RESUMO
BACKGROUND: Branch pulmonary artery (PA) stenosis is one of the most common indications for percutaneous interventions in patients with transposition of the great arteries (TGA), tetralogy of Fallot (ToF), and truncus arteriosus (TA). However, the effects of percutaneous branch PA interventions on exercise capacity remains largely unknown. In addition, there is no consensus about the optimal timing of the intervention for asymptomatic patients according to international guidelines. This trial aims to identify the effects of percutaneous interventions for branch PA stenosis on exercise capacity in patients with TGA, ToF, and TA. In addition, it aims to assess the effects on RV function and to define early markers for RV adaptation and RV dysfunction to improve timing of these interventions. METHODS: This is a randomized multicenter interventional trial. TGA, ToF, and TA patients ≥ 8 years with a class IIa indication for percutaneous branch PA intervention according to international guidelines are eligible to participate. Patients will be randomized into the intervention group or the control group (conservative management for 6 months). All patients will undergo transthoracic echocardiography, cardiac magnetic resonance (CMR) imaging, and cardiopulmonary exercise testing at baseline, 6 months, and 2-4 years follow-up. Quality of life (QoL) questionnaires will be obtained at baseline, 2 weeks post intervention or a similar range for the control group, and 6 months follow-up. The primary outcome is exercise capacity expressed as maximum oxygen uptake (peak VO2 as percentage of predicted). A total of 56 patients (intervention group n = 28, control group n = 28) is required to demonstrate a 14% increase in maximum oxygen uptake (peak VO2 as percentage of predicted) in the interventional group compared to the control group (power 80%, overall type 1 error controlled at 5%). Secondary outcomes include various parameters for RV systolic function, RV functionality, RV remodeling, procedural success, complications, lung perfusion, and QoL. DISCUSSION: This trial will investigate the effects of percutaneous branch PA interventions on exercise capacity in patients with TGA, ToF, and TA and will identify early markers for RV adaptation and RV dysfunction to improve timing of the interventions. TRIAL REGISTRATION: ClinicalTrials.gov NCT05809310. Registered on March 15, 2023.
Assuntos
Tolerância ao Exercício , Cardiopatias Congênitas , Estudos Multicêntricos como Assunto , Artéria Pulmonar , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Artéria Pulmonar/fisiopatologia , Cardiopatias Congênitas/fisiopatologia , Cardiopatias Congênitas/cirurgia , Resultado do Tratamento , Países Baixos , Estenose de Artéria Pulmonar/fisiopatologia , Estenose de Artéria Pulmonar/etiologia , Estenose de Artéria Pulmonar/diagnóstico por imagem , Função Ventricular Direita , Criança , Fatores de Tempo , Teste de Esforço , Masculino , Recuperação de Função Fisiológica , Tetralogia de Fallot/cirurgia , Tetralogia de Fallot/fisiopatologia , FemininoRESUMO
BACKGROUND: The primary genetic risk factor for heritable pulmonary arterial hypertension is the presence of monoallelic mutations in the BMPR2 gene. The incomplete penetrance of BMPR2 mutations implies that additional triggers are necessary for pulmonary arterial hypertension occurrence. Pulmonary artery stenosis directly raises pulmonary artery pressure, and the redirection of blood flow to unobstructed arteries leads to endothelial dysfunction and vascular remodeling. We hypothesized that right pulmonary artery occlusion (RPAO) triggers pulmonary hypertension (PH) in rats with Bmpr2 mutations. METHODS AND RESULTS: Male and female rats with a 71 bp monoallelic deletion in exon 1 of Bmpr2 and their wild-type siblings underwent acute and chronic RPAO. They were subjected to full high-fidelity hemodynamic characterization. We also examined how chronic RPAO can mimic the pulmonary gene expression pattern associated with installed PH in unobstructed territories. RPAO induced precapillary PH in male and female rats, both acutely and chronically. Bmpr2 mutant and male rats manifested more severe PH compared with their counterparts. Although wild-type rats adapted to RPAO, Bmpr2 mutant rats experienced heightened mortality. RPAO induced a decline in cardiac contractility index, particularly pronounced in male Bmpr2 rats. Chronic RPAO resulted in elevated pulmonary IL-6 (interleukin-6) expression and decreased Gdf2 expression (corrected P value<0.05 and log2 fold change>1). In this context, male rats expressed higher pulmonary levels of endothelin-1 and IL-6 than females. CONCLUSIONS: Our novel 2-hit rat model presents a promising avenue to explore the adaptation of the right ventricle and pulmonary vasculature to PH, shedding light on pertinent sex- and gene-related effects.
Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II , Modelos Animais de Doenças , Hemodinâmica , Mutação , Artéria Pulmonar , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Feminino , Masculino , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Remodelação Vascular/genética , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/etiologia , Estenose de Artéria Pulmonar/genética , Estenose de Artéria Pulmonar/fisiopatologia , Estenose de Artéria Pulmonar/metabolismo , Pressão Arterial , Contração Miocárdica/fisiologiaRESUMO
BACKGROUND: Ring finger protein 213 (RNF213) p.Arg4810Lys is a susceptibility gene for moyamoya disease, peripheral pulmonary artery stenosis (PPS), and other vascular diseases and thrombosis. We investigated the prevalence and clinical characteristics of RNF213 variant carriers diagnosed with chronic thromboembolic pulmonary hypertension (CTEPH). METHODS AND RESULTS: We retrospectively analyzed the prevalence of the RNF213 p.Arg4810Lys variant in patients diagnosed with CTEPH (n=112) and PPS (n=10). Clinical and angiographic characteristics were evaluated between RNF213 variant carriers diagnosed with CTEPH and noncarriers with CTEPH and homozygous variant carriers with PPS. Eight heterozygous RNF213 p.Arg4810Lys variant carriers (7.1%) were identified among patients diagnosed with CTEPH, while 5 patients with PPS (50%) carried the homozygous variant. The clinical characteristics of heterozygous variant carriers with CTEPH were not remarkably different from those of noncarriers with CTEPH. All heterozygous variant carriers with CTEPH showed webs/bands lesions at the segmental/subsegmental level, with 75% showing distal tortuous vessels. None of the heterozygous variant carriers with CTEPH exhibited the string-of-beads pattern or elongated stenosis. Homozygous variant carriers with PPS showed the string-of-beads pattern, elongated stenosis, and distal tortuous vessels without webs/bands lesions. CONCLUSIONS: A subset of patients diagnosed with CTEPH (7.1%) carried the heterozygous RNF213 p.Arg4810Lys variant. Clinical and angiographic characteristics of heterozygous variant carriers were not remarkably different from those of noncarriers of CTEPH. However, both heterozygous variant carriers with CTEPH and homozygous variant carriers with PPS showed tortuous vessels on angiography.
Assuntos
Adenosina Trifosfatases , Predisposição Genética para Doença , Heterozigoto , Hipertensão Pulmonar , Embolia Pulmonar , Ubiquitina-Proteína Ligases , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Embolia Pulmonar/genética , Embolia Pulmonar/epidemiologia , Prevalência , Doença Crônica , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/epidemiologia , Hipertensão Pulmonar/diagnóstico , Adenosina Trifosfatases/genética , Ubiquitina-Proteína Ligases/genética , Idoso , Adulto , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/genética , Estenose de Artéria Pulmonar/fisiopatologia , Estenose de Artéria Pulmonar/epidemiologia , MutaçãoRESUMO
This brief report reviews the clinical, procedural, and imaging data of 7 patients with p.Arg4810Lys variant of the ring finger protein 213 (RNF213) gene-related peripheral pulmonary arterial stenosis who underwent percutaneous transluminal pulmonary angioplasties (PTPAs) for demographics, clinical presentation, indications for angioplasty, and procedural and clinical outcomes. During median follow-up of 64.4 months since the first confirmed diagnosis, PTPA was performed for 62 segmental pulmonary arteries with 38 sessions of the procedure in 7 patients. Vascular stent placement because of resistance to balloon dilation and immediate elastic recoil was performed in 48 of 62 procedures (77%). Except for 1 death, 6 patients showed an improvement in dyspnea and 5 patients showed a decrease in mean pulmonary arterial pressure (mean, 55.5-42.7 mm Hg) and increase in 6-minute walk distance (mean, 415.5-484.3 m). Reperfusion edema occurred in 4 of 7 patients (57%), which was 6 of 38 sessions (16%).
Assuntos
Angioplastia com Balão , Artéria Pulmonar , Estenose de Artéria Pulmonar , Stents , Ubiquitina-Proteína Ligases , Humanos , Masculino , Feminino , Estenose de Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/fisiopatologia , Estenose de Artéria Pulmonar/etiologia , Estenose de Artéria Pulmonar/cirurgia , Estenose de Artéria Pulmonar/terapia , Resultado do Tratamento , Pessoa de Meia-Idade , Angioplastia com Balão/instrumentação , Angioplastia com Balão/efeitos adversos , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/cirurgia , Ubiquitina-Proteína Ligases/genética , Recuperação de Função Fisiológica , Fatores de Tempo , Idoso , Estudos Retrospectivos , Adulto , Doença Arterial Periférica/fisiopatologia , Doença Arterial Periférica/terapia , Doença Arterial Periférica/diagnóstico por imagem , Predisposição Genética para Doença , Pressão Arterial , Tolerância ao Exercício , Grau de Desobstrução Vascular , Adenosina TrifosfatasesRESUMO
Pulmonary artery stenosis (PAS) often presents in children with congenital heart disease, altering blood flow and pressure during critical periods of growth and development. Variability in stenosis onset, duration, and severity result in variable growth and remodeling of the pulmonary vasculature. Computational fluid dynamics (CFD) models enable investigation into the hemodynamic impact and altered mechanics associated with PAS. In this study, a one-dimensional (1D) fluid dynamics model was used to simulate hemodynamics throughout the pulmonary arteries of individual animals. The geometry of the large pulmonary arteries was prescribed by animal-specific imaging, whereas the distal vasculature was simulated by a three-element Windkessel model at each terminal vessel outlet. Remodeling of the pulmonary vasculature, which cannot be measured in vivo, was estimated via model-fitted parameters. The large artery stiffness was significantly higher on the left side of the vasculature in the left pulmonary artery (LPA) stenosis group, but neither side differed from the sham group. The sham group exhibited a balanced distribution of total distal vascular resistance, whereas the left side was generally larger in the LPA stenosis group, with no significant differences between groups. In contrast, the peripheral compliance on the right side of the LPA stenosis group was significantly greater than the corresponding side of the sham group. Further analysis indicated the underperfused distal vasculature likely moderately decreased in radius with little change in stiffness given the increase in thickness observed with histology. Ultimately, our model enables greater understanding of pulmonary arterial adaptation due to LPA stenosis and has potential for use as a tool to noninvasively estimate remodeling of the pulmonary vasculature.
Assuntos
Simulação por Computador , Modelos Cardiovasculares , Artéria Pulmonar , Estenose de Artéria Pulmonar , Remodelação Vascular , Estenose de Artéria Pulmonar/fisiopatologia , Estenose de Artéria Pulmonar/diagnóstico por imagem , Animais , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/patologia , Hemodinâmica , Hidrodinâmica , Modelos Animais de DoençasRESUMO
BACKGROUND: Stent implantation has become standard of care in older children and adults for treatment of branch pulmonary artery stenosis (BPAS) and coarctation aorta (CoAo). There are no stents approved or available for infants that have the potential to be dilated to adult diameters. The Minima stent was designed to fulfill this unmet need. METHODS: Multicenter, prospective, nonrandomized early feasibility study evaluating safety and effectiveness of the Minima stent for treatment of BPAS and CoAo. Primary endpoints included: (1) successful deployment across lesion, (2) stenosis relief defined by an increase in angiographic diameter of >50% and (3) freedom from stent explant, embolization or migration at 30 days and 6 months. RESULTS: Between 2/2022 and 5/2022, 10 pts underwent Minima stent implantation with a median age and weight of 9 months (4-43 months) and 7.6 kg (5.1-16.9 kg). Procedural success and predefined stenosis relief was achieved in all cases (CoAo [n = 4], BPAS [n = 6]). Adverse events occurred in 3 pts: transient diminished lower extremity pulse (n = 2), distal stent on-balloon displacement successfully managed in the catheterization suite (n = 1). There were no deaths or major adverse events. All patients were free from stent explant and migration at 30 days and 6 months with no evidence for significant restenosis at latest follow-up. CONCLUSIONS: Implantation of the Renata Minima stent was safe and effective for the treatment of BPAS and CoAo in this small cohort of infants and young children during early follow-up. Based on these early results, an expanded study with longer follow-up is warranted.
Assuntos
Coartação Aórtica , Estudos de Viabilidade , Desenho de Prótese , Estenose de Artéria Pulmonar , Stents , Humanos , Coartação Aórtica/diagnóstico por imagem , Coartação Aórtica/terapia , Coartação Aórtica/fisiopatologia , Lactente , Estudos Prospectivos , Masculino , Feminino , Resultado do Tratamento , Estenose de Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/fisiopatologia , Estenose de Artéria Pulmonar/terapia , Estenose de Artéria Pulmonar/etiologia , Fatores de Tempo , Pré-Escolar , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/fisiopatologia , Fatores Etários , Angioplastia com Balão/instrumentação , Angioplastia com Balão/efeitos adversosRESUMO
BACKGROUND: Unilateral pulmonary artery (PA) stenosis is common in the transposition of the great arteries (TGA) after arterial switch operation (ASO) but the effects on the right ventricle (RV) remain unclear. AIMS: To assess the effects of unilateral PA stenosis on RV afterload and function in pediatric patients with TGA-ASO. METHODS: In this retrospective study, eight TGA patients with unilateral PA stenosis underwent heart catheterization and cardiac magnetic resonance (CMR) imaging. RV pressures, RV afterload (arterial elastance [Ea]), PA compliance, RV contractility (end-systolic elastance [Ees]), RV-to-PA (RV-PA) coupling (Ees/Ea), and RV diastolic stiffness (end-diastolic elastance [Eed]) were analyzed and compared to normal values from the literature. RESULTS: In all TGA patients (mean age 12 ± 3 years), RV afterload (Ea) and RV pressures were increased whereas PA compliance was reduced. RV contractility (Ees) was decreased resulting in RV-PA uncoupling. RV diastolic stiffness (Eed) was increased. CMR-derived RV volumes, mass, and ejection fraction were preserved. CONCLUSION: Unilateral PA stenosis results in an increased RV afterload in TGA patients after ASO. RV remodeling and function remain within normal limits when analyzed by CMR but RV pressure-volume loop analysis shows impaired RV diastolic stiffness and RV contractility leading to RV-PA uncoupling.
Assuntos
Transposição das Grandes Artérias , Cateterismo Cardíaco , Artéria Pulmonar , Estenose de Artéria Pulmonar , Transposição dos Grandes Vasos , Função Ventricular Direita , Adolescente , Criança , Feminino , Humanos , Masculino , Transposição das Grandes Artérias/efeitos adversos , Complacência (Medida de Distensibilidade) , Contração Miocárdica , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/diagnóstico por imagem , Estudos Retrospectivos , Estenose de Artéria Pulmonar/fisiopatologia , Estenose de Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/etiologia , Volume Sistólico , Transposição dos Grandes Vasos/fisiopatologia , Transposição dos Grandes Vasos/cirurgia , Transposição dos Grandes Vasos/complicações , Transposição dos Grandes Vasos/diagnóstico por imagem , Resultado do Tratamento , Rigidez Vascular , Disfunção Ventricular Direita/fisiopatologia , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/diagnóstico por imagem , Pressão VentricularRESUMO
The substantial computational cost of high-fidelity models in numerical hemodynamics has, so far, relegated their use mainly to offline treatment planning. New breakthroughs in data-driven architectures and optimization techniques for fast surrogate modeling provide an exciting opportunity to overcome these limitations, enabling the use of such technology for time-critical decisions. We discuss an application to the repair of multiple stenosis in peripheral pulmonary artery disease through either transcatheter pulmonary artery rehabilitation or surgery, where it is of interest to achieve desired pressures and flows at specific locations in the pulmonary artery tree, while minimizing the risk for the patient. Since different degrees of success can be achieved in practice during treatment, we formulate the problem in probability, and solve it through a sample-based approach. We propose a new offline-online pipeline for probabilistic real-time treatment planning which combines offline assimilation of boundary conditions, model reduction, and training dataset generation with online estimation of marginal probabilities, possibly conditioned on the degree of augmentation observed in already repaired lesions. Moreover, we propose a new approach for the parametrization of arbitrarily shaped vascular repairs through iterative corrections of a zero-dimensional approximant. We demonstrate this pipeline for a diseased model of the pulmonary artery tree available through the Vascular Model Repository.
Assuntos
Estenose de Artéria Pulmonar , Humanos , Estenose de Artéria Pulmonar/cirurgia , Estenose de Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/fisiopatologia , Modelos Cardiovasculares , Hemodinâmica/fisiologia , Redes Neurais de ComputaçãoAssuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/diagnóstico por imagem , Imagem Multimodal , Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/diagnóstico por imagem , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/complicações , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/fisiopatologia , Anticorpos Anticitoplasma de Neutrófilos/sangue , Biomarcadores/sangue , Angiografia por Tomografia Computadorizada , Ecocardiografia Doppler em Cores , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica , Humanos , Imunossupressores/uso terapêutico , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Hipertensão Arterial Pulmonar/etiologia , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/fisiopatologia , Circulação Pulmonar , Estenose de Artéria Pulmonar/tratamento farmacológico , Estenose de Artéria Pulmonar/etiologia , Estenose de Artéria Pulmonar/fisiopatologia , Resultado do TratamentoRESUMO
Branch pulmonary artery stenosis (PAS) commonly occurs in congenital heart disease and the pressure gradient over a stenotic PA lesion is an important marker for re-intervention. Image based computational fluid dynamics (CFD) has shown promise for non-invasively estimating pressure gradients but one limitation of CFD is long simulation times. The goal of this study was to compare accelerated predictions of PAS pressure gradients from 3D CFD with instantaneous adaptive mesh refinement (AMR) versus a recently developed 0D distributed lumped parameter CFD model. Predictions were then experimentally validated using a swine PAS model (n = 13). 3D CFD simulations with AMR improved efficiency by 5 times compared to fixed grid CFD simulations. 0D simulations further improved efficiency by 6 times compared to the 3D simulations with AMR. Both 0D and 3D simulations underestimated the pressure gradients measured by catheterization (- 1.87 ± 4.20 and - 1.78 ± 3.70 mmHg respectively). This was partially due to simulations neglecting the effects of a catheter in the stenosis. There was good agreement between 0D and 3D simulations (ICC 0.88 [0.66-0.96]) but only moderate agreement between simulations and experimental measurements (0D ICC 0.60 [0.11-0.86] and 3D ICC 0.66 [0.21-0.88]). Uncertainty assessment indicates that this was likely due to limited medical imaging resolution causing uncertainty in the segmented stenosis diameter in addition to uncertainty in the outlet resistances. This study showed that 0D lumped parameter models and 3D CFD with instantaneous AMR both improve the efficiency of hemodynamic modeling, but uncertainty from medical imaging resolution will limit the accuracy of pressure gradient estimations.
Assuntos
Modelos Cardiovasculares , Estenose de Artéria Pulmonar/fisiopatologia , Animais , Pressão Sanguínea , Simulação por Computador , Hidrodinâmica , Masculino , Reprodutibilidade dos Testes , SuínosRESUMO
With the help of computational fluid dynamics (CFD), hemodynamics of the pulmonary arteries (PA's) can be studied in detail and varying physiological circumstances and treatment options can be simulated. This offers the opportunity to improve the diagnostics and treatment of PA stenosis in biventricular congenital heart disease (CHD). The aim of this review was to evaluate the methods of computational studies for PA's in biventricular CHD and the level of validation of the numerical outcomes. A total of 34 original research papers were selected. The literature showed a great variety in the used methods for (re) construction of the geometry as well as definition of the boundary conditions and numerical setup. There were 10 different methods identified to define inlet boundary conditions and 17 for outlet boundary conditions. A total of nine papers verified their CFD outcomes by comparing results to clinical data or by an experimental mock loop. The diversity in used methods and the low level of validation of the outcomes result in uncertainties regarding the reliability of numerical studies. This limits the current clinical utility of CFD for the study of PA flow in CHD. Standardization and validation of the methods are therefore recommended.
Assuntos
Cardiopatias Congênitas/fisiopatologia , Modelos Cardiovasculares , Artéria Pulmonar/fisiopatologia , Estenose de Artéria Pulmonar/fisiopatologia , Animais , Biologia Computacional , Simulação por Computador , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/patologia , Hemodinâmica/fisiologia , Humanos , Hidrodinâmica , Modelos Anatômicos , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/patologia , Estenose de Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/patologiaRESUMO
BACKGROUND: Pulmonary artery obstruction is an uncommon but significant complication after lung transplantation. Although numerous reports have documented its occurrence, the hemodynamic parameters associated with its presentation and diagnostic considerations remain ill-defined. This systematic review summarizes evidence in the literature surrounding pulmonary artery obstruction after lung transplantation surgery. METHODS: Databases were searched for all articles and abstracts reporting on pulmonary artery obstruction. Data collected included the number of patients studied, patient characteristics, incidences of pulmonary artery obstruction, and timing and imaging modality used for diagnosis. RESULTS: Thirty-four full-text citations were included in this review. The point prevalence of pulmonary artery obstruction was 3.66%. The peak pulmonary artery velocity associated with obstruction was found to be 2.60 ± 0.58 m/s. The diameter of the obstructed pulmonary artery predictive of poor outcomes was noted to be 0.78 ± 0.40 cm. The majority of diagnoses were made in the late postoperative period using pulmonary angiogram and transesophageal echocardiography. Overall, 76% of patients (47 of 62) required emergent procedural reintervention, and 23% of patients (14 of 62) diagnosed with pulmonary artery obstruction died during their hospital stay. CONCLUSIONS: This systematic review underscores the importance of identifying pulmonary artery obstruction immediately after lung transplant surgery. The clinical implications of these results warrant the development of identification and management strategies for early detection of irregularities in pulmonary artery anastomosis in lung transplant patients.
Assuntos
Transplante de Pulmão/efeitos adversos , Artéria Pulmonar/cirurgia , Estenose de Artéria Pulmonar/cirurgia , Adolescente , Adulto , Feminino , Hemodinâmica , Mortalidade Hospitalar , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/fisiopatologia , Circulação Pulmonar , Reoperação , Medição de Risco , Fatores de Risco , Estenose de Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/mortalidade , Estenose de Artéria Pulmonar/fisiopatologia , Fatores de Tempo , Resultado do Tratamento , Adulto JovemRESUMO
BACKGROUND: Branch pulmonary artery (PA) stenosis (PAS) commonly occurs in patients with congenital heart disease (CHD). Prior studies have documented technical success and clinical outcomes of PA stent interventions for PAS but the impact of PA stent interventions on ventricular function is unknown. The objective of this study was to utilize 4D flow cardiovascular magnetic resonance (CMR) to better understand the impact of PAS and PA stenting on ventricular contraction and ventricular flow in a swine model of unilateral branch PA stenosis. METHODS: 18 swine (4 sham, 4 untreated left PAS, 10 PAS stent intervention) underwent right heart catheterization and CMR at 20 weeks age (55 kg). CMR included ventricular strain analysis and 4D flow CMR. RESULTS: 4D flow CMR measured inefficient right ventricular (RV) and left ventricular (LV) flow patterns in the PAS group (RV non-dimensional (n.d.) vorticity: sham 82 ± 47, PAS 120 ± 47; LV n.d. vorticity: sham 57 ± 5, PAS 78 ± 15 p < 0.01) despite the PAS group having normal heart rate, ejection fraction and end-diastolic volume. The intervention group demonstrated increased ejection fraction that resulted in more efficient ventricular flow compared to untreated PAS (RV n.d. vorticity: 59 ± 12 p < 0.01; LV n.d. vorticity: 41 ± 7 p < 0.001). CONCLUSION: These results describe previously unknown consequences of PAS on ventricular function in an animal model of unilateral PA stenosis and show that PA stent interventions improve ventricular flow efficiency. This study also highlights the sensitivity of 4D flow CMR biomarkers to detect earlier ventricular dysfunction assisting in identification of patients who may benefit from PAS interventions.
Assuntos
Procedimentos Endovasculares/instrumentação , Artéria Pulmonar/fisiopatologia , Estenose de Artéria Pulmonar/terapia , Stents , Disfunção Ventricular Direita/terapia , Função Ventricular Esquerda , Função Ventricular Direita , Animais , Angiografia por Tomografia Computadorizada , Modelos Animais de Doenças , Imagem Cinética por Ressonância Magnética , Contração Miocárdica , Imagem de Perfusão do Miocárdio , Artéria Pulmonar/diagnóstico por imagem , Recuperação de Função Fisiológica , Estenose de Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/fisiopatologia , Sus scrofa , Disfunção Ventricular Direita/diagnóstico por imagem , Disfunção Ventricular Direita/fisiopatologiaRESUMO
Branch pulmonary artery stenosis (PAS) commonly occurs in congenital heart disease and it has previously been hypothesized that in branch PAS the pulmonary arteries (PAs) remodel their lumen diameter to maintain constant wall shear stress (WSS). We quantified the longitudinal progression of PA WSS in a swine model of unilateral PAS and two different intervention time courses to test this hypothesis. To quantify WSS in the entire pulmonary tree we used 4D Flow MRI for the large-proximal PAs and a structured tree model for the small-distal PAs. Our results only partially supported the hypothesis that in branch PAS the PAs remodel their lumen diameter to maintain WSS homeostasis. Proximal PA WSS was similar between groups at the final study time-point but WSS of mid-sized (5 mm to 500 µm) PA segments was found to be different between the sham and LPAS groups. This suggests that WSS homeostasis may only be achieved for the large-proximal PAs. Additionally, our results do not show WSS homeostasis being achieved over shorter periods of time suggesting that any potential WSS dependent changes in PA lumen diameter were a long-term remodeling response rather than a short-term vasodilation response. Future studies should confirm if these findings hold true in humans and investigate the impacts of WSS at different levels of the pulmonary tree on growth.
Assuntos
Artéria Pulmonar/fisiopatologia , Estenose de Artéria Pulmonar/fisiopatologia , Stents , Animais , Imageamento por Ressonância Magnética/métodos , Masculino , Modelos Biológicos , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/cirurgia , Estenose de Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/cirurgia , Estresse Mecânico , SuínosRESUMO
Unilateral proximal pulmonary artery stenosis is often seen in the setting of postoperative congenital heart disease. Accurate assessment of the hemodynamic significance of such a lesion is important so as to determine "When to intervene?" A thorough evaluation should include symptom assessment, anatomical assessment through detailed imaging, functional assessment using differential pulmonary blood flow measurement and cardiopulmonary exercise testing. Symptoms of exertional dyspnea or intolerance, decreased pulmonary blood flow to stenosed lung, and abnormal exertional performance would be factors to pursue therapy in the setting of significant anatomical narrowing. Safe and effective therapy can be offered through transcatheter or surgical techniques and has been shown to improve exertional performance.
Assuntos
Angioplastia com Balão , Implante de Prótese Vascular , Tratamento Conservador , Artéria Pulmonar/cirurgia , Estenose de Artéria Pulmonar/terapia , Algoritmos , Angioplastia com Balão/efeitos adversos , Angioplastia com Balão/instrumentação , Implante de Prótese Vascular/efeitos adversos , Tratamento Conservador/efeitos adversos , Técnicas de Apoio para a Decisão , Humanos , Artéria Pulmonar/fisiopatologia , Circulação Pulmonar , Estenose de Artéria Pulmonar/diagnóstico , Estenose de Artéria Pulmonar/fisiopatologia , Stents , Resultado do Tratamento , Grau de Desobstrução VascularRESUMO
Accurate pulmonary artery (PA) imaging is necessary for management of patients with complex congenital heart disease (CHD). The ability of newer imaging modalities such as 3D rotational angiography (3DRA) or phase-contrast magnetic resonance angiography (PC-MRA) to measure PA diameters has not been compared to established angiography techniques. Measurements of PA diameters (including PA stenosis and PA stents) from 3DRA and non-contrast-enhanced PC-MRA were compared to 2D catheter angiography (CA) and multi-slice computed tomography (MSCT) in a swine CHD model (n = 18). For all PA segments 3DRA had excellent agreement with CA and MSCT (ICC = 0.94[0.91-0.95] and 0.92[0.89-0.94]). 3DRA PA stenosis measures were similar to CA and MSCT and 3DRA was on average within 5% of 10.8 ± 1.3 mm PA stent diameters from CA and MSCT. For compliant PA segments, 3DRA was on average 3-12% less than CA (p < 0.05) and MSCT (p < 0.01) for 6-14 mm vessels. PC-MRA could not reliably visualize stents and distal PA vessels and only identified 34% of all assigned measurement sites. For measured PA segments, PC-MRA had good agreement to CA and MSCT (ICC = 0.87[0.77-0.92] and 0.83[0.72-0.90]) but PC-MRA overestimated stenosis diameters and underestimated compliant PA diameters. Excellent CA-MSCT PA diameter agreement (ICC = 0.95[0.93-0.96]) confirmed previous data in CHD patients. There was little bias in PA measurements between 3DRA, CA and MSCT in stenotic and stented PAs but 3DRA underestimates measurements of compliant PA regions. Accurate PC-MRA imaging was limited to unstented proximal PA anatomy.
Assuntos
Cateterismo de Swan-Ganz , Angiografia por Tomografia Computadorizada , Cardiopatias Congênitas/diagnóstico por imagem , Imageamento Tridimensional , Angiografia por Ressonância Magnética , Tomografia Computadorizada Multidetectores , Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Procedimentos Endovasculares/instrumentação , Cardiopatias Congênitas/fisiopatologia , Cardiopatias Congênitas/terapia , Masculino , Valor Preditivo dos Testes , Artéria Pulmonar/fisiopatologia , Reprodutibilidade dos Testes , Estenose de Artéria Pulmonar/fisiopatologia , Estenose de Artéria Pulmonar/terapia , Stents , Sus scrofaRESUMO
BACKGROUND: Branch pulmonary artery stenosis complicates the management of congenital heart diseases. Surgical branch pulmonary artery angioplasty is associated with a high reintervention rate. As an alternative, percutaneous or intraoperative branch pulmonary artery stents have been implanted to improve efficiency, but long-term evaluations are limited. AIM: To describe the long-term evolution of branch pulmonary artery stents. METHODS: We conducted a retrospective cohort study at Tours University Hospital. All stents implanted by surgery or catheterization in branch pulmonary arteries with a minimum follow-up of 12 months and at least one catheterization control were included. The primary endpoint combined cardiovascular mortality, surgical or percutaneous reintervention for stent complication or new stent implantation. RESULTS: Between 2007 and 2017, 76 stents in 51 patients were included (62 stents implanted by surgery, 14 by catheterization). At implantation, the patients' mean age and weight were 4.7years (interquartile range 4.2years) and 17.3kg (interquartile range 11.0kg), respectively. Mean branch pulmonary artery minimum diameter was 4.1±2.1mm (mean Z-score-4.9±2.9), and mean initial stent diameter was 9.1±3.1mm. During a follow-up of 5.3years (range 0-11.2 years), freedom from primary endpoint was 86.8% (95% confidence interval 79.6-94.8%) at 1 year, 71.5% (95% confidence interval 61.9-82.7%) at 5years and 69.6% (95% confidence interval 59.6-81.2%) at 10 years. We did not identify any factors associated with major adverse cardiovascular events. Among stents without major adverse cardiovascular events, the mean branch pulmonary artery diameter Z-score at last evaluation had increased by +4.8±3.2 compared with the initial diameter (P<0.001). After stent implantation, a median of 2 re-expansions were performed for each stent (range 0-7). CONCLUSIONS: Stent implantation should offer a good long-term solution for branch pulmonary artery stenosis, although iterative re-expansions are required.
Assuntos
Procedimentos Endovasculares/instrumentação , Artéria Pulmonar/cirurgia , Estenose de Artéria Pulmonar/terapia , Stents , Procedimentos Cirúrgicos Vasculares/instrumentação , Pré-Escolar , Procedimentos Endovasculares/efeitos adversos , Feminino , Humanos , Masculino , Desenho de Prótese , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/crescimento & desenvolvimento , Circulação Pulmonar , Estudos Retrospectivos , Estenose de Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/fisiopatologia , Fatores de Tempo , Resultado do Tratamento , Grau de Desobstrução Vascular , Procedimentos Cirúrgicos Vasculares/efeitos adversosRESUMO
OBJECTIVES: The objective of this study was to prospectively evaluate the ability of transthoracic echocardiography to assess pulmonary artery occlusion pressure in mechanically ventilated critically ill patients. DESIGN: In a prospective observational study. SETTING: Amiens University Hospital Medical ICU. PATIENTS: Fifty-three mechanically ventilated patients in sinus rhythm admitted to our ICU. INTERVENTION: Transthoracic echocardiography was performed simultaneously to pulmonary artery catheter. MEASUREMENTS AND MAIN RESULTS: Transmitral early velocity wave recorded using pulsed wave Doppler (E), late transmitral velocity wave recorded using pulsed wave Doppler (A), and deceleration time of E wave were recorded using pulsed Doppler as well as early mitral annulus velocity wave recorded using tissue Doppler imaging (E'). Pulmonary artery occlusion pressure was measured simultaneously using pulmonary artery catheter. There was a significant correlation between pulmonary artery occlusion pressure and lateral ratio between E wave and E' (E/E' ratio) (r = 0.35; p < 0.01), ratio between E wave and A wave (E/A ratio) (r = 0.41; p < 0.002), and deceleration time of E wave (r = -0.34; p < 0.02). E/E' greater than 15 was predictive of pulmonary artery occlusion pressure greater than or equal to 18 mm Hg with a sensitivity of 25% and a specificity of 95%, whereas E/E' less than 7 was predictive of pulmonary artery occlusion pressure less than 18 mm Hg with a sensitivity of 32% and a specificity of 81%. E/A greater than 1.8 yielded a sensitivity of 44% and a specificity of 95% to predict pulmonary artery occlusion pressure greater than or equal to 18 mm Hg, whereas E/A less than 0.7 was predictive of pulmonary artery occlusion pressure less than 18 mm Hg with a sensitivity of 19% and a specificity of 94%. A similar predictive capacity was observed when the analysis was confined to patients with EF less than 50%. A large proportion of E/E' measurements 32 (60%) were situated between the two cut-off values obtained by the receiver operating characteristic curves: E/E' greater than 15 and E/E' less than 7. CONCLUSIONS: In mechanically ventilated critically ill patients, Doppler transthoracic echocardiography indices are highly specific but not sensitive to estimate pulmonary artery occlusion pressure.
Assuntos
Ecocardiografia Doppler , Respiração Artificial , Estenose de Artéria Pulmonar/diagnóstico por imagem , Idoso , Pressão Sanguínea , Estado Terminal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/fisiopatologia , Respiração Artificial/efeitos adversos , Sensibilidade e Especificidade , Estenose de Artéria Pulmonar/fisiopatologia , Dispositivos de Acesso VascularRESUMO
OBJECTIVE: To characterize changes in Fontan conduit size over time and determine if cross-sectional area (CSA) affects cardiac output, pulmonary artery growth, and exercise capacity. METHODS: We conducted a retrospective cross-sectional study of patients with Fontan physiology who underwent cardiac magnetic resonance imaging or cardiac catheterization between January 2013 and October 2019. We collected Fontan and pulmonary artery measurements, hemodynamic data, and cardiopulmonary exercise test data. We identified 158 patients with an extracardiac Fontan. We measured minimum and mean Fontan conduit CSA and assessed whether these correlated with Nakata index, cardiac index, or exercise capacity. RESULTS: Minimum Fontan CSA decreased by a median of 33% (24%, 40%) during a mean follow-up of 9.6 years. Median percentage decrease in Fontan CSA did not differ among 16-, 18-, and 20-mm conduits (P = .29). There was a significant decrease in the minimum Fontan CSA (33% [25%, 41%]) starting less than 1-year post-Fontan. Median Nakata index was 177.6 mm2/m2 (149.1, 210.8) and was not associated with Fontan CSA/BSA (ρ = 0.09, P = .29). Fontan CSA/BSA was not associated with cardiac index (ρ = -0.003, P = .97). A larger Fontan CSA/BSA had a modest correlation with % predicted oxygen consumption (ρ = 0.31, P = .013). CONCLUSIONS: Fontan conduit CSA decreases as early as 6 months post-Fontan. The minimum Fontan CSA/BSA was not associated with cardiac index or pulmonary artery size but did correlate with % predicted peak oxygen consumption.
Assuntos
Técnica de Fontan/efeitos adversos , Cardiopatias Congênitas/cirurgia , Hemodinâmica , Artéria Pulmonar/cirurgia , Estenose de Artéria Pulmonar/etiologia , Adolescente , Fatores Etários , Cateterismo Cardíaco , Débito Cardíaco , Criança , Pré-Escolar , Estudos Transversais , Tolerância ao Exercício , Feminino , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/crescimento & desenvolvimento , Recuperação de Função Fisiológica , Estudos Retrospectivos , Fatores de Risco , Estenose de Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/fisiopatologia , Fatores de Tempo , Resultado do TratamentoRESUMO
OBJECTIVES: Compare lung parenchymal and pulmonary artery (PA) growth and hemodynamics following early and delayed PA stent interventions for treatment of unilateral branch PA stenosis (PAS) in swine. BACKGROUND: How the pulmonary circulation remodels in response to different durations of hypoperfusion and how much growth and function can be recovered with catheter directed interventions at differing time periods of lung development is not understood. METHODS: A total of 18 swine were assigned to four groups: Sham (n = 4), untreated left PAS (LPAS) (n = 4), early intervention (EI) (n = 5), and delayed intervention (DI) (n = 5). EI had left pulmonary artery (LPA) stenting at 5 weeks (6 kg) with redilation at 10 weeks. DI had stenting at 10 weeks. All underwent right heart catheterization, computed tomography, magnetic resonance imaging, and histology at 20 weeks (55 kg). RESULTS: EI decreased the extent of histologic changes in the left lung as DI had marked alveolar septal and bronchovascular abnormalities (p = .05 and p < .05 vs. sham) that were less prevalent in EI. EI also increased left lung volumes and alveolar counts compared to DI. EI and DI equally restored LPA pulsatility, R heart pressures, and distal LPA growth. EI and DI improved, but did not normalize LPA stenosis diameter (LPA/DAo ratio: Sham 1.27 ± 0.11 mm/mm, DI 0.88 ± 0.10 mm/mm, EI 1.01 ± 0.09 mm/mm) and pulmonary blood flow distributions (LPA-flow%: Sham 52 ± 5%, LPAS 7 ± 2%, DI 44 ± 3%, EI 40 ± 2%). CONCLUSION: In this surgically created PAS model, EI was associated with improved lung parenchymal development compared to DI. Longer durations of L lung hypoperfusion did not detrimentally affect PA growth and R heart hemodynamics. Functional and anatomical discrepancies persist despite successful stent interventions that warrant additional investigation.