Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791466

RESUMO

The emerging heteropathotype shigatoxigenic (STEC) and extra-intestinal pathogenic Escherichia coli (ExPEC) O80:H2 has been the second leading cause of pediatric HUS in France since the mid-2010s. In contrast with other highly pathogenic STEC serotypes, for which ruminants have clearly been identified as the main human infection source, this heteropathotype's reservoir remains unknown. In this context, we describe for the first time the isolation of seven STEC O80:H2 strains from healthy cattle on a single cattle farm in France. This study aimed at (i) characterizing the genome and (ii) investigating the phylogenetic positions of these O80:H2 STEC strains. The virulomes, resistomes, and phylogenetic positions of the seven bovine isolates were investigated using in silico typing tools, antimicrobial susceptibility testing and cgMLST analysis after short-read whole genome sequencing (WGS). One representative isolate (A13P112V1) was also subjected to long-read sequencing. The seven isolates possessed ExPEC-related virulence genes on a pR444_A-like mosaic plasmid, previously described in strain RDEx444 and known to confer multi-drug resistance. All isolates were clonally related and clustered with human clinical strains from France and Switzerland with a range of locus differences of only one to five. In conclusion, our findings suggest that healthy cattle in France could potentially act as a reservoir of the STEC-ExPEC O80:H2 pathotype.


Assuntos
Infecções por Escherichia coli , Genoma Bacteriano , Filogenia , Escherichia coli Shiga Toxigênica , Sequenciamento Completo do Genoma , Animais , Bovinos , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Escherichia coli Shiga Toxigênica/patogenicidade , Escherichia coli Shiga Toxigênica/classificação , França , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Sequenciamento Completo do Genoma/métodos , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/isolamento & purificação , Escherichia coli Extraintestinal Patogênica/patogenicidade , Doenças dos Bovinos/microbiologia , Fatores de Virulência/genética , Virulência/genética , Sorogrupo , Genômica/métodos , Plasmídeos/genética
2.
Biomolecules ; 14(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38672469

RESUMO

Porcine extraintestinal pathogenic Escherichia coli (ExPEC) is a pathogenic bacterium that causes huge economic losses to the pig farming industry and considerably threatens human health. The quorum sensing (QS) system plays a crucial role in the survival and pathogenesis of pathogenic bacteria. Hence, it is a viable approach to prevent ExPEC infection by compromising the QS system, particularly the LuxS/AI-2 system. In this study, we investigated the effects of baicalin on the LuxS/AI-2 system of ExPEC. Baicalin at concentrations of 25, 50, and 100 µg/mL significantly diminished the survival ability of ExPEC in hostile environments and could inhibit the biofilm formation and autoagglutination ability in ExPEC. Moreover, baicalin dose-dependently decreased the production of AI-2 and down-regulated the expression level of luxS in PCN033. These results suggest that baicalin can weaken the virulence of PCN033 by inhibiting the LuxS/AI-2 system. After the gene luxS was deleted, AI-2 production in PCN033 was almost completely eliminated, similar to the effect of baicalin on the production of AI-2 in PCN033. This indicates that baicalin reduced the production of AI-2 by inhibiting the expression level of luxS in ExPEC. In addition, the animal experiment further showed the potential of baicalin as a LuxS/AI-2 system inhibitor to prevent ExPEC infection. This study highlights the potential of baicalin as a natural quorum-sensing inhibitor for therapeutic applications in preventing ExPEC infection by targeting the LuxS/AI-2 system.


Assuntos
Proteínas de Bactérias , Liases de Carbono-Enxofre , Escherichia coli Extraintestinal Patogênica , Flavonoides , Homosserina , Homosserina/análogos & derivados , Percepção de Quorum , Percepção de Quorum/efeitos dos fármacos , Flavonoides/farmacologia , Animais , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Suínos , Virulência/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Homosserina/metabolismo , Escherichia coli Extraintestinal Patogênica/efeitos dos fármacos , Escherichia coli Extraintestinal Patogênica/patogenicidade , Escherichia coli Extraintestinal Patogênica/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Lactonas/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/tratamento farmacológico
3.
Microb Pathog ; 174: 105861, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36427660

RESUMO

Umbilical infections in calves comprise a major cause of neonatal mortality and have been related to a variety of microorganisms. E. coli is an opportunistic enteropathogen characterized by a diversity of virulence factors (VF). Nonetheless, the gene profiles that encode VF associated with umbilical infections in calves and their effect on the clinical severity remains unclear. In this scenario, microbial identification (with an emphasis on E. coli), was carried out among 150 neonatal calves (≤30 days of age) with umbilical infections, where the omphalopathies were clinically scored as mild, moderate, or severe. Also, a panel of 16 virulence-encoding genes related to extraintestinal pathogenic E. coli (ExPEC) were investigated, i.e., fimbriae/adhesins (sfa/focDEa, papA, papC, afaBC), toxins (hlyA, sat, cnf1, cdt), siderophores (iroN, irp2, iucD, ireA), invasins (ibeA), and serum resistance (ompT, traT, kpsMT II). Bacteria and yeasts isolates were identified using mass spectrometry. Bacteria, yeasts, and fungi were isolated in 94.7% (142/150) of neonatal calves sampled. E. coli was the agent most frequently isolated (59/150 = 39.3%), in pure culture (27/59 = 45.8%) and combined infections (32/59 = 54.2%), although a great variety (n = 83) of other species of microorganisms were identified. Clinical severity scores of 1, 2, and 3 were observed in 32.2% (19/59), 23.7% (14/59), and 44.1% (26/59) of E. coli infections, respectively. The ExPEC genes detected were related to serum resistance (traT, 42/59 = 72.2%; ompT, 35/59 = 59.3%, kpsMTII, 10/59 = 17%), invasins (ibeA, 11/59 = 18.6%), siderophores (iucD, 9/59 = 15.3%; iroN, 8/59 = 13.6%), and adhesins/fimbriae (papA, 8/59 = 13.6%; papC, 15/59 = 9.6%). The presence of each virulence gene was not associated with the case's clinical score. Among all isolates, 89.8% (53/59) showed in vitro resistance to sulfamethoxazole/trimethoprim and 59.3% to ampicillin (35/59), while 94.1% (55/59) revealed a multidrug resistant profile. Great complexity of bacteria, yeast, and fungi species was identified, reinforcing the umbilical infections of neonatal calves as a polymicrobial disorder. The high occurrence of E. coli (39.3%) highlights the role of this pathogen in the etiology of umbilical infections in calves. Furthermore, a panel of ExPEC genes was investigated for the first time among calves that were clinically scored for case severity. The high prevalence of traT and ompT indicates that these serum resistance-related genes could be used as biomarkers for further investigations of ExPEC isolates from umbilical infections. Our results contribute to the etiological investigation, clinical severity scoring, antimicrobial resistance pattern, and virulence-related to ExPEC genes involved in umbilical infections of neonatal calves.


Assuntos
Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Fatores de Virulência , Animais , Bovinos , Antibacterianos/farmacologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/isolamento & purificação , Escherichia coli Extraintestinal Patogênica/patogenicidade , Sideróforos/genética , Virulência/genética , Fatores de Virulência/genética
4.
BMC Microbiol ; 22(1): 60, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35180845

RESUMO

BACKGROUND: Avian colibacillosis is an infectious bacterial disease caused by avian pathogenic Escherichia coli (APEC). APEC causes a wide variety of intestinal and extraintestinal infections, including InPEC and ExPEC, which result in enormous losses in the poultry industry. In this study, we investigated the prevalence of InPEC and ExPEC in Central China, and the isolates were characterized using molecular approaches and tested for virulence factors and antibiotic resistance. RESULTS: A total of 200 chicken-derived E. coli isolates were collected for study from 2019 and 2020. The prevalence of B2 and D phylogenic groups in the 200 chicken-derived E. coli was verified by triplex PCR, which accounted for 50.53% (48/95) and 9.52% (10/105) in ExPEC and InPEC, respectively. Additionally, multilocus sequence typing method was used to examine the genetic diversity of these E. coli isolates, which showed that the dominant STs of ExPEC included ST117 (n = 10, 20.83%), ST297 (n = 5, 10.42%), ST93 (n = 4, 8.33%), ST1426 (n = 4, 8.33%) and ST10 (n = 3, 6.25%), while the dominant ST of InPEC was ST117 (n = 2, 20%). Furthermore, antimicrobial susceptibility tests of 16 antibiotics for those strains were conducted. The result showed that more than 60% of the ExPEC and InPEC were resistant to streptomycin and nalidixic acid. Among these streptomycin resistant isolates (n = 49), 99.76% harbored aminoglycoside resistance gene strA, and 63.27% harbored strB. Among these nalidixic acid resistant isolates (n = 38), 94.74% harbored a S83L mutation in gyrA, and 44.74% harbored a D87N mutation in gyrA. Moreover, the prevalence of multidrug-resistant (MDR) in the isolates of ExPEC and InPEC was 31.25% (15/48) and 20% (2/10), respectively. Alarmingly, 8.33% (4/48) of the ExPEC and 20% (2/10) of the InPEC were extensively drug-resistant (XDR). Finally, the presence of 13 virulence-associated genes was checked in these isolates, which over 95% of the ExPEC and InPEC strains harbored irp2, feoB, fimH, ompT, ompA. 10.42% of the ExPEC and 10% of the InPEC were positive for kpsM. Only ExPEC isolates carried ibeA gene, and the rate was 4.17%. All tested strains were negative to LT and cnf genes. The carrying rate of iss and iutA were significantly different between the InPEC and ExPEC isolates (P < 0.01). CONCLUSIONS: To the best of our knowledge, this is the first report on the highly pathogenic groups of InPEC and ExPEC in Central China. We find that 50.53% (48/95) of the ExPEC belong to the D/B2 phylogenic group. The emergence of XDR and MDR strains and potential virulence genes may indicate the complicated treatment of the infections caused by APEC. This study will improve our understanding of the prevalence and pathogenicity of APEC.


Assuntos
Galinhas/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Escherichia coli/genética , Escherichia coli Extraintestinal Patogênica/genética , Variação Genética , Filogenia , Animais , Antibacterianos/farmacologia , China/epidemiologia , Escherichia coli/classificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Escherichia coli Extraintestinal Patogênica/classificação , Escherichia coli Extraintestinal Patogênica/efeitos dos fármacos , Escherichia coli Extraintestinal Patogênica/patogenicidade , Tipagem de Sequências Multilocus , Aves Domésticas/microbiologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/microbiologia , Prevalência , Virulência , Fatores de Virulência/genética
5.
BMC Infect Dis ; 21(1): 370, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879083

RESUMO

BACKGROUND: Native valves infective endocarditis due to Escherichia coli is still a rare disease and a particular virulence of some E.coli isolate may be suspected. CASE PRESENTATION: A 79-year-old woman presented during the post-operative period of an orthopedic surgery a urinary tract infection following obstructive ureteral lithiasis. E. coli was isolated from a pure culture of urine and blood sampled simultaneously. After evidence of sustained E.coli septicemia, further investigations revealed acute cholecystitis with the same micro-organism in biliary drainage and a native valve mitral endocarditis. E.coli was identified as O2:K7:H6, phylogenetic group B2, ST141, and presented several putative and proven virulence genes. The present isolate can be classified as both extra-intestinal pathogenic E.coli (ExPECJJ) and uropathogenic E. coli (UPECHM). CONCLUSIONS: The relationship between the virulent factors present in ExPEC strains and some serotypes of E. coli that could facilitate the adherence to cardiac valves warrants further investigation.


Assuntos
Endocardite/diagnóstico , Escherichia coli Extraintestinal Patogênica/isolamento & purificação , Idoso , Animais , Endocardite/microbiologia , Escherichia coli Extraintestinal Patogênica/classificação , Escherichia coli Extraintestinal Patogênica/patogenicidade , Feminino , Humanos , Procedimentos Ortopédicos/efeitos adversos , Filogenia , Período Pós-Operatório , Infecções Urinárias/microbiologia , Infecções Urinárias/patologia , Urolitíase/cirurgia , Virulência/genética
6.
BMC Infect Dis ; 21(1): 361, 2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33865334

RESUMO

BACKGROUND: Urinary Tract Infection (UTI) is one of the most common bacterial infectious diseases which causes considerable morbidity and costly health problems. Uropathogenic Escherichia coli (UPEC), the most common pathogen causing UTI, is a highly heterogeneous group of extraintestinal pathogenic E. coli (ExPEC) which may carry a variety of virulence factors and belonging to different phylogenetic backgrounds. The current study aimed to investigate the frequency and association between various virulence factors (VFs) and phylogenetic groups of UPEC and commensal isolates. METHODS: UPEC and commensal E. coli strains isolated from UTI and feces of healthy humans were compared for the presence of VFs and phylogenetic groups. Association between virulence genes was investigated and cluster analysis was employed. RESULTS: According to the results, among a 30 virulence markers tested, the pathogenicity-associated island (PAI), papAH, papEF, fimH, fyuA, and traT genes prevalence were statistically significant in UPEC isolates. A strong association was found between the B2 and D phylogenetic groups and clinical isolates of UPEC; while, commensal isolates were mostly associated with phylogenetic group A. The aggregated VFs scores were more than twice higher in the UPEC isolates in comparison with the commensal isolates. Interestingly, the B2 group in both UPEC and commensal isolates had the highest VF scores. A strong positive association was found between several virulence genes. The clustering results demonstrated that UPEC or commensal E. coli isolates were highly heterogeneous due to different composition of their virulence gene pool and pathogenicity islands. CONCLUSION: Genetic structure and VFs of UPEC strains vary from region to region; therefore, to control the UTI, the epidemiological aspects and characterization of the UPEC isolates need to be investigated in different regions. Since UPEC isolates are generally originate from the commensal strains, it may be feasible to reduce the UTI burden by interfering the intestinal colonization, particularly in the highly pathogenic clonal lineages such as B2.


Assuntos
Infecções por Escherichia coli/microbiologia , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica , Fatores de Virulência/genética , Virulência/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Pré-Escolar , Infecções por Escherichia coli/epidemiologia , Proteínas de Escherichia coli/genética , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/isolamento & purificação , Escherichia coli Extraintestinal Patogênica/patogenicidade , Feminino , Ilhas Genômicas/genética , Humanos , Lactente , Recém-Nascido , Irã (Geográfico)/epidemiologia , Masculino , Pessoa de Meia-Idade , Filogenia , Prevalência , Infecções Urinárias/epidemiologia , Escherichia coli Uropatogênica/classificação , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/isolamento & purificação , Escherichia coli Uropatogênica/patogenicidade , Adulto Jovem
7.
mBio ; 12(2)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906920

RESUMO

Extraintestinal pathogenic Escherichia coli (ExPEC), often multidrug resistant (MDR), is a leading cause of urinary tract and systemic infections. The crisis of emergent MDR pathogens has led some to propose bacteriophages as a therapeutic. However, bacterial resistance to phage is a concerning issue that threatens to undermine phage therapy. Here, we demonstrate that E. coli sequence type 131, a circulating pandemic strain of ExPEC, rapidly develops resistance to a well-studied and therapeutically active phage (ϕHP3). Whole-genome sequencing of the resisters revealed truncations in genes involved in lipopolysaccharide (LPS) biosynthesis, the outer membrane transporter ompA, or both, implicating them as phage receptors. We found ExPEC resistance to phage is associated with a loss of fitness in host microenvironments and attenuation in a murine model of systemic infection. Furthermore, we constructed a novel phage-bacterium bioreactor to generate an evolved phage isolate with restored infectivity to all LPS-truncated ExPEC resisters. This study suggests that although the resistance of pandemic E. coli to phage is frequent, it is associated with attenuation of virulence and susceptibility to new phage variants that arise by directed evolution.IMPORTANCE In response to the rising crisis of antimicrobial resistance, bacteriophage (phage) therapy has gained traction. In the United States, there have been over 10 cases of largely successful compassionate-use phage therapy to date. The resilience of pathogens allowing their broad antibiotic resistance means we must also consider resistance to therapeutic phages. This work fills gaps in knowledge regarding development of phage resisters in a model of infection and finds critical fitness losses in those resisters. We also found that the phage was able to rapidly readapt to these resisters.


Assuntos
Antibacterianos/farmacologia , Bacteriófagos/fisiologia , Escherichia coli Extraintestinal Patogênica/efeitos dos fármacos , Escherichia coli Extraintestinal Patogênica/genética , Adaptação Biológica/genética , Animais , Sangue/microbiologia , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/terapia , Escherichia coli Extraintestinal Patogênica/patogenicidade , Escherichia coli Extraintestinal Patogênica/virologia , Feminino , Aptidão Genética , Humanos , Camundongos , Viabilidade Microbiana , Terapia por Fagos , Fatores de Virulência
8.
PLoS One ; 16(2): e0246482, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33544781

RESUMO

The emergence and global spread of extended-spectrum or AmpC ß-lactamase (ESBL/AmpC)-producing Enterobacteriaceae in companion animals have led to the hypothesis that companion animals might be reservoirs for cross-species transmission because of their close contact with humans. However, current knowledge in this field is limited; therefore, the role of companion animals in cross-species transmission remains to be elucidated. Herein, we studied ESBL/AmpC-producing Enterobacteriaceae, Escherichia coli in particular, isolated from extraintestinal sites and feces of companion dogs. Whole-genome sequencing analysis revealed that (i) extraintestinal E. coli isolates were most closely related to those isolated from feces from the same dog, (ii) chromosomal sequences in the ST131/C1-M27 clade isolated from companion dogs were highly similar to those in the ST131/C1-M27 clade of human origin, (iii) certain plasmids, such as IncFII/pMLST F1:A2:B20/blaCTX-M-27, IncI1/pMLST16/blaCTX-M-15, or IncI1/blaCMY-2 from dog-derived E. coli isolates, shared high homology with those from several human-derived Enterobacteriaceae, (iv) chromosomal blaCTX-M-14 was identified in the ST38 isolate from a companion dog, and (v) eight out of 14 tested ESBL/AmpC-producing E. coli isolates (i.e., ST131, ST68, ST405, and ST998) belonged to the human extraintestinal pathogenic E. coli (ExPEC) group. All of the bla-coding plasmids that were sequenced genome-wide were capable of horizontal transfer. These results suggest that companion dogs can spread ESBL/AmpC-producing ExPEC via their feces. Furthermore, at least some ESBL/AmpC-producing ExPECs and bla-coding plasmids can be transmitted between humans and companion dogs. Thus, companion dogs can act as an important reservoir for ESBL/AmpC-producing E. coli in the community.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Plasmídeos/genética , beta-Lactamases/genética , Animais , Antibacterianos/uso terapêutico , Cães , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/enzimologia , Enterobacteriaceae/patogenicidade , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/microbiologia , Escherichia coli/patogenicidade , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Escherichia coli Extraintestinal Patogênica/efeitos dos fármacos , Escherichia coli Extraintestinal Patogênica/enzimologia , Escherichia coli Extraintestinal Patogênica/patogenicidade , Humanos , Japão , Testes de Sensibilidade Microbiana
9.
Carbohydr Polym ; 255: 117475, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33436239

RESUMO

Extraintestinal pathogenic Escherichia coli (ExPEC) has presented a major clinical infection emerged in the past decades. O-polysaccharide (OPS)-based glycoconjugate vaccines produced using the bacterial glycosylation machinery can be utilized to confer protection against such infection. However, constructing a low-cost microbial cell factory for high-efficient production of OPS-based glycoconjugate vaccines remains challenging. Here, we engineered a glyco-optimized chassis strain by reprogramming metabolic network. The yield was enhanced to 38.6 mg L-1, the highest level reported so far. MS analysis showed that designed glycosylation sequon was modified by target polysaccharide with high glycosylation efficiency of 90.7 % and 76.7 % for CTB-O5 and CTB-O7, respectively. The glycoconjugate vaccines purified from this biosystem elicited a marked increase in protection against ExPEC infection in mouse model, compared to a non-optimized system. The glyco-optimized platform established here is broadly suitable for polysaccharide-based conjugate production against ExPEC and other surface-polysaccharide-producing pathogens.


Assuntos
Engenharia Celular/métodos , Infecções por Escherichia coli/prevenção & controle , Vacinas contra Escherichia coli/biossíntese , Escherichia coli Extraintestinal Patogênica/imunologia , Glicoconjugados/biossíntese , Antígenos O/biossíntese , Sequência de Aminoácidos , Animais , Animais não Endogâmicos , Anticorpos Antibacterianos/biossíntese , Sequência de Carboidratos , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/mortalidade , Vacinas contra Escherichia coli/administração & dosagem , Vacinas contra Escherichia coli/genética , Vacinas contra Escherichia coli/imunologia , Escherichia coli Extraintestinal Patogênica/patogenicidade , Feminino , Glicoconjugados/administração & dosagem , Glicoconjugados/genética , Glicoconjugados/imunologia , Glicosilação , Imunização , Imunogenicidade da Vacina , Imunoglobulina G/biossíntese , Redes e Vias Metabólicas/genética , Camundongos , Antígenos O/genética , Antígenos O/imunologia , Plasmídeos/química , Plasmídeos/metabolismo , Análise de Sobrevida , Vacinas Conjugadas
10.
mSphere ; 6(1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33408235

RESUMO

Adaptive processes in chronic bacterial infections are well described, but much less is known about the processes at play during acute infections. Here, by sequencing seven randomly selected isolates per patient, we analyzed Escherichia coli populations from three acute extraintestinal infections in adults (meningitis, pyelonephritis, and peritonitis), in which a high-mutation-rate isolate or mutator isolate was found. The isolates of single patients displayed between a few dozen and more than 200 independent mutations, with up to half being specific to the mutator isolate. Multiple signs of positive selection were evidenced: a high ratio of nonsynonymous to synonymous mutations (Ka /Ks ratio) and strong mutational convergence within and between patients, some of them at loci well known for their adaptive potential, such as rpoS, rbsR, fimH, and fliC For all patients, the mutator isolate was likely due to a large deletion of a methyl-directed mismatch repair gene, and in two instances, the deletion extended to genes involved in some genetic convergence, suggesting potential coselection. Intrinsic extraintestinal virulence assessed in a mouse model of sepsis showed variable patterns of virulence ranging from non-mouse killer to mouse killer for the isolates from single patients. However, genomic signature and gene inactivation experiments did not establish a link between a single gene and the capacity to kill mice, highlighting the complex and multifactorial nature of the virulence. Altogether, these data indicate that E. coli isolates are adapting under strong selective pressure when colonizing an extraintestinal site.IMPORTANCE Little is known about the dynamics of adaptation in acute bacterial infections. By sequencing multiple isolates from monoclonal extraintestinal Escherichia coli infections in several patients, we were able to uncover traces of selection taking place at short time scales compared to chronic infection. High genomic diversity was observed in the patient isolates, with an excess of nonsynonymous mutations, and the comparison within and between different infections showed patterns of convergence at the gene level, both constituting strong signs of adaptation. The genes targeted were coding mostly for proteins involved in global regulation, metabolism, and adhesion/motility. Moreover, virulence assessed in a mouse model of sepsis was variable among the isolates of single patients, but this difference was left unexplained at the molecular level. This work gives us clues about the E. coli lifestyle transition between commensalism and pathogenicity.


Assuntos
Adaptação Fisiológica/genética , Infecções por Escherichia coli/microbiologia , Evolução Molecular , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/patogenicidade , Genoma Bacteriano , Doença Aguda , Animais , Infecções por Escherichia coli/classificação , Escherichia coli Extraintestinal Patogênica/isolamento & purificação , Feminino , Genótipo , Humanos , Meningite/microbiologia , Camundongos , Mutação , Peritonite/microbiologia , Pielonefrite/microbiologia , Fatores de Virulência/genética
11.
J Appl Microbiol ; 130(6): 2087-2101, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33095966

RESUMO

AIM: In-depth 'One Health' risk assessment of extraintestinal pathogenic Escherichia coli (ExPEC) strains carrying the traits of urinary tract infection, sepsis, meningitis and avian colibacillosis in poultry of India. METHODS AND RESULTS: A total of 230 E. coli isolates were recovered from chicken samples representing the different sources (faeces vs caeca), stages (poultry farms vs retails butcher shop) or environments (rural vs urban) of poultry in India. Among all poultry-origin E. coli isolates, 49 (21·1%) strains were identified as ExPEC possessing multiple virulence determinants regardless of their association with any specific phylogenetic lineages. Of particular, potentially virulent ExPEC pathotypes, that is, uropathogenic E.coli (UPEC, 20·4%), avian pathogenic E. coli (APEC, 34·6%), septicaemia-associated E. coli (SEPEC, 47·0%) and neonatal meningitis-causing E.39 coli (NMEC, 2·0%) were also detected among all ExPEC strains. CONCLUSIONS: Our study is the first to assess ExPEC strains circulating in the different settings of poultry in India and significantly demonstrates their potential ability to cause multiple extraintestinal infections both in humans and animals. SIGNIFICANCE AND IMPACT OF THE STUDY: The data of our study are in favour of the possibility that poultry-origin putative virulent ExPEC pathotypes consequently constitute a threat risk to 'One Health' or for food safety and a great concern for poultry production of India.


Assuntos
Doenças das Aves/microbiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli Extraintestinal Patogênica/classificação , Escherichia coli Extraintestinal Patogênica/patogenicidade , Animais , Biofilmes/crescimento & desenvolvimento , Ceco/microbiologia , DNA Bacteriano , Proteínas de Escherichia coli/genética , Escherichia coli Extraintestinal Patogênica/isolamento & purificação , Fezes/microbiologia , Estudos de Associação Genética , Técnicas de Genotipagem , Humanos , Índia , Meningite/microbiologia , Filogenia , Reação em Cadeia da Polimerase , Sepse/microbiologia , Infecções Urinárias/microbiologia , Fatores de Virulência/genética
12.
Rev. cuba. med. trop ; 72(3): e605, sept.-dic. 2020. graf
Artigo em Espanhol | LILACS, CUMED | ID: biblio-1156539

RESUMO

Introducción: Escherichia coli extraintestinal constituye uno de los principales patógenos causantes de infecciones asociadas a la asistencia sanitaria con un alto impacto en la salud por su morbilidad y mortalidad. Objetivo: Describir el comportamiento clínico de E. coli extraintestinal en hospitales cubanos, así como determinar la resistencia antimicrobiana y la producción de betalactamasas. Métodos: Se realizó un estudio descriptivo de corte transversal, durante el período de mayo 2017 a junio 2018, en el Laboratorio Nacional de Referencia de Microbiología del Instituto de Medicina Tropical Pedro Kourí que incluyó 119 aislados de Escherichia coli causantes de infecciones extraintestinales en 30 hospitales de diferentes áreas geográficas del país. Se llevó a cabo la identificación mediante el sistema API 20E y la determinación de la susceptibilidad in vitro a 16 antimicrobianos por el sistema automatizado VITEK-2 y el método de difusión por disco, excepto para la colistina que se empleó el método de elución de disco. Se realizó, además, la detección fenotípica de betalactamasa de espectro extendido, de tipo AmpC y metalobetalactamasa. Resultados: E. coli extraintestinal causó con mayor frecuencia infección de herida quirúrgica (23,5 por ciento), infección del torrente sanguíneo (20,7 por ciento), infecciones respiratorias (17,6 por ciento), infecciones de piel (16,8 por ciento) e infección del tracto urinario (12,6 por ciento). Predominó la resistencia a betalactámicos que osciló entre 61,3 por ciento y 89,1 por ciento, mientras que 79,8 por ciento y 80,5 por ciento de los aislados fueron resistentes a trimetoprim/sulfametoxazol y tetraciclina, respectivamente. La amikacina, la fosfomicina, la colistina y los carbapenémicos mostraron mayor actividad in vitro. El 43,7 por ciento produjo betalactamasas de espectro extendido, 7,6 por ciento AmpC plasmídica y 0,8 por ciento metalobetalactamasa. Conclusiones: La escasa sensibilidad en los aislados de E. coli extraintestinal a los antimicrobianos de primera línea, así como la detección de un aislado productor de metalobetalactamasa evidencia la necesidad de mantener un monitoreo continuo de este patógeno para el cual las alternativas de tratamiento son cada vez más restringidas(AU)


Introduction: Extraintestinal Escherichia coli is one of the main pathogens causing infections associated to health care, with a high impact on health, due to its morbidity and mortality. Objective: Describe the clinical behavior of extraintestinal E. coli in Cuban hospitals, and determine antimicrobial resistance and betalactamase production. Methods: A descriptive cross-sectional study was conducted at the Microbiology National Reference Laboratory of Pedro Kourí Tropical Medicine Institute from May 2017 to June 2018. The study included 119 Escherichia coli isolates causing extraintestinal infections in 30 hospitals from various geographic areas in the country. Identification was based on the API 20E system, and determination of in vitro susceptibility to 16 antimicrobials on the automated system VITEK-2 and the disk diffusion method, except for colistin, for which the disk elution method was used. Phenotypical detection was also performed of AmpC extended-spectrum betalactamase and metallobetalactamase. Results: The most common disorders caused by extraintestinal E. coli were surgical wound infection (23.5 percent), bloodstream infection (20.7 percent), respiratory infections (17.6 percent), skin infections (16.8 percent) and urinary tract infection (12.6 percent). A predominance was found of resistance to betalactams, which ranged between 61.3 percent y 89.1 percent, whereas 79.8 percent and 80.5 percent of the isolates were resistant to trimethoprim / sulfamethoxazole and tetracycline, respectively. Amikacin, fosfomycin, colistin and carbapenemics displayed greater in vitro activity. 43.7 percent produced extended spectrum betalactamases, 7.6 percent plasmid AmpC and 0.8 percent metallobetalactamase. Conclusions: The low sensitivity of extraintestinal E. coli isolates to first-line antimicrobials and the detection of a metallobetalactamase producing isolate are evidence of the need to maintain continuous surveillance of this pathogen, for which the treatment options are ever more restricted.


Assuntos
Humanos , Resistência beta-Lactâmica/efeitos dos fármacos , Anti-Infecciosos/uso terapêutico , Epidemiologia Descritiva , Estudos Transversais , Escherichia coli Extraintestinal Patogênica/patogenicidade
13.
Int J Med Microbiol ; 310(8): 151453, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33045580

RESUMO

Extraintestinal pathogenic E. coli (ExPEC) is the most frequent etiological agent of urinary tract infections (UTIs). Particular evolutionary successful lineages are associated with severe UTIs and higher incidences of multidrug resistance. Most of the resistance genes are acquired by horizontal transfer of plasmids and other mobile genetic elements (MGEs), and this process has been associated with the successful dissemination of particular lineages. Here, we identified the presence of MGEs and their role in virulence and resistance profiles of isolates obtained from the urine of hospitalized patients in Brazil. Isolates belonging to the successful evolutionary lineages of sequence type (ST) 131, ST405, and ST648 were found to be multidrug-resistant, while those belonging to ST69 and ST73 were often not. Among the ST131, ST405, and ST648 isolates with a resistant phenotype, a high number of mainly IncFII plasmids was identified. The plasmids contained resistance cassettes, and these were also found within phage-related sequences and the chromosome of the isolates. The resistance cassettes were found to harbor several resistance genes, including blaCTX-M-15. In addition, in ST131 isolates, diverse pathogenicity islands similar to those found in highly virulent ST73 isolates were detected. Also, a new genomic island associated with several virulence genes was identified in ST69 and ST131 isolates. In addition, several other MGEs present in the ST131 reference strain EC958 were identified in our isolates, most of them exclusively in ST131 isolates. In contrast, genomic islands present in this reference strain were only partially present or completely absent in our ST131 isolates. Of all isolates studied, ST73 and ST131 isolates had the most similar virulence profile. Overall, no clear association was found between the presence of specific MGEs and virulence profiles. Furthermore, the interplay between virulence and resistance by acquiring MGEs seemed to be lineage dependent. Although the acquisition of IncF plasmids, specific PAIs, GIs, and other MGEs seemed to be involved in the success of some lineages, it cannot explain the success of different lineages, also indicating other (host) factors are involved in this process. Nevertheless, the detection, identification, and surveillance of lineage-specific MGEs may be useful to monitor (new) emerging clones.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/patogenicidade , Brasil , Infecções por Escherichia coli/urina , Escherichia coli Extraintestinal Patogênica/efeitos dos fármacos , Humanos , Virulência/genética , beta-Lactamases/genética
14.
Infect Immun ; 88(12)2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32989036

RESUMO

Escherichia coli O25b:H4 sequence type 131 (ST131), which is resistant to fluoroquinolones and which is a producer of CTX-M-15, is globally one of the major extraintestinal pathogenic E. coli (ExPEC) lineages. Phylogenetic analyses showed that multidrug-resistant ST131 strains belong to clade C, which recently emerged from clade B by stepwise evolution. It has been hypothesized that features other than multidrug resistance could contribute to this dissemination since other major global ExPEC lineages (ST73 and ST95) are mostly antibiotic susceptible. To test this hypothesis, we compared early biofilm production, presence of ExPEC virulence factors (VFs), and in vivo virulence in a mouse sepsis model in 19 and 20 epidemiologically relevant strains of clades B and C, respectively. Clade B strains were significantly earlier biofilm producers (P < 0.001), carriers of more VFs (P = 4e-07), and faster killers of mice (P = 2e-10) than clade C strains. Gene inactivation experiments showed that the H30-fimB and ibeART genes were associated with in vivo virulence. Competition assays in sepsis, gut colonization, and urinary tract infection models between the most anciently diverged strain (B1 subclade), one C1 subclade strain, and a B4 subclade recombining strain harboring some clade C-specific genetic events showed that the B1 strain always outcompeted the C1 strain, whereas the B4 strain outcompeted the C1 strain, depending on the mouse niches. All these findings strongly suggest that clade C evolution includes a progressive loss of virulence involving multiple genes, possibly enhancing overall strain fitness by avoiding severe infections, even if it comes at the cost of a lower colonization ability.


Assuntos
Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli Extraintestinal Patogênica/genética , Sepse/microbiologia , Fatores de Virulência/genética , Virulência/genética , Animais , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Escherichia coli Extraintestinal Patogênica/efeitos dos fármacos , Escherichia coli Extraintestinal Patogênica/patogenicidade , Genótipo , Integrases/genética , Integrases/metabolismo , Estimativa de Kaplan-Meier , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Fenótipo , Infecções Urinárias/microbiologia , Sequenciamento Completo do Genoma
15.
Virulence ; 11(1): 1279-1292, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32962530

RESUMO

The twin-arginine translocation (Tat) system is involved in a variety of important bacterial physiological processes. Conserved among bacteria and crucial for virulence, the Tat system is deemed as a promising anti-microbial drug target. However, the mechanism of how the Tat system functions in bacterial pathogenesis has not been fully understood. In this study, we showed that the Tat system was critical for the virulence of an extra-intestinal pathogenic E. coli (ExPEC) strain PCN033. A total of 20 Tat-related mutant strains were constructed, and competitive infection assays were performed to evaluate the relative virulence of these mutants. The results demonstrated that several Tat substrate mutants, including the ΔsufI, ΔamiAΔamiC double mutant as well as each single mutant, ΔyahJ, ΔcueO, and ΔnapG, were significantly outcompeted by the WT strain, among which the ΔsufI and ΔamiAΔamiC strains showed the lowest competitive index (CI) value. Results of individual mouse infection assay, in vitro cell adhesion assay, whole blood bactericidal assay, and serum bactericidal assay further confirmed the virulence attenuation phenotype of the ΔsufI and ΔamiAΔamiC strains. Moreover, the two mutants displayed chained morphology in the log phase resembling the Δtat and were defective in stress response. Our results suggest that the Tat system and its dependent cell division proteins SufI, AmiA, and AmiC play critical roles during ExPEC pathogenesis.


Assuntos
Divisão Celular/genética , Proteínas de Escherichia coli/genética , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/patogenicidade , Sistema de Translocação de Argininas Geminadas/genética , Animais , Adesão Celular , Linhagem Celular , Cricetinae , Feminino , Camundongos , Estresse Fisiológico/genética , Suínos , Virulência/genética
16.
Virulence ; 11(1): 327-336, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32264739

RESUMO

BACKGROUND: Escherichia coli ST131, mainly its H30 clade, is the leading cause of extraintestinal E. coli infections but its correlates of virulence are undefined. MATERIALS AND METHODS: We tested in a murine sepsis model 84 ST131 isolates that differed by country of origin (Spain vs. USA), clonal subset, resistance markers, and virulence genes (VGs). Virulence outcomes, including illness severity score (ISS) and "killer" status (>80% mouse lethality), were compared statistically with clonal subset, individual and combined VGs, molecularly defined extraintestinal and uropathogenic E. coli (ExPEC, UPEC) status, and country of origin. RESULTS: Virulence varied widely by strain. Univariable correlates of median ISS and percent "killer" (outcomes if variable present vs. absent) included pap (ISS, 4.4 vs. 3.8; "killer", 71% vs. 46%), kpsMII (4.1 vs. 2.3; 59% vs. 25%), K2/K100 (4.4 vs. 3.2; 77% vs. 41%), ExPEC (4.2 vs. 2.2; 62% vs. 17%), Spanish origin (4.3 vs. 3.1; 65% vs. 36%), and H30R1 subset (2.5 vs. 4.1; 35% vs. 59%). With multivariable adjustment, ExPEC status was the only consistently significantly predictive variable. CONCLUSION: Within ST131 the strongest predictor of experimental virulence was molecularly defined ExPEC status. Clonal subsets seemed to behave differently in the murine sepsis model by country of origin.


Assuntos
Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/patogenicidade , Sepse/microbiologia , Fatores de Virulência/genética , Animais , Técnicas de Tipagem Bacteriana , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli/sangue , Infecções por Escherichia coli/microbiologia , Escherichia coli Extraintestinal Patogênica/classificação , Feminino , Camundongos , Tipagem de Sequências Multilocus , Espanha , Organismos Livres de Patógenos Específicos , Estados Unidos , Virulência/genética , beta-Lactamases/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-31964797

RESUMO

Two multidrug-resistant and carbapenemase-producing Escherichia coli clones of sequence type 410 were isolated from fecal samples of a dog with skin infection on admission to an animal hospital in Portugal and 1 month after discharge. Whole-genome sequencing revealed a 126,409-bp Col156/IncFIA/IncFII multidrug resistance plasmid and a 51,479-bp IncX3 blaOXA-181-containing plasmid. The chromosome and plasmids carried virulence genes characteristic for uropathogenic E. coli, indicating that dogs may carry multidrug-resistant E. coli isolates related to those causing urinary tract infections in humans.


Assuntos
Doenças do Cão/microbiologia , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/isolamento & purificação , beta-Lactamases/genética , Animais , Proteínas de Bactérias/metabolismo , Doenças do Gato/microbiologia , Gatos , Cães , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli Extraintestinal Patogênica/metabolismo , Escherichia coli Extraintestinal Patogênica/patogenicidade , Fezes/microbiologia , Microbioma Gastrointestinal , Genoma Bacteriano , Filogenia , Plasmídeos , Portugal , Dermatopatias Bacterianas/microbiologia , Dermatopatias Bacterianas/veterinária , Infecções Urinárias/microbiologia , Infecções Urinárias/veterinária , Fatores de Virulência/genética , beta-Lactamases/metabolismo
18.
J Biomed Sci ; 27(1): 14, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900139

RESUMO

BACKGROUND: Extraintestinal pathogenic E. coli (ExPEC) remains one of the most prevalent bacterial pathogens that cause extraintestinal infections, including neonatal meningitis, septicemia, and urinary tract (UT) infections (UTIs). Antibiotic therapy has been the conventional treatment for such infections, but its efficacy has decreased due to the emergence of antibiotic-resistant bacteria. Identification and characterization of bacterial factors that contribute to the severity of infection would facilitate the development of novel therapeutic strategies. The ExPEC periplasmic protease Prc contributes to the pathogen's ability to evade complement-mediated killing in the serum. Here, we further investigated the role of the Prc protease in ExPEC-induced UTIs and the underlying mechanism. METHODS: The uropathogenic role of Prc was determined in a mouse model of UTIs. Using global quantitative proteomic analyses, we revealed that the expression of FliC and other outer membrane-associated proteins was altered by Prc deficiency. Comparative transcriptome analyses identified that Prc deficiency affected expression of the flagellar regulon and genes that are regulated by five extracytoplasmic signaling systems. RESULTS: A mutant ExPEC with a prc deletion was attenuated in bladder and kidney colonization. Global quantitative proteomic analyses of the prc mutant and wild-type ExPEC strains revealed significantly reduced flagellum expression in the absence of Prc, consequently impairing bacterial motility. The prc deletion triggered downregulation of the flhDC operon encoding the master transcriptional regulator of flagellum biogenesis. Overexpressing flhDC restored the prc mutant's motility and ability to colonize the UT, suggesting that the impaired motility is responsible for attenuated UT colonization of the mutant. Further comparative transcriptome analyses revealed that Prc deficiency activated the σE and RcsCDB signaling pathways. These pathways were responsible for the diminished flhDC expression. Finally, the activation of the RcsCDB system was attributed to the intracellular accumulation of a known Prc substrate Spr in the prc mutant. Spr is a peptidoglycan hydrolase and its accumulation destabilizes the bacterial envelope. CONCLUSIONS: We demonstrated for the first time that Prc is essential for full ExPEC virulence in UTIs. Our results collectively support the idea that Prc is essential for bacterial envelope integrity, thus explaining how Prc deficiency results in an attenuated ExPEC.


Assuntos
Endopeptidases/genética , Infecções por Escherichia coli/genética , Proteínas de Escherichia coli/genética , Escherichia coli Extraintestinal Patogênica/genética , Flagelina/genética , Infecções Urinárias/genética , Animais , Farmacorresistência Bacteriana/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Escherichia coli Extraintestinal Patogênica/patogenicidade , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Camundongos , Proteômica , Transdução de Sinais/genética , Infecções Urinárias/microbiologia , Infecções Urinárias/patologia , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/patogenicidade , Fatores de Virulência/genética
19.
BMC Microbiol ; 19(1): 298, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31847813

RESUMO

BACKGROUND: The neonatal meningitis E. coli (NMEC) strain S88 carries a ColV plasmid named pS88 which is involved in meningeal virulence. Transcriptional analysis of pS88 in human serum revealed a strong upregulation of an ORF of unknown function: shiF, which is adjacent to the operon encoding the siderophore aerobactin. The aim of this work is to investigate the role of shiF in aerobactin production in strain S88. RESULTS: Study of the prevalence of shiF and aerobactin operon in a collection of 100 extra-intestinal pathogenic E. coli strains (ExPEC) and 50 whole genome-sequenced E. coli strains revealed the colocalization of these two genes for 98% of the aerobactin positive strains. We used Datsenko and Wanner's method to delete shiF in two S88 mutants. A cross-feeding assay showed that these mutants were able to excrete aerobactin meaning that shiF is dispensable for aerobactin excretion. Our growth assays revealed that the shiF-deleted mutants grew significantly slower than the wild-type strain S88 in iron-depleted medium with a decrease of maximum growth rates of 23 and 28% (p < 0.05). Using Liquid Chromatography-Mass Spectrometry, we identified and quantified siderophores in the supernatants of S88 and its shiF deleted mutants after growth in iron-depleted medium and found that these mutants secreted significantly less aerobactin than S88 (- 52% and - 49%, p < 0.001). CONCLUSIONS: ShiF is physically and functionally linked to aerobactin. It provides an advantage to E. coli S88 under iron-limiting conditions by increasing aerobactin secretion and may thus act as an auxiliary virulence factor.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli Extraintestinal Patogênica/genética , Ácidos Hidroxâmicos/metabolismo , Ferro/metabolismo , Sideróforos/metabolismo , Escherichia coli Extraintestinal Patogênica/patogenicidade , Perfilação da Expressão Gênica , Humanos , Meningite devida a Escherichia coli/sangue , Meningite devida a Escherichia coli/microbiologia , Óperon , Plasmídeos/genética , Virulência , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
20.
PLoS One ; 14(7): e0219941, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31329630

RESUMO

Escherichia coli infection of the female reproductive tract is a significant cause of disease in humans and animals, but simple animal models are lacking. Here we report that vaginal inoculation of uropathogenic E. coli strains UTI89 and CFT073 in non-pregnant, estrogen-treated mice resulted in robust colonization of the vagina and uterine horns, whereas titers of the lab strain MG1655 were significantly lower. Non-estrogenized mice also became colonized, but there was more variation in titers. A dose of 104 colony-forming units (CFU) UTI89 was sufficient to result in colonization in all estrogenized mice, and we also observed bacterial transfer between inoculated and uninoculated estrogenized cage mates. UTI89 infection led to inflammation and leukocyte infiltration into the uterine horns as evidenced by tissue histology. Flow cytometry experiments revealed that neutrophil, monocyte and eosinophil populations were significantly increased in infected uterine horns. This model is a simple way to study host-pathogen interactions in E. coli vaginal colonization and uterine infection. There are immediate implications for investigators studying urinary tract infection using mouse models, as few E. coli are required to achieve reproductive colonization, resulting in an additional, underappreciated mucosal reservoir.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli Extraintestinal Patogênica/patogenicidade , Doenças Uterinas/microbiologia , Animais , Contagem de Colônia Microbiana , Infecções por Escherichia coli/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Uterinas/patologia , Útero/microbiologia , Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA