DNA-binding main channel, its binding can allosterically close the RNAP clamp, thereby preventing its nonspecific DNA binding and PTC formation. Taken together, we propose that RapA acts as a guardian of RNAP by which RapA prevents nonspecific DNA binding of RNAP without affecting the binding of promoter DNA recognition σ factor, thereby enhancing RNAP recycling.


Assuntos
Adenosina Trifosfatases/química , DNA Bacteriano/química , RNA Polimerases Dirigidas por DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Complexos Multienzimáticos/química , Adenosina Trifosfatases/metabolismo , Microscopia Crioeletrônica , DNA Bacteriano/metabolismo , DNA Bacteriano/ultraestrutura , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/metabolismo , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/ultraestrutura
12.
Biochemistry ; 60(48): 3714-3727, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34788017

RESUMO

The 3'-5', 3'-5' cyclic dinucleotides (3'3'CDNs) are bacterial second messengers that can also bind to the stimulator of interferon genes (STING) adaptor protein in vertebrates and activate the host innate immunity. Here, we profiled the substrate specificity of four bacterial dinucleotide synthases from Vibrio cholerae (DncV), Bacillus thuringiensis (btDisA), Escherichia coli (dgcZ), and Thermotoga maritima (tDGC) using a library of 33 nucleoside-5'-triphosphate analogues and then employed these enzymes to synthesize 24 3'3'CDNs. The STING affinity of CDNs was evaluated in cell-based and biochemical assays, and their ability to induce cytokines was determined by employing human peripheral blood mononuclear cells. Interestingly, the prepared heterodimeric 3'3'CDNs bound to the STING much better than their homodimeric counterparts and showed similar or better potency than bacterial 3'3'CDNs. We also rationalized the experimental findings by in-depth STING-CDN structure-activity correlations by dissecting computed interaction free energies into a set of well-defined and intuitive terms. To this aim, we employed state-of-the-art methods of computational chemistry, such as quantum mechanics/molecular mechanics (QM/MM) calculations, and complemented the computed results with the {STING:3'3'c-di-ara-AMP} X-ray crystallographic structure. QM/MM identified three outliers (mostly homodimers) for which we have no clear explanation of their impaired binding with respect to their heterodimeric counterparts, whereas the R2 = 0.7 correlation between the computed ΔG'int_rel and experimental ΔTm's for the remaining ligands has been very encouraging.


Assuntos
Imunidade Inata/genética , Proteínas de Membrana/ultraestrutura , Nucleotídeos/biossíntese , Relação Estrutura-Atividade , Bacillus thuringiensis/enzimologia , Bacillus thuringiensis/ultraestrutura , Cristalografia por Raios X , Citocinas/química , Citocinas/genética , Escherichia coli/enzimologia , Escherichia coli/ultraestrutura , Humanos , Leucócitos Mononucleares/química , Leucócitos Mononucleares/enzimologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Nucleotídeos/química , Nucleotídeos/genética , Teoria Quântica , Especificidade por Substrato , Thermotoga maritima/enzimologia , Thermotoga maritima/ultraestrutura , Vibrio cholerae/enzimologia , Vibrio cholerae/ultraestrutura
13.
Biomolecules ; 11(10)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34680030

RESUMO

Bacterial flagella are cell surface protein appendages that are critical for motility and pathogenesis. Flagellar filaments are tubular structures constructed from thousands of copies of the protein flagellin, or FliC, arranged in helical fashion. Individual unfolded FliC subunits traverse the filament pore and are folded and sorted into place with the assistance of the flagellar capping protein complex, an oligomer of the FliD protein. The FliD filament cap is a stool-like structure, with its D2 and D3 domains forming a flat head region, and its D1 domain leg-like structures extending perpendicularly from the head towards the inner core of the filament. Here, using an approach combining bacterial genetics, motility assays, electron microscopy and molecular modeling, we define, in numerous Gram-negative bacteria, which regions of FliD are critical for interaction with FliC subunits and result in the formation of functional flagella. Our data indicate that the D1 domain of FliD is its sole functionally important domain, and that its flexible coiled coil region comprised of helices at its extreme N- and C-termini controls compatibility with the FliC filament. FliD sequences from different bacterial species in the head region are well tolerated. Additionally, head domains can be replaced by small peptides and larger head domains from different species and still produce functional flagella.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Escherichia coli/genética , Flagelina/genética , Proteínas de Membrana/genética , Proteínas de Bactérias/ultraestrutura , Escherichia coli/genética , Escherichia coli/patogenicidade , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Flagelos/química , Flagelos/genética , Flagelos/ultraestrutura , Flagelina/ultraestrutura , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/patogenicidade , Filamentos Intermediários/genética , Microscopia Eletrônica , Modelos Moleculares , Domínios Proteicos/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/ultraestrutura
14.
Int J Biol Macromol ; 190: 113-119, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34480902

RESUMO

Glutamate decarboxylase B (GadB) from Escherichia coli, an intrinsic pyridoxal 5'-phosphate (PLP)-dependent enzyme has been employed for 4-aminobutyric acid (GABA) biosynthesis, which involves the glutamate import and GABA export via a transporter located in the inner membrane as rate determined step of whole-cell (WC) biotransformation. Herein, GadB was cloned and overexpressed in E. coli under a constitutive promoter in a high copy number plasmid, and 46.9 g/L GABA was produced. It was observed that GadB migrated to the periplasm when the WC were subjected to -20 °C cold treatment for 24 h prior to the biotransformation. Kinetic studies indicated that the enzymatic turnover rate of WC increased 2-fold after cold treatment, which was correlated with the migration rate of GadB, and up to 88.6% of GadB. The export or possible migration of GadB mitigated the rate-limiting step of WC biotransformation, and a 100% conversion of substrate to GABA was obtained. Finally, we launched a promising strategy for GABA production of 850 g/L from cost-effective monosodium glutamate (MSG) by using WC biocatalysts with 10-times recycling.


Assuntos
Biocatálise , Temperatura Baixa , Escherichia coli/genética , Engenharia Genética , Glutamato Descarboxilase/metabolismo , Ácido gama-Aminobutírico/biossíntese , Escherichia coli/ultraestrutura , Cinética , Oxigênio , Origem de Replicação/genética
15.
Nat Commun ; 12(1): 5442, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521846

RESUMO

Reversible switching of the bacterial flagellar motor between clockwise (CW) and counterclockwise (CCW) rotation is necessary for chemotaxis, which enables cells to swim towards favorable chemical habitats. Increase in the viscous resistance to the rotation of the motor (mechanical load) inhibits switching. However, cells must maintain homeostasis in switching to navigate within environments of different viscosities. The mechanism by which the cell maintains optimal chemotactic function under varying loads is not understood. Here, we show that the flagellar motor allosterically controls the binding affinity of the chemotaxis response regulator, CheY-P, to the flagellar switch complex by modulating the mechanical forces acting on the rotor. Mechanosensitive CheY-P binding compensates for the load-induced loss of switching by precisely adapting the switch response to a mechanical stimulus. The interplay between mechanical forces and CheY-P binding tunes the chemotactic function to match the load. This adaptive response of the chemotaxis output to mechanical stimuli resembles the proprioceptive feedback in the neuromuscular systems of insects and vertebrates.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Flagelos/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Regulação Alostérica , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Mimetismo Biológico , Fenômenos Biomecânicos , Quimiotaxia/genética , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli , Retroalimentação Sensorial/fisiologia , Flagelos/genética , Flagelos/ultraestrutura , Expressão Gênica , Insetos/fisiologia , Proteínas Quimiotáticas Aceptoras de Metil/química , Proteínas Quimiotáticas Aceptoras de Metil/genética , Pinças Ópticas , Ligação Proteica , Vertebrados/fisiologia , Viscosidade
16.
Nucleic Acids Res ; 49(16): 9539-9547, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34403461

RESUMO

In Escherichia coli, elevated levels of free l-tryptophan (l-Trp) promote translational arrest of the TnaC peptide by inhibiting its termination. However, the mechanism by which translation-termination by the UGA-specific decoding release factor 2 (RF2) is inhibited at the UGA stop codon of stalled TnaC-ribosome-nascent chain complexes has so far been ambiguous. This study presents cryo-EM structures for ribosomes stalled by TnaC in the absence and presence of RF2 at average resolutions of 2.9 and 3.5 Å, respectively. Stalled TnaC assumes a distinct conformation composed of two small α-helices that act together with residues in the peptide exit tunnel (PET) to coordinate a single L-Trp molecule. In addition, while the peptidyl-transferase center (PTC) is locked in a conformation that allows RF2 to adopt its canonical position in the ribosome, it prevents the conserved and catalytically essential GGQ motif of RF2 from adopting its active conformation in the PTC. This explains how translation of the TnaC peptide effectively allows the ribosome to function as a L-Trp-specific small-molecule sensor that regulates the tnaCAB operon.


Assuntos
Proteínas de Escherichia coli/ultraestrutura , Fatores de Terminação de Peptídeos/ultraestrutura , Biossíntese de Proteínas , Ribossomos/ultraestrutura , Códon de Terminação/genética , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Conformação Proteica , Conformação Proteica em alfa-Hélice , Ribossomos/genética , Triptofano/genética
17.
Sci Rep ; 11(1): 14003, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234197

RESUMO

A growing body of literature has recognized the non-thermal effect of pulsed microwave radiation (PMR) on bacterial systems. However, its mode of action in deactivating bacteria has not yet been extensively investigated. Nevertheless, it is highly important to advance the applications of PMR from simple to complex biological systems. In this study, we first optimized the conditions of the PMR device and we assessed the results by simulations, using ANSYS HFSS (High Frequency Structure Simulator) and a 3D particle-in-cell code for the electron behavior, to provide a better overview of the bacterial cell exposure to microwave radiation. To determine the sensitivity of PMR, Escherichia coli and Staphylococcus aureus cultures were exposed to PMR (pulse duration: 60 ns, peak frequency: 3.5 GHz) with power density of 17 kW/cm2 at the free space of sample position, which would induce electric field of 8.0 kV/cm inside the PBS solution of falcon tube in this experiment at 25 °C. At various discharges (D) of microwaves, the colony forming unit curves were analyzed. The highest ratios of viable count reductions were observed when the doses were increased from 20D to 80D, which resulted in an approximate 6 log reduction in E. coli and 4 log reduction in S. aureus. Moreover, scanning electron microscopy also revealed surface damage in both bacterial strains after PMR exposure. The bacterial inactivation was attributed to the deactivation of oxidation-regulating genes and DNA damage.


Assuntos
Bactérias/efeitos da radiação , Viabilidade Microbiana/efeitos da radiação , Micro-Ondas , Bactérias/genética , Bactérias/metabolismo , Bactérias/ultraestrutura , Dano ao DNA/efeitos da radiação , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efeitos da radiação , Escherichia coli/ultraestrutura , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Glutationa/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Sci Rep ; 11(1): 13816, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226573

RESUMO

Antibacterial potential of Limonene against Multi Drug Resistant (MDR) pathogens was studied and mechanism explored. Microscopic techniques viz. Fluorescent Microscopy (FM), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) indicated membrane disruption, cellular leakage and cell death of Escherichia coli (E. coli) cells when treated with limonene. Leakage of intracellular proteins, lipids and nucleic acid confirmed membrane damage and disruption of cell permeability barrier. Further, release of intracellular ATP, also suggested disruption of membrane barrier. Interaction of limonene with DNA revealed its capability in unwinding of plasmid, which could eventually inhibit DNA transcription and translation. Differential expression of various proteins and enzymes involved in transport, respiration, metabolism, chemotaxis, protein synthesis confirmed the mechanistic role of limonene on their functions. Limonene thus can be a potential candidate in drug development.


Assuntos
Membrana Celular/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/efeitos dos fármacos , Limoneno/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Escherichia coli/patogenicidade , Escherichia coli/ultraestrutura , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Limoneno/química , Lipídeos/antagonistas & inibidores , Lipídeos/genética , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Ácidos Nucleicos/efeitos dos fármacos
19.
Molecules ; 26(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069848

RESUMO

Escherichia coli colonies were grown on different supports for the removal of nitrates from water. A carbon material and different commercial metal oxides, such as SiO2, TiO2 and Al2O3, and their corresponding carbon-metal oxide composites were studied. The physicochemical properties were analyzed by different techniques and the results were correlated with their performance in the denitrification process. Developed biofilms effectively adhere to the supports and always reach the complete reduction of nitrates to gaseous products. Nevertheless, faster processes occur when the biofilm is supported on mesoporous and non-acid materials (carbon and silica).


Assuntos
Agricultura , Biofilmes , Carbono/farmacologia , Nitratos/isolamento & purificação , Óxidos/farmacologia , Águas Residuárias/química , Purificação da Água , Biofilmes/efeitos dos fármacos , Carbono/toxicidade , Desnitrificação , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/fisiologia , Escherichia coli/ultraestrutura , Concentração de Íons de Hidrogênio , Óxidos/toxicidade , Tamanho da Partícula , Termogravimetria , Difração de Raios X
20.
J Bacteriol ; 203(17): e0015021, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34152201

RESUMO

Bacterial rod-shaped cells experiencing irreparable chromosome damage should filament without other morphological changes. Thymineless death (TLD) strikes thymidine auxotrophs denied external thymine/thymidine (T) supplementation. Such T-starved cells cannot produce the DNA precursor dTTP and therefore stop DNA replication. Stalled replication forks in T-starved cells were always assumed to experience mysterious chromosome lesions, but TLD was recently found to happen even without origin-dependent DNA replication, with the chromosome still remaining the main TLD target. T starvation also induces morphological changes, as if thymidine prevents cell envelope or cytoplasm problems that otherwise translate into chromosome damage. Here, we used transmission electron microscopy (TEM) to examine cytoplasm and envelope changes in T-starved Escherichia coli cells, using treatment with a DNA gyrase inhibitor as a control for "pure" chromosome death. Besides the expected cell filamentation in response to both treatments, we see the following morphological changes specific for T starvation and which might lead to chromosome damage: (i) significant cell widening, (ii) nucleoid diffusion, (iii) cell pole damage, and (iv) formation of numerous cytoplasmic bubbles. We conclude that T starvation does impact both the cytoplasm and the cell envelope in ways that could potentially affect the chromosome. IMPORTANCE Thymineless death is a dramatic and medically important phenomenon, the mechanisms of which remain a mystery. Unlike most other auxotrophs in the absence of the required supplement, thymidine-requiring E. coli mutants not only go static in the absence of thymidine, but rapidly die of chromosomal damage of unclear nature. Since this chromosomal damage is independent of replication, we examined fine morphological changes in cells undergoing thymineless death in order to identify what could potentially affect the chromosome. Here, we report several cytoplasm and cell envelope changes that develop in thymidine-starved cells but not in gyrase inhibitor-treated cells (negative control) that could be linked to subsequent irreparable chromosome damage. This is the first electron microscopy study of cells undergoing "genetic death" due to irreparable chromosome lesions.


Assuntos
Membrana Celular/ultraestrutura , Citoplasma/ultraestrutura , Escherichia coli/metabolismo , Timina/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Replicação do DNA , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Viabilidade Microbiana , Microscopia Eletrônica , Timidina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA