Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 439
Filtrar
1.
J Transl Med ; 22(1): 872, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334479

RESUMO

BACKGROUND: Hereditary spastic paraplegia (HSP) is a rare genetically heterogeneous neurodegenerative disorder. The most common type of HSP is caused by pathogenic variants in the SPAST gene. Various hypotheses regarding the pathogenic mechanisms of HSP-SPAST have been proposed. However, a single hypothesis may not be sufficient to explain HSP-SPAST. OBJECTIVE: To determine the causative gene of autosomal dominant HSP-SPAST in a pure pedigree and to study its underlying pathogenic mechanism. METHODS: A four-generation Chinese family was investigated. Genetic testing was performed for the causative gene, and a splice site variant was identified. In vivo and in vitro experiments were conducted separately. Western blotting and immunofluorescence were performed after transient transfection of cells with the wild-type (WT) or mutated plasmid. The developmental expression pattern of zebrafish spasts was assessed via whole-mount in situ hybridization. The designed guide RNA (gRNA) and an antisense oligo spast-MO were microinjected into Tg(hb9:GFP) zebrafish embryos, spinal cord motor neurons were observed, and a swimming behavioral analysis was conducted. RESULTS: A novel heterozygous intron variant, c.1004 + 5G > A, was identified in a pure HSP-SPAST pedigree and shown to cosegregate with the disease phenotypes. This intron splice site variant skipped exon 6, causing a frameshift mutation that resulted in a premature termination codon. In vitro, the truncated protein was evenly distributed throughout the cytoplasm, formed filamentous accumulations around the nucleus, and colocalized with microtubules. Truncated proteins diffusing in the cytoplasm appeared denser. No abnormal microtubule structures were observed, and the expression levels of α-tubulin remained unchanged. In vivo, zebrafish larvae with this mutation displayed axon pathfinding defects, impaired outgrowth, and axon loss. Furthermore, spast-MO larvae exhibited unusual behavioral preferences and increased acceleration. CONCLUSION: The adverse effects of premature stop codon mutations in SPAST result in insufficient levels of functional protein, and the potential toxicity arising from the intracellular accumulation of spastin serves as a contributing factor to HSP-SPAST.


Assuntos
Neurônios Motores , Mutação , Linhagem , Sítios de Splice de RNA , Espastina , Peixe-Zebra , Espastina/genética , Espastina/metabolismo , Animais , Peixe-Zebra/genética , Humanos , Masculino , Feminino , Mutação/genética , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Sítios de Splice de RNA/genética , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/patologia , Sequência de Bases , Pessoa de Meia-Idade , Adulto , Íntrons/genética , Heterozigoto
2.
Mol Biol Rep ; 51(1): 951, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230614

RESUMO

BACKGROUND: Hereditary spastic paraplegia (HSP) represents a group of monogenic neurodegenerative disorders characterized by high clinical and genetic heterogeneity. HSP is characterized by slowly progressing hypertonia of both lower extremities, spastic gait, and myasthenia. The most prevalent autosomal dominant form of HSP, known as spastic paraplegia 4 (SPG4), is attributed to variants in the spastin (SPAST) gene. METHODS AND RESULTS: Here, a Chinese family presenting with spasticity in both legs and a shuffling gait participated in our investigation. Whole exome sequencing of the proband was utilized to identify the genetic lesion in the family. Through data filtering, Sanger sequencing validation, and co-separation analysis, a novel variant (NM_014946.3: c.1669G > C:p.A557P) of SPAST was identified as the genetic lesion of this family. Furthermore, bioinformatic analysis revealed that this variant was deleterious and located in a highly evolutionarily conserved site. CONCLUSION: Our study confirmed the diagnosis of SPG4 in this family, contributing to genetic counseling for families affected by SPG4. Additionally, our study broadened the spectrum of SPAST variants and highlighted the importance of ATPases associated with various cellular activity domains of SPAST.


Assuntos
Paraplegia Espástica Hereditária , Espastina , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , China , População do Leste Asiático/genética , Sequenciamento do Exoma/métodos , Mutação/genética , Paraplegia , Linhagem , Paraplegia Espástica Hereditária/genética , Espastina/genética
3.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732227

RESUMO

The most common form of hereditary spastic paraplegia (HSP), SPG4 is caused by single nucleotide variants and microrearrangements in the SPAST gene. The high percentage of multi-exonic deletions or duplications observed in SPG4 patients is predisposed by the presence of a high frequency of Alu sequences in the gene sequence. In the present study, we analyzed DNA and RNA samples collected from patients with different microrearrangements in SPAST to map gene breakpoints and evaluate the mutation mechanism. The study group consisted of 69 individuals, including 50 SPG4 patients and 19 healthy relatives from 18 families. Affected family members from 17 families carried varying ranges of microrearrangements in the SPAST gene, while one individual had a single nucleotide variant in the 5'UTR of SPAST. To detect the breakpoints of the SPAST gene, long-range PCR followed by sequencing was performed. The breakpoint sequence was detected for five different intragenic SPAST deletions and one duplication, revealing Alu-mediated microhomology at breakpoint junctions resulting from non-allelic homologous recombination in these patients. Furthermore, SPAST gene expression analysis was performed using patient RNA samples extracted from whole blood. Quantitative real-time PCR tests performed in 14 patients suggest no expression of transcripts with microrearrangements in 5 of them. The obtained data indicate that nonsense-mediated decay degradation is not the only mechanism of hereditary spastic paraplegia in patients with SPAST microrearrangements.


Assuntos
Haploinsuficiência , Paraplegia Espástica Hereditária , Espastina , Humanos , Espastina/genética , Paraplegia Espástica Hereditária/genética , Masculino , Feminino , Haploinsuficiência/genética , Linhagem , Variações do Número de Cópias de DNA , Adulto , Elementos Alu/genética , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Degradação do RNAm Mediada por Códon sem Sentido
4.
BMJ Case Rep ; 17(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38631813

RESUMO

A man in his 30s was referred to neurology with right-sided paraesthesia, tremors, chest pain and lower urinary tract and erectile dysfunction. He had a medical history of left acetabular dysplasia, and subjective memory impairment, the latter being in the context of depression and chronic pain with opioid use. There was no notable family history. On examination, he had a spastic paraparesis. Imaging revealed atrophy of the thoracic spine. Lumbar puncture demonstrated a raised protein but other constituents were normal, including no presence of oligoclonal bands. Genetic testing revealed a novel heterozygous likely pathogenic SPAST variant c. 1643A>T p.(Asp548Val), confirming the diagnosis of hereditary spastic paraparesis. Symptomatic treatment with physiotherapy and antispasmodic therapy was initiated. This is the first study reporting a patient with this SPAST variant. Ensembl variant effect predictor was used, with the application of computational variant prediction tools providing support that the variant we have identified is likely deleterious and damaging. Our variant CADD score was high, indicating that our identified variant was a highly deleterious substitution.


Assuntos
Paraparesia Espástica , Paraplegia Espástica Hereditária , Humanos , Masculino , Testes Genéticos , Mutação , Paraparesia Espástica/genética , Linhagem , Proteínas/genética , Paraplegia Espástica Hereditária/genética , Espastina/genética , Adulto
5.
Brain ; 147(10): 3534-3546, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-38551087

RESUMO

Hereditary spastic paraplegias (HSPs) are degenerative motor neuron diseases characterized by progressive spasticity and weakness in the lower limbs. The most common form of HSP is due to SPG4 gene haploinsufficiency. SPG4 encodes the microtubule severing enzyme spastin. Although, there is no cure for SPG4-HSP, strategies to induce a spastin recovery are emerging as promising therapeutic approaches. Spastin protein levels are regulated by poly-ubiquitination and proteasomal-mediated degradation, in a neddylation-dependent manner. However, the molecular players involved in this regulation are unknown. Here, we show that the Cullin-4-RING E3 ubiquitin ligase complex (CRL4) regulates spastin stability. Inhibition of CRL4 increases spastin levels by preventing its poly-ubiquitination and subsequent degradation in spastin-proficient and in patient derived SPG4 haploinsufficient cells. To evaluate the role of CRL4 complex in spastin regulation in vivo, we developed a Drosophila melanogaster model of SPG4 haploinsufficiency which show alterations of synapse morphology and locomotor activity, recapitulating phenotypical defects observed in patients. Downregulation of the CRL4 complex, highly conserved in Drosophila, rescues spastin levels and the phenotypical defects observed in flies. As a proof of concept of possible pharmacological treatments, we demonstrate a recovery of spastin levels and amelioration of the SPG4-HSP-associated defects both in the fly model and in patient-derived cells by chemical inactivation of the CRL4 complex with NSC1892. Taken together, these findings show that CRL4 contributes to spastin stability regulation and that it is possible to induce spastin recovery and rescue of SPG4-HSP defects by blocking the CRL4-mediated spastin degradation.


Assuntos
Drosophila melanogaster , Paraplegia Espástica Hereditária , Espastina , Animais , Humanos , Proteínas Culina/metabolismo , Proteínas Culina/genética , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Haploinsuficiência , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/tratamento farmacológico , Paraplegia Espástica Hereditária/metabolismo , Espastina/metabolismo , Espastina/genética , Ubiquitinação/efeitos dos fármacos
6.
Nat Commun ; 15(1): 1949, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431632

RESUMO

Cell division is completed by the abscission of the intercellular bridge connecting the daughter cells. Abscission requires the polymerization of an ESCRT-III cone close to the midbody to both recruit the microtubule severing enzyme spastin and scission the plasma membrane. Here, we found that the microtubule and the membrane cuts are two separate events that are regulated differently. Using HeLa cells, we uncovered that the F-actin disassembling protein Cofilin-1 controls the disappearance of a transient pool of branched F-actin which is precisely assembled at the tip of the ESCRT-III cone shortly before the microtubule cut. Functionally, Cofilin-1 and Arp2/3-mediated branched F-actin favor abscission by promoting local severing of the microtubules but do not participate later in the membrane scission event. Mechanistically, we propose that branched F-actin functions as a physical barrier that limits ESCRT-III cone elongation and thereby favors stable spastin recruitment. Our work thus reveals that F-actin controls the timely and local disassembly of microtubules required for cytokinetic abscission.


Assuntos
Actinas , Microtúbulos , Humanos , Actinas/metabolismo , Células HeLa , Espastina/metabolismo , Microtúbulos/metabolismo , Citocinese , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fatores de Despolimerização de Actina/metabolismo
7.
Curr Biol ; 34(8): 1687-1704.e8, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38554708

RESUMO

Neurons rely on the long-range trafficking of synaptic components to form and maintain the complex neural networks that encode the human experience. With a single neuron capable of forming thousands of distinct en passant synapses along its axon, spatially precise delivery of the necessary synaptic components is paramount. How these synapses are patterned, as well as how the efficient delivery of synaptic components is regulated, remains largely unknown. Here, we reveal a novel role for the microtubule (MT)-severing enzyme spastin in locally enhancing MT polymerization to influence presynaptic cargo pausing and retention along the axon. In human neurons derived from induced pluripotent stem cells (iPSCs), we identify sites stably enriched for presynaptic components along the axon prior to the robust assembly of mature presynapses apposed by postsynaptic contacts. These sites are capable of cycling synaptic vesicles, are enriched with spastin, and are hotspots for new MT growth and synaptic vesicle precursor (SVP) pausing/retention. The disruption of neuronal spastin level or activity, by CRISPRi-mediated depletion, transient overexpression, or pharmacologic inhibition of enzymatic activity, interrupts the localized enrichment of dynamic MT plus ends and diminishes SVP accumulation. Using an innovative human heterologous synapse model, where microfluidically isolated human axons recognize and form presynaptic connections with neuroligin-expressing non-neuronal cells, we reveal that neurons deficient for spastin do not achieve the same level of presynaptic component accumulation as control neurons. We propose a model where spastin acts locally as an amplifier of MT polymerization to pattern specific regions of the axon for synaptogenesis and guide synaptic cargo delivery.


Assuntos
Axônios , Microtúbulos , Espastina , Espastina/metabolismo , Espastina/genética , Microtúbulos/metabolismo , Humanos , Axônios/metabolismo , Axônios/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Vesículas Sinápticas/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia
8.
Clin Genet ; 106(1): 56-65, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38403837

RESUMO

Spastic paraplegia type 4 (SPG4), caused by SPAST mutations, is the most predominant subtype of hereditary spastic paraplegia. Most documented SPG4 patients present as pure form, with the complex form rarely reported. We described the clinical and genetic features of 20 patients with complex phenotypes of SPG4 and further explored the genotype-phenotype correlations. We collected detailed clinical data of all SPG4 patients and assessed their phenotypes. SPAST gene mutations were identified by Multiplex ligation-dependent probe amplification in combination with whole exome sequencing. We further performed statistical analysis in genotype and phenotype among patients with various manifestations and different variants. Out of 90 SPG4 patients, 20 patients (male:female = 16:4) with additional neurologic deficits, namely complex form, were included in our study. The bimodal distribution of age of onset at 0-10 and 21-40 years old is concluded. On cranial MRI, obvious white matter lesions can be observed in five patients. We identified 9 novel and 8 reported SPAST mutations, of which 11 mutations were located in AAA (ATPase associated with various cellular activities) domain. The AAA cassette of spastin is the hottest mutated region among complex SPG4. All patients with cognitive impairment (CI) are males (n = 9/9). Additionally, 80% patients with ataxia are due to frameshift mutations (n = 4/5). Overall, our study summarized and analyzed the genetic and phenotypic characteristics of complex SPG4, making up over 1/5 of in-house SPG4 cohort, among which CI and ataxia are the most common features. Further studies are expected to explore the underlying mechanisms.


Assuntos
Estudos de Associação Genética , Mutação , Fenótipo , Paraplegia Espástica Hereditária , Espastina , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Idade de Início , China/epidemiologia , Estudos de Coortes , População do Leste Asiático/genética , Sequenciamento do Exoma , Predisposição Genética para Doença , Genótipo , Paraplegia , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/patologia , Espastina/genética , Recém-Nascido
9.
Mol Biol Cell ; 35(4): ar48, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335450

RESUMO

Nuclear envelope reassembly during the final stages of each mitosis depends on disassembling spindle microtubules without disrupting chromosome separation. This process involves the transient recruitment of the ESCRT-III complex and spastin, a microtubule-severing AAA (ATPases associated with diverse cellular activities) mechanoenzyme, to late-anaphase chromosomes. However, dissecting mechanisms underlying these rapid processes, which can be completed within minutes, has been difficult. Here, we combine fast-acting chemical inhibitors with live-cell imaging and find that spindle microtubules, along with spastin activity, regulate the number and lifetimes of spastin foci at anaphase chromosomes. Unexpectedly, spastin inhibition impedes chromosome separation, but does not alter the anaphase localization dynamics of CHMP4B, an ESCRT-III protein, or increase γ-H2AX foci, a DNA damage marker. We show spastin inhibition increases the frequency of lamin-lined nuclear microtunnels that can include microtubules penetrating the nucleus. Our findings suggest failure to sever spindle microtubules impedes chromosome separation, yet reforming nuclear envelopes can topologically accommodate persistent microtubules ensuring nuclear DNA is not damaged or exposed to cytoplasm.


Assuntos
Anáfase , Microtúbulos , Espastina/metabolismo , Microtúbulos/metabolismo , Cromossomos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo
10.
Am J Hum Genet ; 111(2): 309-322, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272032

RESUMO

Genetic variants that affect mRNA splicing are a major cause of hereditary disorders, but the spliceogenicity of variants is challenging to predict. RNA diagnostics of clinically accessible tissues enable rapid functional characterization of splice-altering variants within their natural genetic context. However, this analysis cannot be offered to all individuals as one in five human disease genes are not expressed in easily accessible cell types. To overcome this problem, we have used CRISPR activation (CRISPRa) based on a dCas9-VPR mRNA-based delivery platform to induce expression of the gene of interest in skin fibroblasts from individuals with suspected monogenic disorders. Using this ex vivo splicing assay, we characterized the splicing patterns associated with germline variants in the myelin protein zero gene (MPZ), which is exclusively expressed in Schwann cells of the peripheral nerves, and the spastin gene (SPAST), which is predominantly expressed in the central nervous system. After overnight incubation, CRISPRa strongly upregulated MPZ and SPAST transcription in skin fibroblasts, which enabled splice variant profiling using reverse transcription polymerase chain reaction, next-generation sequencing, and long-read sequencing. Our investigations show proof of principle of a promising genetic diagnostic tool that involves CRISPRa to activate gene expression in easily accessible cells to study the functional impact of genetic variants. The procedure is easy to perform in a diagnostic laboratory with equipment and reagents all readily available.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Splicing de RNA , Humanos , Splicing de RNA/genética , RNA Mensageiro , Sistema Nervoso Central , Espastina
11.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(1): 113-119, 2024 Jan 10.
Artigo em Chinês | MEDLINE | ID: mdl-38171570

RESUMO

Spastic paraplegia type 4 (SPG4) is the most common type of autosomally inherited spastic paraplegia. Its main clinical features include typical simple hereditary spastic paraplegia, with neurological impairments limited to lower limb spasticity, hypertonic bladder dysfunction, and mild weakening of lower limb vibration sensation, without accompanying features such as nerve atrophy, ataxia, cognitive impairment, seizures, and muscle tone disorders. SPAST is the main pathogenic gene underlying SPG4, and various pathogenic SPAST variants have been discovered. This disease has featured a high degree of clinical heterogeneity, and the same pathogenic variant can have different age of onset and severity among different patients and even within the same family. There is a lack of systematic research on the correlation between the genotype and phenotype of SPG4, and the pathogenic mechanism has remained controversial. This article has provided a review for the clinical characteristics, pathogenic gene characteristics, correlation between the genotype and phenotype, and pathogenic mechanism of this disease, with an aim to provide reference for its clinical diagnosis and treatment.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/genética , Mutação , Espastina/genética , Paraplegia/genética , Fenótipo
12.
Elife ; 122024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231910

RESUMO

Axon regeneration is abortive in the central nervous system following injury. Orchestrating microtubule dynamics has emerged as a promising approach to improve axonal regeneration. The microtubule severing enzyme spastin is essential for axonal development and regeneration through remodeling of microtubule arrangement. To date, however, little is known regarding the mechanisms underlying spastin action in neural regeneration after spinal cord injury. Here, we use glutathione transferase pulldown and immunoprecipitation assays to demonstrate that 14-3-3 interacts with spastin, both in vivo and in vitro, via spastin Ser233 phosphorylation. Moreover, we show that 14-3-3 protects spastin from degradation by inhibiting the ubiquitination pathway and upregulates the spastin-dependent severing ability. Furthermore, the 14-3-3 agonist Fusicoccin (FC-A) promotes neurite outgrowth and regeneration in vitro which needs spastin activation. Western blot and immunofluorescence results revealed that 14-3-3 protein is upregulated in the neuronal compartment after spinal cord injury in vivo. In addition, administration of FC-A not only promotes locomotor recovery, but also nerve regeneration following spinal cord injury in both contusion and lateral hemisection models; however, the application of spastin inhibitor spastazoline successfully reverses these phenomena. Taken together, these results indicate that 14-3-3 is a molecular switch that regulates spastin protein levels, and the small molecule 14-3-3 agonist FC-A effectively mediates the recovery of spinal cord injury in mice which requires spastin participation.


Assuntos
Axônios , Traumatismos da Medula Espinal , Animais , Camundongos , Proteínas 14-3-3/metabolismo , Axônios/fisiologia , Regeneração Nervosa/fisiologia , Estabilidade Proteica , Recuperação de Função Fisiológica/fisiologia , Espastina/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo
13.
Pediatr Res ; 95(1): 102-111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37563452

RESUMO

BACKGROUND: The aim of the study was to characterize molecular diagnoses in patients with childhood-onset progressive neurological disorders of suspected genetic etiology. METHODS: We studied 48 probands (age range from newborn to 17 years old) with progressive neurological disorders of unknown etiology from the largest pediatric neurology clinic in Finland. Phenotypes included encephalopathy (54%), neuromuscular disorders (33%), movement disorders (11%), and one patient (2%) with hemiplegic migraine. All patients underwent whole-exome sequencing and disease-causing genes were analyzed. RESULTS: We found 20 (42%) of the patients to have variants in genes previously associated with disease. Of these, 12 were previously reported disease-causing variants, whereas eight patients had a novel variant on a disease-causing gene: ATP7A, CHD2, PURA, PYCR2, SLC1A4, SPAST, TRIT1, and UPF3B. Genetics also enabled us to define atypical clinical presentations of Rett syndrome (MECP2) and Menkes disease (ATP7A). Except for one deletion, all findings were single-nucleotide variants (missense 72%, truncating 22%, splice-site 6%). Nearly half of the variants were de novo. CONCLUSIONS: The most common cause of childhood encephalopathies are de novo variants. Whole-exome sequencing, even singleton, proved to be an efficient tool to gain specific diagnoses and in finding de novo variants in a clinically heterogeneous group of childhood encephalopathies. IMPACT: Whole-exome sequencing is useful in heterogeneous pediatric neurology cohorts. Our article provides further evidence for and novel variants in several genes. De novo variants are an important cause of childhood encephalopathies.


Assuntos
Encefalopatias , Doenças do Sistema Nervoso , Neurologia , Síndrome de Rett , Recém-Nascido , Humanos , Criança , Adolescente , Doenças do Sistema Nervoso/genética , Fenótipo , Espastina/genética , Proteínas de Ligação a RNA/genética
14.
Childs Nerv Syst ; 40(3): 855-861, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37783799

RESUMO

PURPOSE: To provide an overview of outcome and complications of selective dorsal rhizotomy (SDR) and intrathecal baclofen pump implantation (ITB) for spasticity treatment in children with hereditary spastic paraplegia (HSP). METHODS: Retrospective study including children with HSP and SDR or ITB. Gross motor function measure (GMFM-66) scores and level of spasticity were assessed. RESULTS: Ten patients were included (most had mutations in ATL1 (n = 4) or SPAST (n = 3) genes). Four walked without and two with walking aids, four were non-walking children. Six patients underwent SDR, three patients ITB, and one both. Mean age at surgery was 8.9 ± 4.5 years with a mean follow-up of 3.4 ± 2.2 years. Five of the SDR patients were walking. Postoperatively spasticity in the legs was reduced in all patients. The change in GMFM-66 score was + 8.0 (0-19.7 min-max). The three ITB patients treated (SPAST (n = 2) and PNPLA6 (n = 1) gene mutation) were children with a progressive disease course. No complications of surgery occurred. CONCLUSIONS: SDR is a feasible treatment option in carefully selected children with HSP, especially in walking patients. The majority of patients benefit with respect to gross motor function, complication risk is low. ITB was used in children with severe and progressive disease.


Assuntos
Paralisia Cerebral , Paraplegia Espástica Hereditária , Criança , Humanos , Adolescente , Pré-Escolar , Estudos Retrospectivos , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/cirurgia , Paraplegia Espástica Hereditária/complicações , Paralisia Cerebral/complicações , Espasticidade Muscular/genética , Espasticidade Muscular/cirurgia , Baclofeno/uso terapêutico , Rizotomia/métodos , Resultado do Tratamento , Espastina
15.
Zygote ; 32(1): 21-27, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38047349

RESUMO

Our previous studies have suggested that spastin, which aggregates on spindle microtubules in oocytes, may promote the assembly of mouse oocyte spindles by cutting microtubules. This action may be related to CRMP5, as knocking down CRMP5 results in reduced spindle microtubule density and maturation defects in oocytes. In this study, we found that, after knocking down CRMP5 in oocytes, spastin distribution shifted from the spindle to the spindle poles and errors in microtubule-kinetochore attachment appeared in oocyte spindles. However, CRMP5 did not interact with the other two microtubule-severing proteins, katanin-like-1 (KATNAL1) and fidgetin-like-1 (FIGNL1), which aggregate at the spindle poles. We speculate that, in oocytes, due to the reduction of spastin distribution on chromosomes after knocking down CRMP5, microtubule-kinetochore errors cannot be corrected through severing, resulting in meiotic division abnormalities and maturation defects in oocytes. This finding provides new insights into the regulatory mechanisms of spastin in oocytes and important opportunities for the study of meiotic division mechanisms.


Assuntos
Cinetocoros , Fuso Acromático , Camundongos , Animais , Cinetocoros/metabolismo , Espastina/genética , Espastina/metabolismo , Fuso Acromático/fisiologia , Microtúbulos/metabolismo , Meiose , Oócitos/fisiologia
16.
BMC Med Genomics ; 16(1): 321, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066582

RESUMO

OBJECTIVE: Haploinsufficiency is widely accepted as the pathogenic mechanism of hereditary spastic paraplegias type 4 (SPG4). However, there are some cases that cannot be explained by reduced function of the spastin protein encoded by SPAST. The aim of this study was to identify the causative variant of SPG4 in a large Chinese family and explore its pathological mechanism. MATERIALS AND METHODS: A five-generation family with 49 members including nine affected (4 males and 5 females) and 40 unaffected individuals in Mongolian nationality was recruited. Whole exome sequencing was employed to investigate the genetic etiology. Western blotting and immunofluorescence were used to analyze the effects of the mutant proteins in vitro. RESULTS: A novel frameshift variant NM_014946.4: c.483_484delinsC (p.Val162Leufs*2) was identified in SPAST from a pedigree with SPG4. The variant segregated with the disease in the family and thus determined as the disease-causing variant. The c.483_484delinsC variant produced two truncated mutants (mutant M1 and M87 isoforms). They accumulated to a higher level and presented increased stability than their wild-type counterparts and may lost the microtubule severing activity. CONCLUSION: SPAST mutations leading to premature stop codons do not always act through haploinsufficiency. The potential toxicity to the corticospinal tract caused by the intracellular accumulation of truncated spastin should be considered as the pathological mechanism of SPG4.


Assuntos
Paraplegia Espástica Hereditária , Espastina , Feminino , Humanos , Masculino , Microtúbulos/genética , Mutação , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/patologia , Espastina/genética , Espastina/metabolismo
17.
Brain Res Bull ; 205: 110806, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918696

RESUMO

Promoting axonal regeneration is an effective strategy for recovery from traumatic spinal cord injury (SCI). Spastin, a microtubule-severing protein, modulates axonal outgrowth and branch formation by regulating microtubule dynamics. However, the exact role of spastin during recovery from SCI remains unknown. Therefore, we utilized a hemisection injury model of the mouse spinal cord and explored the effect of spastin using a spastin inhibitor, spastazoline. Results showed that spastazoline significantly suppressed the microtubule-severing activity of spastin in COS-7 cells and inhibited the promoting effect of spastin on neurite outgrowth in primarily cultured hippocampal neurons. The protein expression level of spastin was significantly upregulated in the injured spinal cord. Injured mice showed impaired motor functions, which included increased toe-off angle and foot fault steps and decreased stride length and Basso mouse scale score. Notably, these motor function impairments were aggravated by the application of spastazoline. Inhibition of spastin exacerbated neurogenesis impairment, as demonstrated by neuronal nuclei antigen staining, the inflammatory response, as shown by Iba-1 and GFAP staining, and axonal regeneration impairment, as shown by 5-hydroxytryptamine staining. Furthermore, mass spectrometry analysis revealed that the inhibition of spastin resulted in numerous dysregulated differentially expressed proteins that were closely associated with vesicle organization and transport. Taken together, our data suggest that spastin is critical for recovery from SCI and may be a potential target for the treatment of SCI.


Assuntos
Espastina , Traumatismos da Medula Espinal , Animais , Camundongos , Neurônios/metabolismo , Recuperação de Função Fisiológica/fisiologia , Espastina/antagonistas & inibidores , Espastina/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo
18.
Neurosci Lett ; 812: 137399, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37473796

RESUMO

BACKGROUND: Hereditary spastic paraplegia 4 (SPG4) caused by spastin (SPAST) gene mutations accounts for 40-45% of hereditary spastic paraplegia (HSP) cases. To search for more genetic evidences for the pathogenesis of HSP, the SPAST genotype and clinical phenotype of a Chinese Han SPG4 family were analysed in this study. METHODS: The clinical data of the proband and his family members were collected. Whole genomic DNA was extracted from peripheral blood, and the gene detection and pathogenicity analysis of mutations were conducted using whole-exome sequencing technology. Suspected pathogenic mutations were identified. Verification within this family was conducted by Sanger sequencing. RESULTS: Eight (4 males and 4 females) of 20 members in 4 generations had SPG4. All patients presented with the high feet arches (pes cavus), the abnormal gait, the active tendon reflexes of the upper limbs, the hyperreflexia of the lower limbs, and the positive ankle clonus and Babinski's signs bilaterally. In the proband, we found a heterozygous mutation c.1495C > T in SPAST gene, which was associated with the autosomal dominant SPG4. Both the daughters and granddaughters of the proband in this family were verified to carry this mutation. The clinical characteristics of the SPG4 patients in this family are in line with the simple type of HSP. Heterozygous c.1495C > T is a pathogenic mutation in this family. CONCLUSION: In this study, we identified a c.1495C > T mutation in the SPAST gene in a Han Chinese family, enriching the mutation spectrum of SPG4.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Masculino , Feminino , Paraplegia Espástica Hereditária/diagnóstico , Espastina/genética , População do Leste Asiático , Mutação
19.
Mov Disord ; 38(9): 1750-1755, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394769

RESUMO

OBJECTIVES: To diagnose the molecular cause of hereditary spastic paraplegia (HSP) observed in a four-generation family with autosomal dominant inheritance. METHODS: Multiplex ligation-dependent probe amplification (MLPA), whole-exome sequencing (WES), and RNA sequencing (RNA-seq) of peripheral blood leukocytes were performed. Reverse transcription polymerase chain reaction (RT-PCR) and Sanger sequencing were used to characterize target regions of SPAST. RESULTS: A 121-bp AluYb9 insertion with a 30-bp poly-A tail flanked by 15-bp direct repeats on both sides was identified in the edge of intron 16 in SPAST that segregated with the disease phenotype. CONCLUSIONS: We identified an intronic AluYb9 insertion inducing splicing alteration in SPAST causing pure HSP phenotype that was not detected by routine WES analysis. Our findings suggest RNA-seq is a recommended implementation for undiagnosed cases by first-line diagnostic approaches. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/diagnóstico , Espastina/genética , Adenosina Trifosfatases/genética , Fenótipo , Íntrons/genética , Mutação
20.
Artigo em Russo | MEDLINE | ID: mdl-37315258

RESUMO

A rare case of autosomal dominant spastic paraplegia in a 36-year-old female with two reported earlier mutations of most common spastic paraplegia forms: SPG4 (mutation p.Cys28Leufs*20 in SPAST gene) and SPG3 (mutation p.Val405Met in ATL1 gene) is presented. The mutations detected by massively parallel sequencing (MPS) panel were inherited from affected mother and clinically unaffected father, respectively. The proband, her 61-year-old mother and deceased grandfather had 'uncomplicated' paraplegia with onset in 4th decade. The 67-year-old father had no even minimal subclinical signs of the disease and no affected relatives, detection of his low-penetrating ATL1 mutation was unexpected. MPS methods are the most informative for identifying a patient and/or family members with a combined hereditary neurological pathology, especially a combination of similar forms of heterogeneous groups, such as spastic paraplegia.


Assuntos
Paraplegia , Paraplegia Espástica Hereditária , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Sequenciamento de Nucleotídeos em Larga Escala , Mães , Mutação , Paraplegia/diagnóstico , Paraplegia/genética , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/genética , Espastina/genética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA