RESUMO
The orexigenic gut peptide ghrelin is an endogenous ligand for the growth hormone secretagogue receptor type 1a (GHSR1a). Systemic ghrelin administration has previously been shown to increase gastric motility and emptying. While these effects are known to be mediated by the vagus nerve, the cellular mechanism underlying these effects remains unclear. Therefore, the purpose of the present study was to investigate the signaling mechanism by which GHSR1a inhibits voltage-gated Ca2+ channels in isolated rat gastric vagal afferent neurons using whole-cell patch-clamp electrophysiology. The ghrelin pharmacological profile indicated that Ca2+ currents were inhibited with a log (Ic50) = -2.10 ± 0.44 and a maximal inhibition of 42.8 ± 5.0%. Exposure to the GHSR1a receptor antagonist (D-Lys3)-GHRP-6 reduced ghrelin-mediated Ca2+ channel inhibition (29.4 ± 16.7% vs. 1.9 ± 2.5%, n = 6, P = 0.0064). Interestingly, we observed that activation of GHSR1a inhibited Ca2+ currents through both voltage-dependent and voltage-independent pathways. We also treated the gastric neurons with either pertussis toxin (PTX) or YM-254890 to examine whether the Ca2+ current inhibition was mediated by the Gα i/o or Gα q/11 family of subunits. Treatment with both PTX (Ca2+ current inhibition = 15.7 ± 10.6%, n = 8, P = 0.0327) and YM-254890 (15.2 ± 11.9%, n = 8, P = 0.0269) blocked ghrelin's effects on Ca2+ currents, as compared with control neurons (34.3 ± 18.9%, n = 8). These results indicate GHSR1a can couple to both Gα i/o and Gα q/11 in gastric vagal afferent neurons. Overall, our findings suggest GHSR1a-mediated inhibition of Ca2+ currents occurs through two distinct pathways, offering necessary insights into the cellular mechanisms underlying ghrelin's regulation of gastric vagal afferents. SIGNIFICANCE STATEMENT: This study demonstrated that in gastric vagal afferent neurons, activation of GHSR1a by ghrelin inhibits voltage-gated Ca2+ channels through both voltage-dependent and voltage-independent signaling pathways. These results provide necessary insights into the cellular mechanism underlying ghrelin regulation of gastric vagal afferent activity, which may benefit future studies investigating ghrelin mimetics to treat gastric motility disorders.
Assuntos
Canais de Cálcio , Grelina , Neurônios Aferentes , Receptores de Grelina , Nervo Vago , Animais , Masculino , Ratos , Canais de Cálcio/metabolismo , Grelina/farmacologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Técnicas de Patch-Clamp , Receptores de Grelina/metabolismo , Receptores de Grelina/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Estômago/inervação , Estômago/efeitos dos fármacos , Nervo Vago/efeitos dos fármacos , Nervo Vago/metabolismo , Nervo Vago/fisiologia , Ratos WistarRESUMO
The influence of accelerated electrons on neuronal structures is scarcely explored compared to gamma and X-rays. This study aims to investigate the effects of accelerated electron radiation on some pivotal neurotransmitter circuits (cholinergic and serotonergic) of rats' myenteric plexus. Male Wistar rats were irradiated with an electron beam (9 MeV, 5 Gy) generated by a multimodality linear accelerator. The contractile activity of isolated smooth muscle samples from the gastric corpus was measured. Furthermore, an electrical stimulation (200 µs, 20 Hz, 50 s, 60 V) was performed on the samples and an assessment of the cholinergic and serotonergic circuits was made. Five days after irradiation, the recorded mechanical responses were biphasic-contraction/relaxation in controls and contraction/contraction in irradiated samples. The nature of the contractile phase of control samples was cholinergic with serotonin involvement. The relaxation phase involved ACh-induced nitric oxide release from gastric neurons. There was a significant increase in serotonergic involvement during the first and second contractile phases of the irradiated samples, along with a diminished role of acetylcholine in the first phase. This study demonstrates an increased involvement of serotonergic neurotransmitter circuits in the gastric myenteric plexus caused by radiation with accelerated electrons.
Assuntos
Elétrons , Plexo Mientérico , Ratos Wistar , Estômago , Animais , Plexo Mientérico/efeitos da radiação , Plexo Mientérico/metabolismo , Masculino , Ratos , Estômago/inervação , Estômago/efeitos da radiação , Estômago/fisiologia , Músculo Liso/fisiologia , Músculo Liso/efeitos da radiação , Músculo Liso/metabolismo , Serotonina/metabolismo , Contração Muscular/efeitos da radiação , Contração Muscular/fisiologia , Acetilcolina/metabolismo , Óxido Nítrico/metabolismoRESUMO
OBJECTIVE: There has been recent clinical interest in the use of vagus nerve stimulation (VNS) for treating gastrointestinal disorders as an alternative to drugs or gastric electrical stimulation. However, effectiveness of burst stimulation has not been demonstrated. We investigated the ability of bursting and continuous VNS to influence gastric and pyloric activity under a range of stimulation parameters and gastric pressures. The goals of this study were to determine which parameters could optimally excite or inhibit gastric activity. MATERIALS AND METHODS: Data were collected from 21 Sprague-Dawley rats. Under urethane anesthesia, a rubber balloon was implanted into the stomach, connected to a pressure transducer and a saline infusion pump. A pressure catheter was inserted at the pyloric sphincter and a bipolar nerve cuff was implanted onto the left cervical vagus nerve. The balloon was filled to 15 cmH2O. Stimulation trials were conducted in a consistent order; the protocol was then repeated at 25 and 35 cmH2O. The nerve was then transected and stimulation repeated to investigate directionality of effects. RESULTS: Bursting stimulation at the bradycardia threshold caused significant increases in gastric contraction amplitude with entrainment to the bursting frequency. Some continuous stimulation trials could also cause increased contractions but without frequency changes. Few significant changes were observed at the pylorus, except for frequency entrainment. These effects could not be uniquely attributed to afferent or efferent activity. SIGNIFICANCE: Our findings further elucidate the effects of different VNS parameters on the stomach and pylorus and provide a basis for future studies of bursting stimulation for gastric neuromodulation.
Assuntos
Contração Muscular , Ratos Sprague-Dawley , Estômago , Estimulação do Nervo Vago , Animais , Estimulação do Nervo Vago/métodos , Ratos , Estômago/inervação , Estômago/fisiologia , Contração Muscular/fisiologia , Masculino , Motilidade Gastrointestinal/fisiologia , Nervo Vago/fisiologia , Piloro/inervação , Piloro/fisiologia , PressãoRESUMO
Few biomarkers support the diagnosis and treatment of disorders of gut-brain interaction (DGBI), although gastroduodenal junction (GDJ) electromechanical coupling is a target for novel interventions. Rhythmic "slow waves," generated by interstitial cells of Cajal (ICC), and myogenic "spikes" are bioelectrical mechanisms underpinning motility. In this study, simultaneous in vivo high-resolution electrophysiological and impedance planimetry measurements were paired with immunohistochemistry to elucidate GDJ electromechanical coupling. Following ethical approval, the GDJ of anaesthetized pigs (n = 12) was exposed. Anatomically specific, high-resolution electrode arrays (256 electrodes) were applied to the serosa. EndoFLIP catheters (16 electrodes; Medtronic, MN) were positioned luminally to estimate diameter. Postmortem tissue samples were stained with Masson's trichrome and Ano1 to quantify musculature and ICC. Electrical mapping captured slow waves (n = 512) and spikes (n = 1,071). Contractions paralleled electrical patterns. Localized slow waves and spikes preceded rhythmic contractions of the antrum and nonrhythmic contractions of the duodenum. Slow-wave and spike amplitudes were correlated in the antrum (r = 0.74, P < 0.001) and duodenum (r = 0.42, P < 0.001). Slow-wave and contractile amplitudes were correlated in the antrum (r = 0.48, P < 0.001) and duodenum (r = 0.35, P < 0.001). Distinct longitudinal and circular muscle layers of the antrum and duodenum had a total thickness of (2.8 ± 0.9) mm and (0.4 ± 0.1) mm, respectively. At the pylorus, muscle layers merged and thickened to (3.5 ± 1.6) mm. Pyloric myenteric ICC covered less area (1.5 ± 1.1%) compared with the antrum (4.2 ± 3.0%) and duodenum (5.3 ± 2.8%). Further characterization of electromechanical coupling and ICC biopsies may generate DGBI biomarkers.NEW & NOTEWORTHY This study applies electrical mapping, impedance planimetry, and histological techniques to the gastroduodenal junction to elucidate electromechanical coupling in vivo. Contractions of the terminal antrum and pyloric sphincter were associated with gastric slow waves. In the duodenum, bursts of spike activity triggered oscillating contractions. The relative sparsity of myenteric interstitial cells of Cajal in the pylorus, compared with the adjacent antrum and duodenum, is hypothesized to prevent coupling between antral and duodenal slow waves.
Assuntos
Duodeno , Motilidade Gastrointestinal , Células Intersticiais de Cajal , Animais , Duodeno/fisiologia , Duodeno/inervação , Células Intersticiais de Cajal/fisiologia , Suínos , Motilidade Gastrointestinal/fisiologia , Estômago/fisiologia , Estômago/inervação , Feminino , Contração Muscular/fisiologia , Impedância Elétrica , Músculo Liso/fisiologiaRESUMO
The stomach is the primary reservoir of the gastrointestinal tract, where ingested content is broken down into small particles. Coordinated relaxation and contraction is essential for rhythmic motility and digestion, but how the muscle motor innervation is organized to provide appropriate graded regional control is not established. In this study, we recorded neuromuscular transmission to the circular muscle using intracellular microelectrodes to investigate the spread of the influence of intrinsic motor neurons. In addition, microanatomical investigations of neuronal projections and pharmacological analysis were conducted to investigate neuromuscular relationships. We found that inhibitory neurotransmission to the circular muscle is graded with stimulus strength and circumferential distance from the stimulation site. The influence of inhibitory neurons declined between 1 and 11 mm from the stimulation site. In the antrum, corpus, and fundus, the declines at 11 mm were about 20%, 30%, and 50%, respectively. Stimulation of inhibitory neurons elicited biphasic hyperpolarizing potentials often followed by prolonged depolarizing events in the distal stomach, but only hyperpolarizing events in the proximal stomach. Excitatory neurotransmission influence varied greatly between proximal stomach, where depolarizing events occurred, and distal stomach, where no direct electrical effects in the muscle were observed. Structural studies using microlesion surgeries confirmed a dominant circumferential projection. We conclude that motor neuron influences extend around the gastric circumference, that the effectiveness can be graded by the recruitment of different numbers of motor neuron nerve terminals to finely control gastric motility, and that the ways in which the neurons influence the muscle differ between anatomical regions.NEW & NOTEWORTHY This study provides a detailed mapping of nerve transmission to the circular muscle of the different anatomical regions of rat stomach. It shows that excitatory and inhibitory influences extend around the gastric circumference and that there is a summation of neural influence that allows for finely graded control of muscle tension and length. Nerve-mediated electrical events are qualitatively and quantitatively different between regions, for example, excitatory neurons have direct effects on fundus but not antral muscle.
Assuntos
Neurônios Motores , Estômago , Ratos , Neurônios Motores/fisiologia , Estômago/inervação , Músculos , Transmissão Sináptica/fisiologia , AnimaisRESUMO
The dorsal root ganglia (DRG) project spinal afferent axons to the stomach. However, the distribution and morphology of spinal afferent axons in the stomach have not been well characterized. In this study, we used a combination of state-of-the-art techniques, including anterograde tracer injection into the left DRG T7-T11, avidin-biotin and Cuprolinic Blue labeling, Zeiss M2 Imager, and Neurolucida to characterize spinal afferent axons in flat-mounts of the whole rat stomach muscular wall. We found that spinal afferent axons innervated all regions with a variety of distinct terminal structures innervating different gastric targets: (1) The ganglionic type: some axons formed varicose contacts with individual neurons within myenteric ganglia. (2) The muscle type: most axons ran in parallel with the longitudinal and circular muscles and expressed spherical varicosities. Complex terminal structures were observed within the circular muscle layer. (3) The ganglia-muscle mixed type: some individual varicose axons innervated both myenteric neurons and the circular muscle, exhibiting polymorphic terminal structures. (4) The vascular type: individual varicose axons ran along the blood vessels and occasionally traversed the vessel wall. This work provides a foundation for future topographical anatomical and functional mapping of spinal afferent axon innervation of the stomach under normal and pathophysiological conditions.
Assuntos
Neurônios , Estômago , Ratos , Animais , Estômago/inervação , Axônios , Músculos , Gânglios Espinais/anatomia & histologiaRESUMO
Vagal sensory neurons monitor mechanical and chemical stimuli in the gastrointestinal tract. Major efforts are underway to assign physiological functions to the many distinct subtypes of vagal sensory neurons. Here, we use genetically guided anatomical tracing, optogenetics, and electrophysiology to identify and characterize vagal sensory neuron subtypes expressing Prox2 and Runx3 in mice. We show that three of these neuronal subtypes innervate the esophagus and stomach in regionalized patterns, where they form intraganglionic laminar endings. Electrophysiological analysis revealed that they are low-threshold mechanoreceptors but possess different adaptation properties. Lastly, genetic ablation of Prox2 and Runx3 neurons demonstrated their essential roles for esophageal peristalsis in freely behaving mice. Our work defines the identity and function of the vagal neurons that provide mechanosensory feedback from the esophagus to the brain and could lead to better understanding and treatment of esophageal motility disorders.
Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core , Esôfago , Motilidade Gastrointestinal , Proteínas de Homeodomínio , Células Receptoras Sensoriais , Nervo Vago , Animais , Camundongos , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Esôfago/inervação , Esôfago/metabolismo , Esôfago/fisiologia , Motilidade Gastrointestinal/genética , Motilidade Gastrointestinal/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mecanorreceptores/fisiologia , Neurônios Aferentes/fisiologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Estômago/inervação , Estômago/metabolismo , Estômago/fisiologia , Nervo Vago/fisiologiaRESUMO
Bisphenol A (BPA), an organic chemical compound which is widely used in the production of plastics, can severely damage live organisms. Due to these findings, the plastic industry has started to replace it with other substances, most often with bisphenol S (BPS). Therefore, during the present investigation, with the use of double immunofluorescence labeling, we compared the effect of BPA and BPS on the enteric nervous system (ENS) in the mouse corpus of the stomach. The obtained results show that both studied toxins impact the amount of nerve cells immunoreactive to substance P (SP), galanin (GAL), vesicular acetylcholine transporter (VAChT is used here as a marker of cholinergic neurons) and vasoactive intestinal polypeptide (VIP). Changes observed under the impact of both bisphenols depended on the neuronal factor, the type of the enteric ganglion and the doses of bisphenols studied. Generally, the increase in the percentage of neurons immunoreactive to SP, GAL and/or VIP, and the decrease in the percentage of VAChT-positive neurons, was noted. Severity of changes was more visible after BPA administration. However, the study has shown that long time exposure to BPS also significantly affects the ENS.
Assuntos
Sistema Nervoso Entérico , Animais , Camundongos , Fenóis/toxicidade , Neurônios , Peptídeo Intestinal Vasoativo/farmacologia , Estômago/inervaçãoRESUMO
Interneuronal transfer of pathological α-synuclein species is thought to play an important role in the progressive advancement of Lewy pathology and increasing severity of clinical manifestations in Parkinson's and other diseases commonly referred to as synucleinopathies. Pathophysiological conditions and mechanisms triggering this trans-synaptic spreading bear therefore significant pathogenetic implications but have yet to be fully elucidated. In vivo experimental models support the conclusion that increased expression of intraneuronal α-synuclein can itself induce protein spreading throughout the brain as well as from the brain to peripheral tissues. For example, overexpression of α-synuclein targeted to the rodent dorsal medulla oblongata results in its transfer and accumulation into recipient axons innervating this brain region; through these axons, α-synuclein can then travel caudo-rostrally and reach other brain sites in the pons, midbrain, and forebrain. When protein overexpression is induced in the rodent midbrain, long-distance α-synuclein spreading can be followed over time; spreading-induced α-synuclein accumulation affects lower brain regions, including the dorsal motor nucleus of the vagus, proceeds through efferent axons of the vagus nerve, and is ultimately detected within vagal motor nerve endings in the gastric wall. As discussed in this review, animal models featuring α-synuclein overexpression not only support a relationship between α-synuclein burden and protein spreading but have also provided important clues on conditions/mechanisms capable of promoting interneuronal α-synuclein transfer. Intriguing findings include the relationship between neuronal activity and protein spreading and the role of oxidant stress in trans-synaptic α-synuclein mobility.
Assuntos
Encéfalo , Neurônios , Doença de Parkinson , Transmissão Sináptica , Nervo Vago , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Estômago/inervação , Estômago/metabolismo , Transmissão Sináptica/fisiologia , Sinucleinopatias/metabolismo , Nervo Vago/metabolismo , Nervo Vago/fisiologiaRESUMO
Nociceptive afferents innervate the stomach and send signals centrally to the brain and locally to stomach tissues. Nociceptive afferents can be detected with a variety of different markers. In particular, substance P (SP) is a neuropeptide and is one of the most commonly used markers for nociceptive nerves in the somatic and visceral organs. However, the topographical distribution and morphological structure of SP-immunoreactive (SP-IR) axons and terminals in the whole stomach have not yet been fully determined. In this study, we labeled SP-IR axons and terminals in flat mounts of the ventral and dorsal halves of the stomach of mice. Flat-mount stomachs, including the longitudinal and circular muscular layers and the myenteric ganglionic plexus, were processed with SP primary antibody followed by fluorescent secondary antibody and then scanned using confocal microscopy. We found that (1) SP-IR axons and terminals formed an extensive network of fibers in the muscular layers and within the ganglia of the myenteric plexus of the whole stomach. (2) Many axons that ran in parallel with the long axes of the longitudinal and circular muscles were also immunoreactive for the vesicular acetylcholine transporter (VAChT). (3) SP-IR axons formed very dense terminal varicosities encircling individual neurons in the myenteric plexus; many of these were VAChT immunoreactive. (4) The regional density of SP-IR axons and terminals in the muscle and myenteric plexus varied in the following order from high to low: antrum-pylorus, corpus, fundus, and cardia. (5) In only the longitudinal and circular muscles, the regional density of SP-IR axon innervation from high to low were: antrum-pylorus, corpus, cardia, and fundus. (6) The innervation patterns of SP-IR axons and terminals in the ventral and dorsal stomach were comparable. Collectively, our data provide for the first time a map of the distribution and morphology of SP-IR axons and terminals in the whole stomach with single-cell/axon/synapse resolution. This work will establish an anatomical foundation for functional mapping of the SP-IR axon innervation of the stomach and its pathological remodeling in gastrointestinal diseases.
Assuntos
Axônios , Substância P , Camundongos , Animais , Substância P/metabolismo , Axônios/metabolismo , Plexo Mientérico , Neurônios/metabolismo , Estômago/inervação , Proteínas Vesiculares de Transporte de AcetilcolinaRESUMO
Glucagon-like peptide-1 (GLP-1) is a signal peptide released from enteroendocrine cells of the lower intestine. GLP-1 exerts anorectic and antimotility actions that protect the body against nutrient malabsorption. However, little is known about how intestinal GLP-1 affects distant organs despite rapid enzymatic inactivation. We show that intestinal GLP-1 inhibits gastric emptying and eating via intestinofugal neurons, a subclass of myenteric neurons that project to abdominal sympathetic ganglia. Remarkably, cell-specific ablation of intestinofugal neurons eliminated intestinal GLP-1 effects, and their chemical activation functioned as a GLP-1 mimetic. GLP-1 sensing by intestinofugal neurons then engaged a sympatho-gastro-spinal-reticular-hypothalamic pathway that links abnormal stomach distension to craniofacial programs for food rejection. Within this pathway, cell-specific activation of discrete neuronal populations caused systemic GLP-1-like effects. These molecularly identified, delimited enteric circuits may be targeted to ameliorate the abdominal bloating and loss of appetite typical of gastric motility disorders.
Assuntos
Apetite , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Íleo , Neurônios , Estômago , Abdome , Animais , Comunicação Celular , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Íleo/inervação , Íleo/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Estômago/inervação , Estômago/metabolismoRESUMO
Activity in the dorsal vagal complex (DVC) is essential to gastric motility regulation. We and others have previously shown that this activity is greatly influenced by local GABAergic signaling, primarily because of somatostatin (SST)-expressing GABAergic neurons. To further understand the network dynamics associated with gastric motility control in the DVC, we focused on another neuron prominently distributed in this complex, neuropeptide-Y (NPY) neurons. However, the effect of these neurons on gastric motility remains unknown. Here, we investigate the anatomic and functional characteristics of the NPY neurons in the nucleus tractus solitarius (NTS) and their interactions with SST neurons using transgenic mice of both sexes. We sought to determine whether NPY neurons influence the activity of gastric-projecting neurons, synaptically interact with SST neurons, and affect end-organ function. Our results using combined neuroanatomy and optogenetic in vitro and in vivo show that NPY neurons are part of the gastric vagal circuit as they are trans-synaptically labeled by a viral tracer from the gastric antrum, are primarily excitatory as optogenetic activation of these neurons evoke EPSCs in gastric-antrum-projecting neurons, are functionally coupled to each other and reciprocally connected to SST neurons, whose stimulation has a potent inhibitory effect on the action potential firing of the NPY neurons, and affect gastric tone and motility as reflected by their robust optogenetic response in vivo. These findings indicate that interacting NPY and SST neurons are integral to the network that controls vagal transmission to the stomach.SIGNIFICANCE STATEMENT The brainstem neurons in the dorsal nuclear complex are essential for regulating vagus nerve activity that affects the stomach via tone and motility. Two distinct nonoverlapping populations of predominantly excitatory NPY neurons and predominantly inhibitory SST neurons form reciprocal connections with each other in the NTS and with premotor neurons in the dorsal motor nucleus of the vagus to control gastric mechanics. Light activation and inhibition of NTS NPY neurons increased and decreased gastric motility, respectively, whereas both activation and inhibition of NTS SST neurons enhanced gastric motility.
Assuntos
Tronco Encefálico , Estômago , Animais , Tronco Encefálico/fisiologia , Feminino , Neurônios GABAérgicos/fisiologia , Masculino , Camundongos , Neuropeptídeo Y/farmacologia , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/fisiologia , Estômago/inervação , Nervo Vago/fisiologiaRESUMO
We investigated the distributions and targets of nitrergic neurons in the rat stomach, using neuronal nitric oxide synthase (NOS) immunohistochemistry and nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase histochemistry. Nitrergic neurons comprised similar proportions of myenteric neurons, about 30%, in all gastric regions. Small numbers of nitrergic neurons occurred in submucosal ganglia. In total, there were ~ 125,000 neuronal nitric oxide synthase (nNOS) neurons in the stomach. The myenteric cell bodies had single axons, type I morphology and a wide range of sizes. Five targets were identified, the longitudinal, circular and oblique layers of the external muscle, the muscularis mucosae and arteries within the gastric wall. The circular and oblique muscle layers had nitrergic fibres throughout their thickness, while the longitudinal muscle was innervated at its inner surface by fibres of the tertiary plexus, a component of the myenteric plexus. There was a very dense innervation of the pyloric sphincter, adjacent to the duodenum. The muscle strands that run between mucosal glands rarely had closely associated nNOS nerve fibres. Both nNOS immunohistochemistry and NADPH histochemistry showed that nitrergic terminals did not provide baskets of terminals around myenteric neurons. Thus, the nitrergic neuron populations in the stomach supply the muscle layers and intramural arteries, but, unlike in the intestine, gastric interneurons do not express nNOS. The large numbers of nNOS neurons and the density of innervation of the circular muscle and pyloric sphincter suggest that there is a finely graded control of motor function in the stomach by the recruitment of different numbers of inhibitory motor neurons.
Assuntos
Plexo Mientérico , Óxido Nítrico Sintase , Animais , Plexo Mientérico/metabolismo , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo I , Ratos , Estômago/inervação , Plexo SubmucosoRESUMO
BACKGROUND/AIM: Central administration of cocaine- and amphetamine-regulated transcript peptides (CARTp) alters gastrointestinal motility and reduces food intake in rats. Since neurons in the dorsal motor nucleus of the vagus (DMV) receive GABAergic and glutamatergic inputs and innervate the smooth muscle of gastrointestinal organs, we hypothesized that CARTp acts on the DMV or presynaptic neurons. METHODS: We used 3,3'-dioctadecyloxa-carbocyanine perchlorate (DiO) retrograde tracing with electrophysiological methods to record DMV neurons innervating the stomach antrum or cecum in brainstem slices from adult rats. RESULTS: DiO application did not change the electrophysiological properties of DMV neurons. CART55-102 had no effect on the basal firing rates of neurons in either the stomach antrum-labeled group (SLG) or cecum-labeled group (CLG). When presynaptic inputs were blocked, CART55-102 further increased the firing rates of the SLG, suggesting a direct excitatory effect. Spontaneous inhibitory postsynaptic currents (sIPSCs) occurred at a higher frequency in SLG neurons than in CLG neurons. CART55-102 reduced the amplitude and the frequency of sIPSCs in SLG neurons dose-dependently, with higher doses also reducing spontaneous excitatory postsynaptic currents (sEPSCs). Higher doses of CART55-102 reduced sIPSC and sEPSC amplitudes in CLG neurons, suggesting a postsynaptic effect. In response to incremental current injections, the SLG neurons exhibited less increases in firing activity. Simultaneous applications of current injections and CART55-102 decreased the firing activity of the CLG. Therefore, stomach antrum-projecting DMV neurons possess a higher gating ability to stabilize firing activity. CONCLUSION: The mechanism by which CARTp mediates anorectic actions may be through a direct reduction in cecum-projecting DMV neuron excitability and, to a lesser extent, that of antrum-projecting DMV neurons, by acting on receptors of these neurons.
Assuntos
Ceco , Neurônios , Animais , Ceco/inervação , Masculino , Proteínas do Tecido Nervoso , Ratos , Ratos Sprague-Dawley , Estômago/inervação , Estômago/fisiologiaRESUMO
We previously reported P2X3 purinoceptor (P2X3)-expressing vagal afferent nerve endings with large web-like structures in the subserosal tissue of the antral lesser curvature, suggesting that these nerve endings were one of the vagal mechanoreceptors. The present study investigated the morphological relationship between P2X3-immunoreactive nerve endings and serosal ganglia in the rat gastric antrum by immunohistochemistry of whole-mount preparations using confocal scanning laser microscopy. P2X3-immunoreactive basket-like subserosal nerve endings with new morphology were distributed laterally to the gastric sling muscles in the distal antrum of the lesser curvature. Parent axons ramified into numerous nerve fibers with pleomorphic flattened structures to form basket-like nerve endings, and the parent axons were originated from large net-like structures of vagal afferent nerve endings. Basket-like nerve endings wrapped around the whole serosal ganglia, which were characterized by neurofilament 200 kDa-immunoreactive neurons with or without neuronal nitric oxide synthase immunoreactivity and S100B-immunoreactive glial cells. Furthermore, basket-like nerve endings were localized in close apposition to dopamine beta-hydroxylase-immunoreactive sympathetic nerve fibers immunoreactive for vesicular nucleotide transporter. These results suggest that P2X3-immunoreactive basket-like nerve endings associated with serosal ganglia are the specialized ending structures of vagal subserosal mechanoreceptors in order to increase the sensitivity during antral peristalsis, and are activated by ATP from sympathetic nerve fibers and/or serosal ganglia for the regulation of mechanoreceptor function.
Assuntos
Gânglios , Terminações Nervosas , Neurônios Aferentes , Proteínas de Transporte de Nucleotídeos , Antro Pilórico/inervação , Membrana Serosa , Animais , Imuno-Histoquímica , Masculino , Mecanorreceptores , Microscopia Confocal , Fibras Nervosas , Ratos , Ratos Wistar , Estômago/inervaçãoRESUMO
The vagus nerve innervates many organs, and most, if not all, of its motor fibers are cholinergic. However, no one knows its organizing principles-whether or not there are dedicated neurons with restricted targets that act as "labeled lines" to perform certain functions, including two opposing ones (gastric contraction versus relaxation). By performing unbiased transcriptional profiling of DMV cholinergic neurons, we discovered seven molecularly distinct subtypes of motor neurons. Then, by using subtype-specific Cre driver mice, we show that two of these subtypes exclusively innervate the glandular domain of the stomach where, remarkably, they contact different enteric neurons releasing functionally opposing neurotransmitters (acetylcholine versus nitric oxide). Thus, the vagus motor nerve communicates via genetically defined labeled lines to control functionally unique enteric neurons within discrete subregions of the gastrointestinal tract. This discovery reveals that the parasympathetic nervous system utilizes a striking division of labor to control autonomic function.
Assuntos
Encéfalo/metabolismo , Neurônios Colinérgicos/metabolismo , Sistema Nervoso Entérico/metabolismo , Mucosa Gástrica/metabolismo , Neurônios Motores/metabolismo , Estômago/inervação , Nervo Vago/metabolismo , Animais , Perfilação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/metabolismoRESUMO
Nutrient sensors allow animals to identify foods rich in specific nutrients. The Drosophila nutrient sensor, diuretic hormone 44 (DH44) neurons, helps the fly to detect nutritive sugar. This sensor becomes operational during starvation; however, the mechanisms by which DH44 neurons or other nutrient sensors are regulated remain unclear. Here, we identified two satiety signals that inhibit DH44 neurons: (1) Piezo-mediated stomach/crop stretch after food ingestion and (2) Neuromedin/Hugin neurosecretory neurons in the ventral nerve cord (VNC) activated by an increase in the internal glucose level. A subset of Piezo+ neurons that express DH44 neuropeptide project to the crop. We found that DH44 neuronal activity and food intake were stimulated following a knockdown of piezo in DH44 neurons or silencing of Hugin neurons in the VNC, even in fed flies. Together, we propose that these two qualitatively distinct peripheral signals work in concert to regulate the DH44 nutrient sensor during the fed state.
Assuntos
Proteínas de Drosophila/metabolismo , Trato Gastrointestinal/fisiologia , Glucose/metabolismo , Canais Iônicos/metabolismo , Inibição Neural/fisiologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Resposta de Saciedade/fisiologia , Animais , Drosophila , Drosophila melanogaster , Comportamento Alimentar/fisiologia , Trato Gastrointestinal/inervação , Hormônios de Inseto , Mecanotransdução Celular/fisiologia , Neurônios/fisiologia , Estômago/inervação , Estômago/fisiologiaRESUMO
BACKGROUND: The motor protein, Myosin 5a (Myo5a) is known to play a role in inhibitory neurotransmission in gastric fundus. However, there is no information regarding the relative expression of total Myo5a, or of its alternative exon splice variants, across the stomach. This study investigated the differential distribution of Myo5a variants expressed within distinct anatomical regions of murine stomach. METHODS: The distribution of Myo5a protein and mRNA in the stomach was assessed by immunofluorescence microscopy and fluorescent in situ hybridization. Quantitative PCR, restriction enzyme analysis, and electrophoresis were used to identify Myo5a splice variants and quantify their expression levels in the fundus, body, antrum, and pylorus. KEY RESULTS: Myo5a protein colocalized with ßIII-Tubulin in the myenteric plexus, and with synaptophysin in nerve fibers. Total Myo5a mRNA expression was lower in pylorus than in antrum, body, or fundus (p < 0.001), which expressed equivalent amounts of Myo5a. However, Myo5a splice variants were differentially expressed across the stomach. While the ABCE splice variant predominated in the antrum and body regions, the ACEF/ACDEF variants were enriched in fundus and pylorus. CONCLUSIONS AND INFERENCES: Myo5a splice variants varied in their relative expression across anatomically distinguishable stomach regions and might mediate distinct physiological functions in gastric neurotransmission.
Assuntos
Plexo Mientérico , Estômago , Animais , Fundo Gástrico/metabolismo , Hibridização in Situ Fluorescente , Camundongos , Plexo Mientérico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estômago/inervaçãoRESUMO
Obesity remains prevalent in the US. One potential treatment is vagus nerve stimulation (VNS), which activates the sensory afferents innervating the stomach that convey stomach volume and establish satiety. However, current VNS approaches and stimulus optimization could benefit from additional understanding of the underlying neural response to stomach distension. In this study, obesity-prone Sprague Dawley rats consumed a standard, high-carbohydrate, or high-fat diet for several months, leading to diet-induced obesity in the latter two groups. Under anesthesia, the neural activity in the vagus nerve was recorded with a penetrating microelectrode array while the stomach was distended with an implanted balloon. Vagal tone during distension was compared to baseline tone prior to distension. Responses were strongly correlated with stomach distension, but the sensitivity to distension was significantly lower in animals that had been fed the nonstandard diets. The results indicate that both high fat and high carbohydrate diets impair vagus activity.
Assuntos
Carboidratos/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Obesidade/fisiopatologia , Nervo Vago/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Anestesia , Animais , Peso Corporal/efeitos dos fármacos , Carboidratos/farmacologia , Modelos Animais de Doenças , Humanos , Obesidade/induzido quimicamente , Obesidade/metabolismo , Ratos , Estômago/inervação , Estômago/fisiopatologia , Nervo Vago/fisiopatologia , Estimulação do Nervo VagoRESUMO
Sensory and motor functions of the stomach, including gastric emptying and accommodation, have significant effects on energy consumption and appetite. Obesity is characterized by energy imbalance; altered gastric functions, such as rapid gastric emptying and large fasting gastric volume in obesity, may result in increased food intake prior to reaching usual fullness and increased appetite. Thus, many different interventions for obesity, including different diets, anti-obesity medications, bariatric endoscopy, and surgery, alter gastric functions and gastrointestinal motility. In this review, we focus on the role of the gastric and intestinal functions in food intake, pathophysiology of obesity, and obesity management.