Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Parasitol Int ; 100: 102856, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38199522

RESUMO

The Plasmodium life cycle involves differentiation into multiple morphologically distinct forms, a process regulated by developmental stage-specific gene expression. Histone proteins are involved in epigenetic regulation in eukaryotes, and the histone variant H3.3 plays a key role in the regulation of gene expression and maintenance of genomic integrity during embryonic development in mice. However, the function of H3.3 through multiple developmental stages in Plasmodium remains unknown. To examine the function of H3.3, h3.3-deficient mutants (Δh3.3) were generated in P. berghei. The deletion of h3.3 was not lethal in blood stage parasites, although it had a minor effect of the growth rate in blood stage; however, the in vitro ookinete conversion rate was significantly reduced, and the production of the degenerated form was increased. Regarding the mosquito stage development of Δh3.3, oocysts number was significantly reduced, and no sporozoite production was observed. The h3.3 gene complemented mutant have normal development in mosquito stage producing mature oocysts and salivary glands contained sporozoites, and interestingly, the majority of H3.3 protein was detected in female gametocytes. However, Δh3.3 male and female gametocyte production levels were comparable to the wild-type levels. Transcriptome analysis of Δh3.3 male and female gametocytes revealed the upregulation of several male-specific genes in female gametocytes, suggesting that H3.3 functions as a transcription repressor of male-specific genes to maintain sexual identity in female gametocytes. This study provides new insights into the molecular biology of histone variants H3.3 which plays a critical role on zygote-to-oocyst development in primitive unicellular eukaryotes.


Assuntos
Malária , Parasitos , Plasmodium , Doenças dos Roedores , Masculino , Feminino , Animais , Camundongos , Oocistos , Histonas/genética , Zigoto/metabolismo , Epigênese Genética , Esporozoítos/fisiologia , Malária/parasitologia , Plasmodium berghei/fisiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
2.
Poult Sci ; 103(3): 103445, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262340

RESUMO

The aim of this study is to explore whether Nrf2 antioxidant pathway negatively regulates the ChTLR15/NLRP3 inflammatory pathway stimulated by Eimeria tenella infection. Firstly, levels of molecules in the Nrf2/HO-1 pathway in DF-1 cells pre-treated with an optimized dose of Corilagine or probiotics Levilactobacillus brevis 23017 were quantified using real-time PCR (qRT-PCR) and Western blot. Then, DF-1 cells pre-treated with Corilagine or L. brevis 23017 were stimulated with E. tenella sporozoites, and mRNA levels of molecules in Nrf2/HO-1 and ChTLR15/NLRP3 pathways, protein levels of p-Nrf2, Nrf2, HO-1, ChTLR15 and ChNLRP3, levels of malondialdehyde (MDA) and reactive oxygen species (ROS) were quantified. Further, expression level of Nrf2 and ChTLR15 in DF-1 cells was knocked down by RNA interfering (RNAi) method, and target cells were pre-treated with Corilagine or L. brevis 23017, followed by stimulation with E. tenella sporozoites, and the expression levels of key molecules in Nrf2/HO-1 and ChTLR15/NLRP3 pathways were quantified. The results showed that mRNA and protein levels of key molecules in the Nrf2/HO-1 pathway in DF-1 cells was significantly upregulated after pretreating with 15 µM Corilagine and supernatant of L. brevis 23017. After stimulating with E. tenella sporozoites, levels of molecules in the ChTLR15/NLRP3 pathway, levels of MDA and ROS in DF-1 cells pre-treated with 15 µM Corilagine or bacterial supernatant were all significantly down-regulated. The results from the knock-down experiment also displayed that Corrigine and L. brevis 23017 inhibited the activation of the ChTLR15/ChNLRP3 inflammatory pathway stimulated by E. tenella sporozoites through activating Nrf2/HO-1 antioxidant pathway. This study provides new ideas for the development of novel anticoccidial products.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Esporozoítos , Animais , Esporozoítos/fisiologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes , Espécies Reativas de Oxigênio , Galinhas/genética , RNA Mensageiro/genética
3.
Poult Sci ; 102(10): 102898, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37573847

RESUMO

Essential oils (EO) and natural bioactive compounds are well-known antibacterial and anti-inflammatory factors; however, little is known about their anticoccidial activity and mode of action. EO deriving from basil (BEO), garlic (GAR), oregano (OEO), thyme (TEO), and their main bioactive compounds were investigated for their anticoccidial proprieties and compared to salinomycin (SAL) and amprolium (AMP) in vitro. The invasion of Eimeria tenella sporozoites was studied on 2 cell models: Madin-Darby Bovine Kidney (MDBK) cells and primary chicken epithelial cells (cIEC). Invasion efficiency was evaluated at 2 and 24 h postinfection (hpi) with counts of extracellular sporozoites and by detection of intracellular E. tenella DNA by PCR. Results show that at both timepoints, the EO were most effective in preventing the invasion of E. tenella with an average reduction of invasion at 24 hpi by 36% in cIEC and 55% in MDBK. The study also examined cytokine gene expression in cIEC at 24 hpi and found that AMP, BEO, OEO, TEO, carvacrol (CAR), and thymol (THY) significantly reduced interleukin (IL)8 expression, with CAR also reducing expression of IL1ß and IL6 compared to the infected control. In addition, this work investigated the morphology of E. tenella sporozoites treated with anticoccidial drugs and EO using a scanning electron microscope. All the treatments induced morphological anomalies, characterized by a reduction of area, perimeter and length of sporozoites. SAL had a significant impact on altering sporozoite shape only at 24 h, whereas CAR and THY significantly compromised the morphology already at 2 hpi, compared to the untreated control. OEO and GAR showed the most significant alterations among all the treatments. The findings of this study highlight the potential of EO as an alternative to traditional anticoccidial drugs in controlling E. tenella invasion and in modulating primary immune response.


Assuntos
Doenças dos Bovinos , Coccidiose , Eimeria tenella , Óleos Voláteis , Animais , Bovinos , Eimeria tenella/fisiologia , Óleos Voláteis/farmacologia , Galinhas , Esporozoítos/fisiologia , Reação em Cadeia da Polimerase/veterinária , Coccidiose/tratamento farmacológico , Coccidiose/veterinária
4.
mSphere ; 8(4): e0058722, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37272704

RESUMO

During invasion, Plasmodium parasites secrete proteins from rhoptry and microneme apical end organelles, which have crucial roles in attaching to and invading target cells. A sporozoite stage-specific gene silencing system revealed that rhoptry neck protein 2 (RON2), RON4, and RON5 are important for sporozoite invasion of mosquito salivary glands. Here, we further investigated the roles of RON4 during sporozoite infection of the liver in vivo. Following intravenous inoculation of RON4-knockdown sporozoites into mice, we demonstrated that sporozoite RON4 has multiple functions during sporozoite traversal of sinusoidal cells and infection of hepatocytes. In vitro infection experiments using a hepatoma cell line revealed that secreted RON4 is involved in sporozoite adhesion to hepatocytes and has an important role in the early steps of hepatocyte infection. In addition, in vitro motility assays indicated that RON4 is required for sporozoite attachment to the substrate and the onset of migration. These findings indicate that RON4 is crucial for sporozoite migration toward and invasion of hepatocytes via attachment ability and motility.IMPORTANCEMalarial parasite transmission to mammals is established when sporozoites are inoculated by mosquitoes and migrate through the bloodstream to infect hepatocytes. Many aspects of the molecular mechanisms underpinning migration and cellular invasion remain largely unelucidated. By applying a sporozoite stage-specific gene silencing system in the rodent malarial parasite, Plasmodium berghei, we demonstrated that rhoptry neck protein 4 (RON4) is crucial for sporozoite infection of the liver in vivo. Combined with in vitro investigations, it was revealed that RON4 functions during a crossing of the sinusoidal cell layer and invading hepatocytes, at an early stage of liver infection, by mediating the sporozoite capacity for adhesion and the onset of motility. Since RON4 is also expressed in Plasmodium merozoites and Toxoplasma tachyzoites, our findings contribute to understanding the conserved invasion mechanisms of Apicomplexa parasites.


Assuntos
Malária , Plasmodium berghei , Esporozoítos , Animais , Camundongos , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/fisiologia , Fígado/metabolismo , Fígado/parasitologia , Fígado/patologia , Malária/metabolismo , Malária/parasitologia , Malária/patologia , Esporozoítos/fisiologia , Proteínas de Protozoários/metabolismo , Hepatócitos/metabolismo , Hepatócitos/parasitologia , Hepatócitos/patologia
5.
Front Cell Infect Microbiol ; 13: 1082622, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033474

RESUMO

Introduction: Refractile bodies (RB) are large membrane-less organelles (MLO) of unknown function found as a prominent mismatched pair within the sporozoite stages of all species of Eimeria, parasitic coccidian protozoa. Methods: High resolution imaging methods including time-lapse live confocal microscopy and serial block face-scanning electron microscopy (SBF-SEM) were used to investigate the morphology of RB and other intracellular organelles before and after sporozoite invasion of host cells. Results: Live cell imaging of MDBK cells infected with E. tenella sporozoites confirmed previous reports that RB reduce from two to one post-infection and showed that reduction in RB number occurs via merger of the anterior RB with the posterior RB, a process that lasts 20-40 seconds and takes place between 2- and 5-hours post-infection. Ultrastructural studies using SBF-SEM on whole individual sporozoites, both pre- and post-host cell invasion, confirmed the live cell imaging observations and showed also that changes to the overall sporozoite cell shape accompanied RB merger. Furthermore, the single RB post-merger was found to be larger in volume than the two RB pre-merger. Actin inhibitors were used to investigate a potential role for actin in RB merger, Cytochalasin D significantly inhibited both RB merger and the accompanying changes in sporozoite cell shape. Discussion: MLOs in eukaryotic organisms are characterised by their lack of a membrane and ability to undergo liquid-liquid phase separation (LLPS) and fusion, usually in an actin-mediated fashion. Based on the changes in sporozoite cell shape observed at the time of RB merger together with a potential role for actin in this process, we propose that RB are classed as an MLO and recognised as one of the largest MLOs so far characterised.


Assuntos
Galinhas , Coccidiose , Eimeria tenella , Organelas , Doenças das Aves Domésticas , Esporozoítos , Animais , Actinas/metabolismo , Galinhas/metabolismo , Galinhas/parasitologia , Eimeria tenella/metabolismo , Eimeria tenella/fisiologia , Organelas/metabolismo , Organelas/fisiologia , Esporozoítos/metabolismo , Esporozoítos/fisiologia , Coccidiose/metabolismo , Coccidiose/parasitologia , Coccidiose/fisiopatologia , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/fisiopatologia
6.
Cell Rep ; 42(1): 111927, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640315

RESUMO

Plasmodium sporozoites are the motile forms of the malaria parasites that infect hepatocytes. The initial invasion of hepatocytes is thought to be actively driven by sporozoites, but host cell processes might also play a role. Sporozoite invasion triggers a host plasma membrane invagination that forms a vacuole around the intracellular parasite, which is critical for subsequent intracellular parasite replication. Using fast live confocal microscopy, we observed that the initial interactions between sporozoites and hepatocytes induce plasma membrane ruffles and filopodia extensions. Importantly, we find that these host cell processes facilitate invasion and that Rho GTPase signaling, which regulates membrane ruffling and filopodia extension, is critical for productive infection. Interestingly, sporozoite cell traversal stimulates these processes, suggesting that it increases hepatocyte susceptibility to productive infection. Our study identifies host cell signaling events involved in plasma membrane dynamics as a critical host component of successful malaria parasite infection of hepatocytes.


Assuntos
Malária , Parasitos , Animais , Parasitos/metabolismo , Proteínas de Protozoários/metabolismo , Hepatócitos/metabolismo , Malária/parasitologia , Transdução de Sinais , Membrana Celular/metabolismo , Esporozoítos/fisiologia , Plasmodium berghei/metabolismo
7.
mBio ; 14(1): e0251622, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36622145

RESUMO

Malaria transmission to humans begins with sporozoite infection of the liver. The elucidation of gene regulation during the sporozoite stage will promote the investigation of mechanisms of liver infection by this parasite and contribute to the development of strategies for preventing malaria transmission. AP2-Sp is a transcription factor (TF) essential for the formation of sporozoites or sporogony, which takes place in oocysts in the midguts of infected mosquitoes. To understand the role of this TF in the transcriptional regulatory system of this stage, we performed chromatin immunoprecipitation sequencing (ChIP-seq) analyses using whole mosquito midguts containing late oocysts as starting material and explored its genome-wide target genes. We identified 697 target genes, comprising those involved in distinct processes parasites experience during this stage, from sporogony to development into the liver stage and representing the majority of genes highly expressed in the sporozoite stage. These results suggest that AP2-Sp determines basal patterns of gene expression by targeting a broad range of genes directly. The ChIP-seq analyses also showed that AP2-Sp maintains its own expression by a transcriptional autoactivation mechanism (positive-feedback loop) and induces all TFs reported to be transcribed at this stage, including AP2-Sp2, AP2-Sp3, and SLARP. The results showed that AP2-Sp exists at the top of the transcriptional cascade of this stage and triggers the formation of this stage as a master regulator. IMPORTANCE The sporozoite stage plays a central role in malaria transmission from a mosquito to vertebrate host and is an important target for antimalarial strategies. AP2-Sp is a candidate master transcription factor for the sporozoite stage. However, study of its role in gene regulation has been hampered because of difficulties in performing genome-wide studies of gene regulation in this stage. Here, we conquered this problem and revealed that AP2-Sp has the following prominent features as a master transcription factor. First, it determines the repertory of gene expression during this stage. Second, it maintains its own expression through a transcriptional positive-feedback loop and induces all other transcription factors specifically expressed in this stage. This study represents a major breakthrough in fully understanding gene regulation in this important malarial stage.


Assuntos
Malária , Parasitos , Animais , Humanos , Esporozoítos/fisiologia , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo , Malária/parasitologia , Regulação da Expressão Gênica , Oocistos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Parasitos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
8.
J Vector Borne Dis ; 59(3): 206-215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36511036

RESUMO

BACKGROUND & OBJECTIVES: A successful blood meal acquisition process by an adult female mosquito is accomplished through salivary glands, which releases a cocktail of proteins to counteract the vertebrate host's immune homeostasis. Here, we characterize a salivary-specific Heme peroxidase family member HPX12, originally identified from Plasmodium vivax infected salivary RNAseq data of the mosquito Anopheles stephensi. METHODS: To demonstrate we utilized a comprehensive in silico and functional genomics approach. RESULTS: Our dsRNA-mediated silencing experiments demonstrate that salivary AsHPX12 may regulate pre-blood meal-associated behavioral properties such as probing time, probing propensity, and host attraction. Altered expression of the salivary secretory and antennal proteins expression may have accounted for salivary homeostasis disruption resulting in the unusual fast release of salivary cocktail proteins and delayed acquisition of blood meal in the AsHPX12 knockdown mosquitoes. We also observed a significant parallel transcriptional modulation in response to blood feeding and P. vivax infection. INTERPRETATION & CONCLUSION: With this work, we establish a possible functional correlation of AsHPX12 role in the maintenance of salivary physiological-homeostasis, and Plasmodium sporozoites survival/transmission, though the mechanism is yet to unravel.


Assuntos
Anopheles , Malária Vivax , Adulto , Animais , Feminino , Humanos , Anopheles/fisiologia , Esporozoítos/fisiologia , Plasmodium vivax/genética , Glândulas Salivares
9.
Vet Parasitol ; 310: 109785, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35994916

RESUMO

Thioredoxin (Trx) is a widespread protein regulator of redox reactions in all organisms. It operates together with NADPH and thioredoxin reductase as a general protein disulfide catalytic system. Recently, Trx has been found to be related to the process by which apicomplexan protozoa invade host cells. In this study, Eimeria tenella thioredoxin (EtTrx1) was identified and its gene structural features, expression levels at different developmental stages, localization in sporozoites, roles in adhesion and invasion, and immunogenicity were investigated. Sequence analysis indicated that EtTrx1 contains a Trx domain with a WCGPC motif in 29-33 aa and a typical Trx fold, and belongs to thioredoxin family. EtTrx1 was detected on the surface of sporozoites using anti-EtTrx1 polyclonal antibodies under non-permeabilized conditions by indirect immunofluorescence assay (IFA) and also in a secretion form. EtTrx1 protein was highly transcribed and expressed in merozoites and sporozoites by quantitative PCR and western blot. The attachment assay showed that the adherence rates of yeast cells expressing EtTrx1 on the surface to host cells were 3.1-fold higher than those of the blank control. Specific anti-EtTrx1 antibodies inhibited the invasion of sporozoites into DF-1 cells. The highest inhibition rate was up to 36.75% compared to the control group. Immunization with recombinant EtTrx1 peptides also showed significant protection against lethal infections in chickens. It could offer moderate protective efficacy (Anticoccidial Index [ACI]: 163.70), induce humoral responses, and be an effective candidate for the development of new vaccines.


Assuntos
Coccidiose , Eimeria tenella , Doenças das Aves Domésticas , Animais , Galinhas/parasitologia , Clonagem Molecular , Coccidiose/prevenção & controle , Coccidiose/veterinária , Eimeria tenella/genética , Doenças das Aves Domésticas/parasitologia , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes , Esporozoítos/fisiologia , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
10.
Nat Commun ; 13(1): 3208, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680915

RESUMO

Malaria parasites are less vulnerable to mosquito immune responses once ookinetes transform into oocysts, facilitating parasite development in the mosquito. However, the underlying mechanisms of oocyst resistance to mosquito defenses remain unclear. Here, we show that circumsporozoite protein (CSP) is required for rodent malaria oocysts to avoid mosquito defenses. Mosquito infection with CSPmut parasites (mutation in the CSP pexel I/II domains) induces nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 5 (NOX5)-mediated hemocyte nitration, thus activating Toll pathway and melanization of mature oocysts, upregulating hemocyte TEP1 expression, and causing defects in the release of sporozoites from oocysts. The pre-infection of mosquitoes with the CSPmut parasites reduces the burden of infection when re-challenged with CSPwt parasites by inducing hemocyte nitration. Thus, we demonstrate why oocysts are invisible to mosquito immunity and reveal an unknown role of CSP in the immune evasion of oocysts, indicating it as a potential target to block malaria transmission.


Assuntos
Culicidae , Malária , Animais , Culicidae/parasitologia , Malária/parasitologia , Oocistos , Proteínas de Protozoários/metabolismo , Esporozoítos/fisiologia
11.
Poult Sci ; 101(5): 101771, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35272108

RESUMO

Eimeria tenella (E. tenella) is the most pathogenic genus in Eimeria and can lead to a huge number of deaths of chickens, causing significant economic losses in the poultry industry worldwide. As a natural alkaloid, sanguinarine has many medicinal effects; to a certain extent, it can replace antibiotics and has good application prospects in veterinary medicine. To evaluate the effect of sanguinarine on sporozoites of E.tenella, we used flow cytometry and immunofluorescence staining to detect reactive oxygen species (ROS), mitochondrial membrane potential (MMP), calcium ion (Ca2+), and caspase-3 activation in E.tenella sporozoites treated with different concentrations of sanguinarine. The results of flow cytometry showed that sanguinarine could inhibit the invasion of sporozoites of E.tenella in vitro (P < 0.05) and increase the reactive oxygen species and calcium ions in the sporozoites (P < 0.05). The results of immunofluorescence staining showed that sanguinarine could decrease the mitochondrial membrane potential of sporozoites. Our analysis suggests that sanguinarine can induce apoptosis of E. tenella sporozoites through reactive oxygen species-mediated reduction of the mitochondrial membrane potential and an increase in calcium ion concentration. It follows that sanguinarine is likely to be a novel type of anticoccidiosis drug with good research and clinical application prospects.


Assuntos
Coccidiose , Eimeria tenella , Doenças das Aves Domésticas , Animais , Apoptose , Benzofenantridinas , Cálcio/farmacologia , Galinhas , Coccidiose/tratamento farmacológico , Coccidiose/veterinária , Eimeria tenella/fisiologia , Isoquinolinas , Doenças das Aves Domésticas/tratamento farmacológico , Espécies Reativas de Oxigênio , Esporozoítos/fisiologia
12.
mBio ; 13(1): e0370821, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35073748

RESUMO

Cerebral malaria (CM), coma caused by Plasmodium falciparum-infected red blood cells (iRBCs), is the deadliest complication of malaria. The mechanisms that lead to CM development are incompletely understood. Here we report on the identification of activation and inhibition pathways leading to mouse CM with supporting evidence from the analysis of human specimens. We find that CM suppression can be induced by vascular injury when sporozoites exit the circulation to infect the liver and that CM suppression is mediated by the release of soluble factors into the circulation. Among these factors is insulin like growth factor 1 (IGF1), administration of which inhibits CM development in mice. IMPORTANCE Liver infection by Plasmodium sporozoites is a required step for infection of the organism. We found that alternate pathways of sporozoite liver infection differentially influence cerebral malaria (CM) development. CM is one of the primary causes of death following malaria infection. To date, CM research has focused on how CM phenotypes develop but no successful therapeutic treatment or prognostic biomarkers are available. Here we show for the first time that sporozoite liver invasion can trigger CM-inhibitory immune responses. Importantly, we identified a number of early-stage prognostic CM inhibitory biomarkers, many of which had never been associated with CM development. Serological markers identified using a mouse model are directly relevant to human CM.


Assuntos
Malária Cerebral , Plasmodium , Humanos , Animais , Plasmodium falciparum , Fígado , Biomarcadores/metabolismo , Esporozoítos/fisiologia
13.
mBio ; 12(6): e0309121, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903042

RESUMO

Malaria is caused when Plasmodium sporozoites are injected along with saliva by an anopheline mosquito into the dermis of a vertebrate host. Arthropod saliva has pleiotropic effects that can influence local host responses, pathogen transmission, and exacerbation of the disease. A mass spectrometry screen identified mosquito salivary proteins that are associated with Plasmodium sporozoites during saliva secretions. In this study, we demonstrate that one of these salivary antigens, Anopheles gambiae sporozoite-associated protein (AgSAP), interacts directly with Plasmodium falciparum and Plasmodium berghei sporozoites. AgSAP binds to heparan sulfate and inhibits local inflammatory responses in the skin. The silencing of AgSAP in mosquitoes reduces their ability to effectively transmit sporozoites to mice. Moreover, immunization with AgSAP decreases the Plasmodium burden in mice that are bitten by Plasmodium-infected mosquitoes. These data suggest that AgSAP facilitates early Plasmodium infection in the vertebrate host and serves as a target for the prevention of malaria. IMPORTANCE Malaria is a vector-borne disease caused by Plasmodium sporozoites. When an anopheline mosquito bites its host, it releases Plasmodium sporozoites as well as saliva components. Mosquito proteins have the potential to serve as antigens to prevent or influence malaria without directly targeting the pathogen. This may help set a new paradigm for vaccine development. In this study, we have elucidated the role of a novel salivary antigen, named Anopheles gambiae sporozoite-associated protein (AgSAP). The results presented here show that AgSAP interacts with Plasmodium falciparum and Plasmodium berghei sporozoites and modulates local inflammatory responses in the skin. Furthermore, our results show that AgSAP is a novel mosquito salivary antigen that influences the early stages of Plasmodium infection in the vertebrate host. Individuals living in countries where malaria is endemic generate antibodies against AgSAP, which indicates that AgSAP can serve as a biomarker for disease prevalence and epidemiological analysis.


Assuntos
Anopheles/imunologia , Proteínas de Insetos/imunologia , Malária/parasitologia , Mosquitos Vetores/imunologia , Plasmodium berghei/fisiologia , Plasmodium falciparum/fisiologia , Proteínas e Peptídeos Salivares/imunologia , Animais , Anopheles/genética , Anopheles/parasitologia , Feminino , Humanos , Proteínas de Insetos/genética , Malária/imunologia , Malária/transmissão , Camundongos , Camundongos Endogâmicos C57BL , Mosquitos Vetores/genética , Mosquitos Vetores/parasitologia , Plasmodium berghei/genética , Plasmodium falciparum/genética , Proteínas e Peptídeos Salivares/genética , Esporozoítos/genética , Esporozoítos/fisiologia
14.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819379

RESUMO

Plasmodium malaria parasites are obligate intracellular protozoans that use a unique form of locomotion, termed gliding motility, to move through host tissues and invade cells. The process is substrate dependent and powered by an actomyosin motor that drives the posterior translocation of extracellular adhesins which, in turn, propel the parasite forward. Gliding motility is essential for tissue translocation in the sporozoite and ookinete stages; however, the short-lived erythrocyte-invading merozoite stage has never been observed to undergo gliding movement. Here we show Plasmodium merozoites possess the ability to undergo gliding motility in vitro and that this mechanism is likely an important precursor step for successful parasite invasion. We demonstrate that two human infective species, Plasmodium falciparum and Plasmodium knowlesi, have distinct merozoite motility profiles which may reflect distinct invasion strategies. Additionally, we develop and validate a higher throughput assay to evaluate the effects of genetic and pharmacological perturbations on both the molecular motor and the complex signaling cascade that regulates motility in merozoites. The discovery of merozoite motility provides a model to study the glideosome and adds a dimension for work aiming to develop treatments targeting the blood stage invasion pathways.


Assuntos
Eritrócitos/parasitologia , Merozoítos/fisiologia , Plasmodium falciparum/genética , Plasmodium/metabolismo , Proteínas de Protozoários/metabolismo , Esporozoítos/fisiologia , Citoesqueleto de Actina/metabolismo , Actomiosina/química , Animais , Eritrócitos/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Concentração Inibidora 50 , Locomoção , Proteínas de Membrana/metabolismo , Transdução de Sinais
15.
Parasit Vectors ; 14(1): 516, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620228

RESUMO

BACKGROUND: Irrigation schemes may result in subsequent changes in malaria disease dynamics. Understanding the mechanisms and effects of irrigation on malaria vector bionomics and transmission intensity is essential to develop new or alternative surveillance and control strategies to reduce or control malaria risk. This study was designed to assess the effect of rice irrigation on malaria vector bionomics and transmission intensity in the Gambella Region, Ethiopia. METHODS: Comparative cross-sectional study was conducted in Abobo District of the Gambella Region, Ethiopia. Accordingly, clusters (kebeles) were classified into nearby and faraway clusters depending on their proximity to the irrigation scheme. Adult mosquito survey was conducted in February, August and November 2018 from three nearby and three faraway clusters using Centers for Disease Control and Prevention (CDC) light traps (LTs). During the November survey, human landing catch (HLC) and pyrethrum spray catch (PSC) were also conducted. The collected mosquitoes were morphologically identified to species and tested for Plasmodium infection using circumsporozoite protein enzyme-linked immunosorbent assay (CSP-ELISA). Furthermore, species-specific polymerase chain reaction (PCR) was performed to identify member species of the Anopheles gambiae complex. Chi-square and t-tests were used to analyze the data using the SPSS version 20 software package. RESULTS: A total of 4319 female anopheline mosquitoes comprising An. gambiae sensu lato, An. funestus group, An. pharoensis, An. coustani complex and An. squamosus were collected. Overall, 84.5% and 15.5% of the anopheline mosquitoes were collected from the nearby and faraway clusters, respectively. Anopheles gambiae s.l. was the predominant (56.2%) anopheline species in the area followed by An. pharoensis (15.7%). The density of anopheline mosquitoes was significantly higher in the nearby clusters in both HLCs [t(3) = 5.14, P = 0.0143] and CDC LT catches [t(271.97) = 7.446, P < 0.0001). The overall sporozoite rate of anopheline species from the nearby clusters was 10-fold higher compared to the faraway clusters. CONCLUSIONS: Significantly higher mosquito population density was observed in areas close to the irrigation sites. Sporozoite infection rate in the mosquito population was also markedly higher from the nearby clusters. Therefore, the irrigation scheme could increase the risk of malaria in the area.


Assuntos
Irrigação Agrícola , Anopheles/fisiologia , Malária/prevenção & controle , Malária/transmissão , Mosquitos Vetores/fisiologia , Animais , Anopheles/classificação , Anopheles/parasitologia , Estudos Transversais , Ecologia , Etiópia , Comportamento Alimentar , Feminino , Humanos , Oryza , Plasmodium falciparum/patogenicidade , Densidade Demográfica , Esporozoítos/fisiologia
16.
Malar J ; 20(1): 430, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717635

RESUMO

BACKGROUND: Plasmodium sporozoites are the highly motile forms of malaria-causing parasites that are transmitted by the mosquito to the vertebrate host. Sporozoites need to enter and cross several cellular and tissue barriers for which they employ a set of surface proteins. Three of these proteins are members of the thrombospondin related anonymous protein (TRAP) family. Here, potential additive, synergistic or antagonistic roles of these adhesion proteins were investigated. METHODS: Four transgenic Plasmodium berghei parasite lines that lacked two or all three of the TRAP family adhesins TRAP, TLP and TREP were generated using positive-negative selection. The parasite lines were investigated for their capacity to attach to and move on glass, their ability to egress from oocysts and their capacity to enter mosquito salivary glands. One strain was in addition interrogated for its capacity to infect mice. RESULTS: The major phenotype of the TRAP single gene deletion dominates additional gene deletion phenotypes. All parasite lines including the one lacking all three proteins were able to conduct some form of active, if unproductive movement. CONCLUSIONS: The individual TRAP-family adhesins appear to play functionally distinct roles during motility and infection. Other proteins must contribute to substrate adhesion and gliding motility.


Assuntos
Plasmodium berghei/fisiologia , Proteínas de Protozoários/genética , Esporozoítos/fisiologia , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/fisiologia , Plasmodium berghei/genética , Proteínas de Protozoários/metabolismo , Esporozoítos/genética
17.
Parasitol Int ; 85: 102447, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34474178

RESUMO

Plasmodium vivax is the most geographically widespread malaria parasite on the planet. This is largely because after mosquito transmission, P. vivax sporozoites can invade hepatocytes and form latent liver stages known as hypnozoites. These persistent liver stages can activate weeks, months or even years after an infected individual suffers a primary clinical infection. Activation then leads to replication and liver stage schizont maturation that ultimately cause relapse of blood stage infection, disease, and onward transmission. Thus, the latent hypnozoite can lie in wait during times when onward transmission is unlikely due to conditions that do not favor the mosquito. For example, in temperate climates where mosquito prevalence is only seasonal. Furthermore, the elimination of hypnozoites is challenging since the hypnozoite reservoir is currently undetectable and not killed by most antimalarial drugs. Here, we review our current knowledge of the pre-erythrocytic stages of the malaria parasite - the sporozoite and liver stages, including the elusive and enigmatic hypnozoite. We focus on our understanding of sporozoite biology, the novel animal models that are available to study the hypnozoite and hypnozoite activation and the ongoing efforts to understand the biological makeup of the hypnozoite that allow for its persistence in the human host.


Assuntos
Fígado/parasitologia , Malária Vivax/parasitologia , Plasmodium vivax/fisiologia , Esporozoítos/fisiologia , Animais , Modelos Animais de Doenças , Plasmodium vivax/crescimento & desenvolvimento , Esporozoítos/crescimento & desenvolvimento
18.
Exp Cell Res ; 406(2): 112764, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34358525

RESUMO

Protein kinases of both the parasite and the host are crucial in parasite invasion and survival and might act as drug targets against drug-resistant malaria. STK35L1 was among the top five hits in kinome-wide screening, suggesting its role in malaria's liver stage. However, the role of host STK35L1 in malaria remains elusive. In this study, we found that STK35L1 was highly upregulated during the infection of Plasmodium berghei (P. berghei) in HepG2 cells and mice liver, and knockdown of STK35L1 remarkably suppressed the sporozoites' infection in HepG2 cells. We showed that STAT3 is upregulated and phosphorylated during P. berghei sporozoites' infection, and STAT3 activation is required for both the upregulation of STK35L1 and STAT3. Furthermore, we found that ten cell cycle genes were upregulated in the sporozoite-infected hepatocytes. Knockdown of STK35L1 inhibited the basal expression of these genes except CDKN3 and GTSE1 in HepG2 cells. Thus, we identified STK35L1 as a host kinase that plays an obligatory role in malaria's liver stage and propose that it may serve as a potential drug target against drug-resistant malaria.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fígado/parasitologia , Malária/parasitologia , Plasmodium berghei/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Esporozoítos/fisiologia , Animais , Proteínas de Ciclo Celular/genética , Feminino , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Fígado/metabolismo , Malária/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Fator de Transcrição STAT3/genética
19.
Nat Commun ; 12(1): 4806, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376675

RESUMO

The malaria parasite Plasmodium falciparum replicates inside erythrocytes in the blood of infected humans. During each replication cycle, a small proportion of parasites commits to sexual development and differentiates into gametocytes, which are essential for parasite transmission via the mosquito vector. Detailed molecular investigation of gametocyte biology and transmission has been hampered by difficulties in generating large numbers of these highly specialised cells. Here, we engineer P. falciparum NF54 inducible gametocyte producer (iGP) lines for the routine mass production of synchronous gametocytes via conditional overexpression of the sexual commitment factor GDV1. NF54/iGP lines consistently achieve sexual commitment rates of 75% and produce viable gametocytes that are transmissible by mosquitoes. We also demonstrate that further genetic engineering of NF54/iGP parasites is a valuable tool for the targeted exploration of gametocyte biology. In summary, we believe the iGP approach developed here will greatly expedite basic and applied malaria transmission stage research.


Assuntos
Sistemas CRISPR-Cas , Malária Falciparum/sangue , Plasmodium falciparum/genética , Esporos de Protozoários/genética , Animais , Anopheles/parasitologia , Células Cultivadas , Eritrócitos/parasitologia , Hepatócitos/citologia , Hepatócitos/parasitologia , Interações Hospedeiro-Parasita , Humanos , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Microscopia de Fluorescência , Mosquitos Vetores/parasitologia , Plasmodium falciparum/fisiologia , Esporos de Protozoários/fisiologia , Esporozoítos/genética , Esporozoítos/fisiologia
20.
Malar J ; 20(1): 284, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174879

RESUMO

BACKGROUND: Plasmodium falciparum (Pf) sporozoites (PfSPZ) can be administered as a highly protective vaccine conferring the highest protection seen to date. Sanaria® PfSPZ vaccines are produced using aseptically reared Anopheles stephensi mosquitoes. The bionomics of sporogonic development of P. falciparum in A. stephensi to fully mature salivary gland PfSPZ is thought to be modulated by several components of the mosquito innate immune system. In order to increase salivary gland PfSPZ infections in A. stephensi and thereby increase vaccine production efficiency, a gene knock down approach was used to investigate the activity of the immune deficiency (IMD) signaling pathway downstream effector leucine-rich repeat immune molecule 1 (LRIM1), an antagonist to Plasmodium development. METHODS: Expression of LRIM1 in A. stephensi was reduced following injection of double stranded (ds) RNA into mosquitoes. By combining the Gal4/UAS bipartite system with in vivo expression of short hairpin (sh) RNA coding for LRIM1 reduced expression of LRIM1 was targeted in the midgut, fat body, and salivary glands. RT-qPCR was used to demonstrate fold-changes in gene expression in three transgenic crosses and the effects on P. falciparum infections determined in mosquitoes showing the greatest reduction in LRIM1 expression. RESULTS: LRIM1 expression could be reduced, but not completely silenced, by expression of LRIM1 dsRNA. Infections of P. falciparum oocysts and PfSPZ were consistently and significantly higher in transgenic mosquitoes than wild type controls, with increases in PfSPZ ranging from 2.5- to tenfold. CONCLUSIONS: Plasmodium falciparum infections in A. stephensi can be increased following reduced expression of LRIM1. These data provide the springboard for more precise knockout of LRIM1 for the eventual incorporation of immune-compromised A. stephensi into manufacturing of Sanaria's PfSPZ products.


Assuntos
Anopheles/parasitologia , Proteínas de Insetos/genética , Plasmodium falciparum/fisiologia , Interferência de RNA , Animais , Anopheles/genética , Feminino , Técnicas de Silenciamento de Genes , Proteínas de Insetos/metabolismo , Glândulas Salivares/parasitologia , Esporozoítos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA