Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biochem Pharmacol ; 158: 141-152, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30096289

RESUMO

Patients undergoing surgery can suffer from various complications, including post-operative bleeding, local or systematic infection, and neurologic disorders. Major surgery can initiate innate immune responses and trigger overproduction of inflammatory mediators, which can contribute to organ dysfunction. Inflammasomes are innate immune complexes, which are connected to the pathogenesis of various diseases, including atherosclerosis, hemorrhagic brain injury, and Alzheimer's disease. In the present study, we hypothesized that nucleotide-binding oligomerization domain-containing-like receptor protein (NLRP) inflammasomes may have a role in the pathological effects of surgery. Therefore, we designed a protein inhibitor of nuclear factor kappa B (NF-κB) p65 transcripts, called nt-p65-TMD (nuclear transducible (nt) transcription modulated domain (TMD) of RelA (p65)), that can penetrate the nucleus, and evaluated its therapeutic efficacy for dampening surgery-induced inflammasome activation. It was found that the nt-p65-TMD significantly reduced the NLRP1 inflammasome complex components (NLRP1, ASC, and Caspase-1) and interleukin (IL)-1ß and IL-18 productions in the spleen after surgery. In the spleen, specific cell population and selective mediators were altered after surgery with/without nt-p65-TMD treatment. Also, we found that treatment of nt-p65-TMD decreased cell death in the spleen after surgery. Therefore, nt-p65-TMD is a potential novel strategy for reducing surgery-induced NLRP1 inflammasome and complications.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Inflamassomos/metabolismo , Espaço Intranuclear/metabolismo , Complicações Pós-Operatórias/tratamento farmacológico , Complicações Pós-Operatórias/metabolismo , Fator de Transcrição RelA/administração & dosagem , Abdome/cirurgia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Inflamassomos/antagonistas & inibidores , Intestinos/cirurgia , Espaço Intranuclear/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Complicações Pós-Operatórias/etiologia
2.
Neurol Res ; 34(10): 915-22, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23006905

RESUMO

OBJECTIVES: The present study was designed to determine whether or not the caspase-independent apoptotic pathway participated in the cellular death of spiral ganglion neurons (SGNs) after exposure to peroxynitrite (ONOO(-)), with particular attention given to the intranuclear translocation of mitochondrial apoptosis-inducing factor (AIF) and endonuclease G (Endo G) in this process. METHODS: The rat SGNs were isolated and primary cultured in vitro and were exposed to ONOO(-) with pre-treatment of pan-caspase inhibitor. Morphological changes of SGNs were observed by acridine orange cytochemistry staining, and apoptosis was examined by flow cytometry. The translocation of mitochondrial AIF and Endo G was detected by immunocytochemistry and Western blot. The protein expressions of Bcl-2 family in SGNs exposed to ONOO(-) were determined by Western blot. RESULTS: Treatment of SGNs with ONOO(-) resulted in the occurrence of caspase-independent apoptosis as evidenced by acridine orange staining and flow cytometry analysis. The immunocytochemical analysis showed that AIF and Endo G labeling were marked in neuronal nuclei, while the Western blot demonstrated the intranuclear localization of AIF and Endo G in SGNs treated with ONOO(-). Western blot analysis demonstrated that ONOO(-) increased the Bax expression while reducing Bcl-2 expression, which was not prevented by pre-treatment with caspase inhibitor. CONCLUSION: These data indicate that ONOO(-) can trigger caspase-independent apoptosis in SGNs associated with mitochondrial AIF and Endo G intranuclear localization.


Assuntos
Fator de Indução de Apoptose/metabolismo , Apoptose/fisiologia , Endodesoxirribonucleases/metabolismo , Espaço Intranuclear/metabolismo , Ácido Peroxinitroso/toxicidade , Gânglio Espiral da Cóclea/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Espaço Intranuclear/efeitos dos fármacos , Espaço Intranuclear/enzimologia , Cultura Primária de Células , Ratos , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/efeitos dos fármacos
3.
Traffic ; 13(2): 257-72, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22023725

RESUMO

The reorganization of nuclear structures is an important early feature of apoptosis and involves the activity of specific proteases and nucleases. Well-known is the condensation and fragmentation of chromatin; however, much less is understood about the mechanisms involved in the reorganization of structures from the interchromatin space, such as interchromatin granule clusters (IGCs). In this study, we show that the initial enlargement and rounding-up of IGCs correlate with a decrease in mRNA transcription and are caspase-independent, but involve protein phosphatases PP1/PP2A. Subsequently, multiple enlarged IGCs dissociate from chromatin and fuse into a single structure. The dissociation requires caspase activity and involves caspase-activated DNase (CAD). Apoptotic IMR-5 cells, lacking a proper processing of CAD, show multiple enlarged IGCs that remain linked with chromatin. Overexpression of CAD in IMR-5 cells results in the dissociation of IGCs from chromatin, but the fusion into a single structure remains disturbed. Nuclear matrix protein NuMA is reorganized in a caspase-dependent way around fused IGCs. In conclusion, we show here that the apoptotic rearrangement of IGCs, the nuclear matrix and chromatin are closely associated, occur in defined stages and depend on the activity of protein phosphatases, caspases and CAD.


Assuntos
Antígenos Nucleares/metabolismo , Apoptose/fisiologia , Caspases/metabolismo , Desoxirribonucleases/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteína Fosfatase 2/metabolismo , Ribonucleoproteínas/metabolismo , Spliceossomos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Inibidores de Caspase , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Desoxirribonucleases/genética , Humanos , Espaço Intranuclear/efeitos dos fármacos , Espaço Intranuclear/metabolismo , Espaço Intranuclear/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Proteínas Nucleares/metabolismo , Nucleofosmina , Fosforilação/efeitos dos fármacos , Proteínas de Ligação a Poli-ADP-Ribose , Proteína Fosfatase 1/antagonistas & inibidores , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/antagonistas & inibidores , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Fatores de Processamento de Serina-Arginina , Estaurosporina/farmacologia , Transfecção , Proteínas Centrais de snRNP/metabolismo
4.
Nucl Med Biol ; 36(7): 811-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19720293

RESUMO

INTRODUCTION: Trastuzumab, a humanized antibody directed against the Her2 receptor, induces the expression of p27(kip1), an intranuclear cyclin-dependent kinase inhibitor in some breast cancer cells. The aim of this study was to develop a radioimmunoconjugate (RIC) to monitor trastuzumab-induced p27(kip1) protein up-regulation in vivo. MATERIALS AND METHODS: Anti-p27(kip1) IgG was purified, and conjugated to diethylenetriaminopentaacetate, to allow radiolabeling with (111)In for in vivo detection. Then tat peptide (GRKKRRQRRRPPQGYG), containing a nuclear localization sequence (underlined), was conjugated to the Fc-domain of IgG, using NaIO(4) oxidation of carbohydrates and the resulting Schiff base stabilized with NaCNBH(3). The conjugate was radiolabeled with (111)In, yielding [(111)In]-anti-p27(kip1)-tat. (111)In labeling efficiency, purity and p27(kip1) binding were measured. Trastuzumab-induced p27(kip1) up-regulation was assessed in a panel of breast cancer cell lines by Western blot analysis. Uptake and retention of [(111)In]-anti-p27(kip1)-tat were measured in MDA-MB-361 and SKBr3 cells after exposure to trastuzumab. Uptake of [(111)In]-anti-p27(kip1)-tat was determined at 72 h postintravenous injection in MDA-MB-361 xenografts in athymic mice treated with trastuzumab or saline. RESULTS: [(111)In]-anti-p27(kip1)-tat was synthesized to 97% purity. The RIC was able to bind to p27(kip1) protein and internalized in the cells and was transported to the nuclei of MDA-MB-361 cells. The level of p27(kip1) protein in MDA-MB-361 cells was increased after exposure to clinically relevant doses of trastuzumab for 3 days. Trastuzumab-mediated induction of p27(kip1) was not associated with increased cellular uptake or nuclear localization of [(111)In]-anti-p27(kip1)-tat (6.53+/-0.61% vs. 6.98+/-1.36% internalized into trastuzumab-treated vs. control cells, respectively). However, retention of [(111)In]-anti-p27(kip1)-tat at 72 h was increased approximately twofold (13.5+/-1.3% vs. 6.6+/-0.6% of internalized [(111)In]-anti-p27(kip1)-tat was retained in trastuzumab-treated vs. control cells, respectively; P=.016). Immunohistochemistry showed up-regulation of p27(kip1) in trastuzumab-treated xenografts. Tumour uptake of [(111)In]-anti-p27(kip1)-tat was significantly higher in trastuzumab-treated compared to control animals (6.5+/-0.9 vs. 4.8+/-0.1 %ID/g at 72 h postinjection, respectively; P=.0065). CONCLUSION: [(111)In]-Anti-p27(kip1)-tat may be useful for monitoring changes in the expression of the intranuclear protein, p27(kip1). Up-regulation of p27(kip1) resulted in increased retention of [(111)In]-anti-p27(kip1)-tat in cells treated with trastuzumab. Modest, but statistically significantly higher, retention was also observed in tumours in mice treated with trastuzumab. Since responsiveness to trastuzumab correlated to up-regulation of p27(kip1), it may be possible to use [(111)In]-anti-p27(kip1)-tat to guide treatment with Herceptin and other drugs which alter p27(kip1) expression.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias da Mama/patologia , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Espaço Intranuclear/efeitos dos fármacos , Espaço Intranuclear/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Inibidor de Quinase Dependente de Ciclina p27/imunologia , Humanos , Imunoconjugados/imunologia , Imunoconjugados/isolamento & purificação , Imunoconjugados/metabolismo , Imunoconjugados/farmacocinética , Marcação por Isótopo , Camundongos , Dados de Sequência Molecular , Ácido Pentético/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Transporte Proteico/efeitos dos fármacos , Fatores de Tempo , Distribuição Tecidual , Trastuzumab , Resultado do Tratamento , Regulação para Cima/efeitos dos fármacos
5.
Hypertens Res ; 31(12): 2177-86, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19139607

RESUMO

Adenosine is known to modulate neuronal activity within the nucleus tractus solitarius (NTS). The modulatory effect of adenosine A1 receptors (A1R) on alpha2-adrenoceptors (Adr2R) was evaluated using quantitative radioautography within NTS subnuclei and using neuronal culture of normotensive (WKY) and spontaneously hypertensive rats (SHR). Radioautography was used in a saturation experiment to measure Adr2R binding parameters (Bmax, Kd) in the presence of 3 different concentrations of N6-cyclopentyladenosine (CPA), an A1R agonist. Neuronal culture confirmed our radioautographic results. [3H]RX821002, an Adr2R antagonist, was used as a ligand for both approaches. The dorsomedial/dorsolateral subnucleus of WKY showed an increase in Bmax values (21%) induced by 10 nmol/L of CPA. However, the subpostremal subnucleus showed a decrease in Kd values (24%) induced by 10 nmol/L of CPA. SHR showed the same pattern of changes as WKY within the same subnuclei; however, the modulatory effect of CPA was induced by 1 nmol/L (increased Bmax, 17%; decreased Kd, 26%). Cell culture confirmed these results, because 10(-5) and 10(-7) mol/L of CPA promoted an increase in [3H]RX821002 binding of WKY (53%) and SHR cells (48%), respectively. DPCPX, an A1R antagonist, was used to block the modulatory effect promoted by CPA with respect to Adr2R binding. In conclusion, our study shows for the first time an interaction between A1R that increases the binding of Adr2R within specific subnuclei of the NTS. This may be important in understanding the complex autonomic response induced by adenosine within the NTS. In addition, changes in interactions between receptors might be relevant to understanding the development of hypertension.


Assuntos
Adenosina/farmacologia , Hipertensão/metabolismo , Espaço Intranuclear/metabolismo , Receptores Adrenérgicos alfa 2/efeitos dos fármacos , Receptores Adrenérgicos alfa 2/metabolismo , Núcleo Solitário/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Antagonistas do Receptor A1 de Adenosina , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hipertensão/fisiopatologia , Espaço Intranuclear/efeitos dos fármacos , Masculino , Ligação Proteica , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptor A1 de Adenosina/efeitos dos fármacos , Receptor A1 de Adenosina/metabolismo , Núcleo Solitário/efeitos dos fármacos , Xantinas/farmacologia
6.
Cell Mol Life Sci ; 62(9): 1038-46, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15868102

RESUMO

Tuftelin-interacting protein (TFIP11) was first identified in a yeast two-hybrid screening as a protein interacting with tuftelin. The ubiquitous expression of TFIP11 suggested that it might have other functions in non-dental tissues. TFIP11 contains a G-patch, a protein domain believed to be involved in RNA binding. Using a green fluorescence protein tag, TFIP11 was found to locate in a novel subnuclear structure that we refer to as the TFIP body. An in vivo splicing assay demonstrated that TFIP11 is a novel splicing factor. TFIP11 diffuses from the TFIP body following RNase A treatment, suggesting that the retention of TFIP11 is RNA dependent. RNA polymerase II inhibitor (-amanitin and actinomycin D) treatment causes enlargement in size and decrease in number of TFIP bodies, suggesting that TFIP bodies perform a storage function rather than an active splicing function. The TFIP body may therefore represent a new subnuclear storage compartment for splicing components.


Assuntos
Processamento Alternativo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adenoviridae/genética , Amanitinas/farmacologia , Animais , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Espaço Intranuclear/efeitos dos fármacos , Espaço Intranuclear/metabolismo , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Proteínas Nucleares/genética , RNA Polimerase II/antagonistas & inibidores , Fatores de Processamento de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonuclease Pancreático/metabolismo , Transfecção , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA