Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.408
Filtrar
1.
Molecules ; 29(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38731579

RESUMO

Trehalose is a naturally occurring, non-reducing saccharide widely distributed in nature. Over the years, research on trehalose has revealed that this initially thought simple storage molecule is a multifunctional and multitasking compound protecting cells against various stress factors. This review presents data on the role of trehalose in maintaining cellular homeostasis under stress conditions and in the virulence of bacteria and fungi. Numerous studies have demonstrated that trehalose acts in the cell as an osmoprotectant, chemical chaperone, free radical scavenger, carbon source, virulence factor, and metabolic regulator. The increasingly researched medical and therapeutic applications of trehalose are also discussed.


Assuntos
Trealose , Trealose/farmacologia , Trealose/metabolismo , Humanos , Animais , Fungos/metabolismo , Fungos/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
2.
BMC Plant Biol ; 24(1): 380, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720246

RESUMO

BACKGROUND: Soybean (Glycine max), a vital grain and oilseed crop, serves as a primary source of plant protein and oil. Soil salinization poses a significant threat to soybean planting, highlighting the urgency to improve soybean resilience and adaptability to saline stress. Melatonin, recently identified as a key plant growth regulator, plays crucial roles in plant growth, development, and responses to environmental stress. However, the potential of melatonin to mitigate alkali stress in soybeans and the underlying mechanisms remain unclear. RESULTS: This study investigated the effects of exogenous melatonin on the soybean cultivar Zhonghuang 13 under alkaline stress. We employed physiological, biochemical, transcriptomic, and metabolomic analyses throughout both vegetative and pod-filling growth stages. Our findings demonstrate that melatonin significantly counteracts the detrimental effects of alkaline stress on soybean plants, promoting plant growth, photosynthesis, and antioxidant capacity. Transcriptomic analysis during both growth stages under alkaline stress, with and without melatonin treatment, identified 2,834 and 549 differentially expressed genes, respectively. These genes may play a vital role in regulating plant adaptation to abiotic stress. Notably, analysis of phytohormone biosynthesis pathways revealed altered expression of key genes, particularly in the ARF (auxin response factor), AUX/IAA (auxin/indole-3-acetic acid), and GH3 (Gretchen Hagen 3) families, during the early stress response. Metabolomic analysis during the pod-filling stage identified highly expressed metabolites responding to melatonin application, such as uteolin-7-O-(2''-O-rhamnosyl)rutinoside and Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside, which helped alleviate the damage caused by alkali stress. Furthermore, we identified 183 differentially expressed transcription factors, potentially playing a critical role in regulating plant adaptation to abiotic stress. Among these, the gene SoyZH13_04G073701 is particularly noteworthy as it regulates the key differentially expressed metabolite, the terpene metabolite Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside. WGCNA analysis identified this gene (SoyZH13_04G073701) as a hub gene, positively regulating the crucial differentially expressed metabolite of terpenoids, Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside. Our findings provide novel insights into how exogenous melatonin alleviates alkali stress in soybeans at different reproductive stages. CONCLUSIONS: Integrating transcriptomic and metabolomic approaches, our study elucidates the mechanisms by which exogenous melatonin ameliorates the inhibitory effects of alkaline stress on soybean growth and development. This occurs through modulation of biosynthesis pathways for key compounds, including terpenes, flavonoids, and phenolics. Our findings provide initial mechanistic insights into how melatonin mitigates alkaline stress in soybeans, offering a foundation for molecular breeding strategies to enhance salt-alkali tolerance in this crop.


Assuntos
Glycine max , Melatonina , Estresse Fisiológico , Transcriptoma , Melatonina/farmacologia , Glycine max/genética , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcriptoma/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metabolômica , Perfilação da Expressão Gênica , Álcalis , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Metaboloma/efeitos dos fármacos
3.
BMC Plant Biol ; 24(1): 427, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769501

RESUMO

BACKGROUND: Our meta-analysis examines the effects of melatonin on wheat under varying abiotic stress conditions, focusing on photosynthetic parameters, chlorophyll fluorescence, leaf water status, and photosynthetic pigments. We initially collected 177 publications addressing the impact of melatonin on wheat. After meticulous screening, 31 published studies were selected, encompassing 170 observations on photosynthetic parameters, 73 on chlorophyll fluorescence, 65 on leaf water status, 240 on photosynthetic pigments. RESULTS: The analysis revealed significant heterogeneity across studies (I² > 99.90%) for the aforementioned parameters and evidence of publication bias, emphasizing the complex interaction between melatonin application and plant physiological responses. Melatonin enhanced the overall response ratio (lnRR) for photosynthetic rates, stomatal conductance, transpiration rates, and fluorescence yields by 20.49, 22.39, 30.96, and 1.09%, respectively, compared to the control (no melatonin). The most notable effects were under controlled environmental conditions. Moreover, melatonin significantly improved leaf water content and reduced water potential, particularly under hydroponic conditions and varied abiotic stresses, highlighting its role in mitigating water stress. The analysis also revealed increases in chlorophyll pigments with soil drenching and foliar spray, and these were considered the effective application methods. Furthermore, melatonin influenced chlorophyll SPAD and intercellular CO2 concentrations, suggesting its capacity to optimize photosynthetic efficiency. CONCLUSIONS: This synthesis of meta-analysis confirms that melatonin significantly enhances wheat's resilience to abiotic stress by improving photosynthetic parameters, chlorophyll fluorescence, leaf water status, and photosynthetic pigments. Despite observed heterogeneity and publication bias, the consistent beneficial effects of melatonin, particularly under controlled conditions with specific application methods e.g. soil drenching and foliar spray, demonstrate its utility as a plant growth regulator for stress management. These findings encourage focused research and application strategies to maximize the benefits of melatonin in wheat farming, and thus contributing to sustainable agricultural practices.


Assuntos
Melatonina , Fotossíntese , Estresse Fisiológico , Triticum , Melatonina/farmacologia , Triticum/fisiologia , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Fotossíntese/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Clorofila/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia
4.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732273

RESUMO

Drought and salinity stress reduce root hydraulic conductivity of plant seedlings, and melatonin application positively mitigates stress-induced damage. However, the underlying effect of melatonin priming on root hydraulic conductivity of seedlings under drought-salinity combined remains greatly unclear. In the current report, we investigated the influence of seeds of three wheat lines' 12 h priming with 100 µM of melatonin on root hydraulic conductivity (Lpr) and relevant physiological indicators of seedlings under PEG, NaCl, and PEG + NaCl combined stress. A previous study found that the combined PEG and NaCl stress remarkably reduced the Lpr of three wheat varieties, and its value could not be detected. Melatonin priming mitigated the adverse effects of combined PEG + NaCl stress on Lpr of H4399, Y1212, and X19 to 0.0071 mL·h-1·MPa-1, 0.2477 mL·h-1·MPa-1, and 0.4444 mL·h-1·MPa-1, respectively, by modulating translation levels of aquaporin genes and contributed root elongation and seedlings growth. The root length of H4399, Y1212, and X19 was increased by 129.07%, 141.64%, and 497.58%, respectively, after seeds pre-treatment with melatonin under PEG + NaCl combined stress. Melatonin -priming appreciably regulated antioxidant enzyme activities, reduced accumulation of osmotic regulators, decreased levels of malondialdehyde (MDA), and increased K+ content in stems and root of H4399, Y1212, and X19 under PEG + NaCl stress. The path investigation displayed that seeds primed with melatonin altered the modification of the path relationship between Lpr and leaf area under stress. The present study suggested that melatonin priming was a strategy as regards the enhancement of root hydraulic conductivity under PEG, NaCl, and PEG + NaCl stress, which efficiently enhanced wheat resistant to drought-salinity stress.


Assuntos
Secas , Melatonina , Raízes de Plantas , Salinidade , Plântula , Sementes , Triticum , Melatonina/farmacologia , Triticum/efeitos dos fármacos , Triticum/genética , Triticum/fisiologia , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/genética , Estresse Fisiológico/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Salino , Cloreto de Sódio/farmacologia , Antioxidantes/metabolismo , Água/metabolismo
6.
Sci Rep ; 14(1): 11100, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750032

RESUMO

The growth and productivity of crop plants are negatively affected by salinity-induced ionic and oxidative stresses. This study aimed to provide insight into the interaction of NaCl-induced salinity with Azolla aqueous extract (AAE) regarding growth, antioxidant balance, and stress-responsive genes expression in wheat seedlings. In a pot experiment, wheat kernels were primed for 21 h with either deionized water or 0.1% AAE. Water-primed seedlings received either tap water, 250 mM NaCl, AAE spray, or AAE spray + NaCl. The AAE-primed seedlings received either tap water or 250 mM NaCl. Salinity lowered growth rate, chlorophyll level, and protein and amino acids pool. However, carotenoids, stress indicators (EL, MDA, and H2O2), osmomodulators (sugars, and proline), antioxidant enzymes (CAT, POD, APX, and PPO), and the expression of some stress-responsive genes (POD, PPO and PAL, PCS, and TLP) were significantly increased. However, administering AAE contributed to increased growth, balanced leaf pigments and assimilation efficacy, diminished stress indicators, rebalanced osmomodulators and antioxidant enzymes, and down-regulation of stress-induced genes in NaCl-stressed plants, with priming surpassing spray in most cases. In conclusion, AAE can be used as a green approach for sustaining regular growth and metabolism and remodelling the physio-chemical status of wheat seedlings thriving in salt-affected soils.


Assuntos
Antioxidantes , Regulação da Expressão Gênica de Plantas , Extratos Vegetais , Tolerância ao Sal , Plântula , Triticum , Triticum/efeitos dos fármacos , Triticum/genética , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Tolerância ao Sal/genética , Tolerância ao Sal/efeitos dos fármacos , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/genética , Plântula/metabolismo , Extratos Vegetais/farmacologia , Gleiquênias/efeitos dos fármacos , Gleiquênias/genética , Gleiquênias/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Salinidade , Cloreto de Sódio/farmacologia , Estresse Oxidativo/efeitos dos fármacos
7.
PLoS One ; 19(5): e0302677, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696463

RESUMO

The incorporation of phytoactive compounds in the management of malarial vectors holds promise for the development of innovative and efficient alternatives. Nevertheless, the molecular and physiological responses that these bioactive substances induce remain underexplored. This present study investigated the toxicity of different concentrations of aqueous and methanol extracts of Ocimum tenuiflorum against larvae of Anopheles gambiae (sensu stricto) and unraveled the possible underlying molecular pathways responsible for the observed physiological effects. FTIR and GCMS analyses of phytoactive compounds in aqueous and methanol crude extracts of O. tenuiflorum showed the presence of OH stretching vibration, C = C stretching modes of aromatics and methylene rocking vibration; ring deformation mode with high levels of trans-ß-ocimene, 3,7-dimethyl-1,3,6-octatriene in aqueous extract and 4-methoxy-benzaldehyde, 1,3,5-trimethyl-cyclohexane and o-cymene in methanol extract. The percentage mortality upon exposure to methanol and aqueous extracts of O. tenuiflorum were 21.1% and 26.1% at 24 h, 27.8% and 36.1% at 48 h and 36.1% and 45% at 72 h respectively. Using reverse transcription quantitative polymerase chain reaction (RT-qPCR), down-regulation of ABC transporter, overexpression of CYP6M2, Hsp70, and α-esterase, coupled with significantly increased levels of SOD, CAT, and GSH, were observed in An. gambiae (s.s.) exposed to aqueous and methanol extracts of O. tenuiflorum as compared to the control. Findings from this study have significant implications for our understanding of how An. gambiae (s.s.) larvae detoxify phytoactive compounds.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Anopheles , Antioxidantes , Proteínas de Choque Térmico HSP70 , Ocimum , Extratos Vegetais , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Anopheles/metabolismo , Extratos Vegetais/farmacologia , Antioxidantes/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Larva/efeitos dos fármacos , Larva/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Estresse Fisiológico/efeitos dos fármacos
8.
BMC Plant Biol ; 24(1): 360, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698342

RESUMO

BACKGROUND: Cadmium (Cd) pollution has declined crop yields and quality. Selenium (Se) is a beneficial mineral element that protects plants from oxidative damage, thereby improving crop tolerance to heavy metals. The molecular mechanism of Se-induced Cd tolerance in rice (Oryza sativa) is not yet understood. This study aimed to elucidate the beneficial mechanism of Se (1 mg/kg) in alleviating Cd toxicity in rice seedlings. RESULTS: Exogenous selenium addition significantly improved the toxic effect of cadmium stress on rice seedlings, increasing plant height and fresh weight by 20.53% and 34.48%, respectively, and increasing chlorophyll and carotenoid content by 16.68% and 15.26%, respectively. Moreover, the MDA, ·OH, and protein carbonyl levels induced by cadmium stress were reduced by 47.65%, 67.57%, and 56.43%, respectively. Cell wall metabolism, energy cycling, and enzymatic and non-enzymatic antioxidant systems in rice seedlings were significantly enhanced. Transcriptome analysis showed that the expressions of key functional genes psbQ, psbO, psaG, psaD, atpG, and PetH were significantly up-regulated under low-concentration Se treatment, which enhanced the energy metabolism process of photosystem I and photosystem II in rice seedlings. At the same time, the up-regulation of LHCA, LHCB family, and C4H1, PRX, and atp6 functional genes improved the ability of photon capture and heavy metal ion binding in plants. Combined with proteome analysis, the expression of functional proteins OsGSTF1, OsGSTU11, OsG6PDH4, OsDHAB1, CP29, and CabE was significantly up-regulated under Se, which enhanced photosynthesis and anti-oxidative stress mechanism in rice seedlings. At the same time, it regulates the plant hormone signal transduction pathway. It up-regulates the expression response process of IAA, ABA, and JAZ to activate the synergistic effect between each cell rapidly and jointly maintain the homeostasis balance. CONCLUSION: Our results revealed the regulation process of Se-mediated critical metabolic pathways, functional genes, and proteins in rice under cadmium stress. They provided insights into the expression rules and dynamic response process of the Se-mediated plant resistance mechanism. This study provided the theoretical basis and technical support for crop safety in cropland ecosystems and cadmium-contaminated areas.


Assuntos
Cádmio , Oryza , Proteínas de Plantas , Proteômica , Plântula , Selênio , Oryza/genética , Oryza/metabolismo , Oryza/efeitos dos fármacos , Selênio/farmacologia , Cádmio/toxicidade , Plântula/genética , Plântula/efeitos dos fármacos , Plântula/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos dos fármacos , Perfilação da Expressão Gênica , Transcriptoma , Genes de Plantas
9.
BMC Genom Data ; 25(1): 43, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38710997

RESUMO

BACKGROUND: Cadmium (Cd) is extremely toxic and non-essential for plants. Different soybean varieties differ greatly in their Cd accumulation ability, but little is known about the underlying molecular mechanisms. RESULTS: Here, we performed transcriptomic analysis using Illumina pair-end sequencing on root tissues from two soybean varieties (su8, high-Cd-accumulating (HAS) and su7, low Cd-accumulating (LAS)) grown with 0 or 50 µM CdSO4. A total of 18.76 million clean reads from the soybean root samples were obtained after quality assessment and data filtering. After Cd treatment, 739 differentially expressed genes (DEGs; 265 up and 474 down) were found in HAS; however, only 259 DEGs (88 up and 171 down) were found in LAS, and 64 genes were same between the two varieties. Pathway enrichment analysis suggested that after cadmium treatment, the DEGs between LAS and HAS were mainly enriched in glutathione metabolism and plant-pathogen interaction pathways. KEGG analysis showed that phenylalanine metabolism responding to cadmium stress in LAS, while ABC transporters responding to cadmium stress in HAS. Besides we found more differential expressed heavy metal transporters such as ABC transporters and zinc transporters in HAS than LAS, and there were more transcription factors differently expressed in HAS than LAS after cadmium treatment in two soybean varieties, eg. bHLH transcription factor, WRKY transcription factor and ZIP transcription factor. CONCLUSIONS: Findings from this study will shed new insights on the underlying molecular mechanisms behind the Cd accumulation in soybean.


Assuntos
Cádmio , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glycine max , Estresse Fisiológico , Glycine max/genética , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Genótipo , Transcriptoma/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética
10.
PeerJ ; 12: e17371, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708338

RESUMO

Background: Platycodon grandiflorus belongs to the genus Platycodon and has many pharmacological effects, such as expectorant, antitussive, and anti-tumor properties. Among transcription factor families peculiar to eukaryotes, the basic leucine zipper (bZIP) family is one of the most important, which exists widely in plants and participates in many biological processes, such as plant growth, development, and stress responses. However, genomic analysis of the bZIP gene family and related stress response genes has not yet been reported in P. grandiflorus. Methods: P. grandiflorus bZIP (PgbZIP) genes were first identified here, and the phylogenetic relationships and conserved motifs in the PgbZIPs were also performed. Meanwhile, gene structures, conserved domains, and the possible protein subcellular localizations of these PgbZIPs were characterized. Most importantly, the cis-regulatory elements and expression patterns of selected genes exposed to two different stresses were analyzed to provide further information on PgbZIPs potential biological roles in P. grandiflorus upon exposure to environmental stresses. Conclusions: Forty-six PgbZIPs were identified in P. grandiflorus and divided into nine groups, as displayed in the phylogenetic tree. The results of the chromosomal location and the collinearity analysis showed that forty-six PgbZIP genes were distributed on eight chromosomes, with one tandem duplication event and eleven segmental duplication events identified. Most PgbZIPs in the same phylogenetic group have similar conserved motifs, domains, and gene structures. There are cis-regulatory elements related to the methyl jasmonate (MeJA) response, low-temperature response, abscisic acid response, auxin response, and gibberellin response. Ten PgbZIP genes were selected to study their expression patterns upon exposure to low-temperature and MeJA treatments, and all ten genes responded to these stresses. The real-time quantitative polymerase chain reaction (RT-qPCR) results suggest that the expression levels of most PgbZIPs decreased significantly within 6 h and then gradually increased to normal or above normal levels over the 90 h following MeJA treatment. The expression levels of all PgbZIPs were significantly reduced after 3 h of the low-temperature treatment. These results reveal the characteristics of the PgbZIP family genes and provide valuable information for improving P. grandiflorus's ability to cope with environmental stresses during growth and development.


Assuntos
Acetatos , Fatores de Transcrição de Zíper de Leucina Básica , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oxilipinas , Filogenia , Platycodon , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Acetatos/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Platycodon/genética , Platycodon/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura Baixa , Reguladores de Crescimento de Plantas/farmacologia
11.
PeerJ ; 12: e17286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708356

RESUMO

Drought and salinity are the major abiotic stress factors negatively affecting the morphophysiological, biochemical, and anatomical characteristics of numerous plant species worldwide. The detrimental effects of these environmental factors can be seen in leaf and stem anatomical structures including the decrease in thickness of cell walls, palisade and spongy tissue, phloem and xylem tissue. Also, the disintegration of grana staking, and an increase in the size of mitochondria were observed under salinity and drought conditions. Drought and salt stresses can significantly decrease plant height, number of leaves and branches, leaf area, fresh and dry weight, or plant relative water content (RWC%) and concentration of photosynthetic pigments. On the other hand, stress-induced lipid peroxidation and malondialdehyde (MDA) production, electrolyte leakage (EL%), and production of reactive oxygen species (ROS) can increase under salinity and drought conditions. Antioxidant defense systems such as catalase, peroxidase, glutathione reductase, ascorbic acid, and gamma-aminobutyric acid are essential components under drought and salt stresses to protect the plant organelles from oxidative damage caused by ROS. The application of safe and eco-friendly treatments is a very important strategy to overcome the adverse effects of drought and salinity on the growth characteristics and yield of plants. It is shown that treatments with plant growth-promoting bacteria (PGPB) can improve morphoanatomical characteristics under salinity and drought stress. It is also shown that yeast extract, mannitol, proline, melatonin, silicon, chitosan, α-Tocopherols (vitamin E), and biochar alleviate the negative effects of drought and salinity stresses through the ROS scavenging resulting in the improvement of plant attributes and yield of the stressed plants. This review discusses the role of safety and eco-friendly treatments in alleviating the harmful effects of salinity and drought associated with the improvement of the anatomical, morphophysiological, and biochemical features in plants.


Assuntos
Estresse Fisiológico , Estresse Fisiológico/efeitos dos fármacos , Secas , Desenvolvimento Vegetal/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Salinidade , Plantas/metabolismo , Plantas/efeitos dos fármacos
12.
J Hazard Mater ; 470: 134245, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38603910

RESUMO

This study delved into the physiological and molecular mechanisms underlying the mitigation of cadmium (Cd) stress in the model medicinal plant Salvia miltiorrhiza through the application of ZnO quantum dots (ZnO QDs, 3.84 nm). A pot experiment was conducted, wherein S. miltiorrhiza was subjected to Cd stress for six weeks with foliar application of 100 mg/L ZnO QDs. Physiological analyses demonstrated that compared to Cd stress alone, ZnO QDs improved biomass, reduced Cd accumulation, increased the content of photosynthetic pigments (chlorophyll and carotenoids), and enhanced the levels of essential nutrient elements (Ca, Mn, and Cu) under Cd stress. Furthermore, ZnO QDs significantly lowered Cd-induced reactive oxygen species (ROS) content, including H2O2, O2-, and MDA, while enhancing the activity of antioxidant enzymes (SOD, POD, APX, and GSH-PX). Additionally, ZnO QDs promoted the biosynthesis of primary and secondary metabolites, such as total protein, soluble sugars, terpenoids, and phenols, thereby mitigating Cd stress in S. miltiorrhiza. At the molecular level, ZnO QDs were found to activate the expression of stress signal transduction-related genes, subsequently regulating the expression of downstream target genes associated with metal transport, cell wall synthesis, and secondary metabolite synthesis via transcription factors. This activation mechanism contributed to enhancing Cd tolerance in S. miltiorrhiza. In summary, these findings shed light on the mechanisms underlying the mitigation of Cd stress by ZnO QDs, offering a potential nanomaterial-based strategy for enhancing Cd tolerance in medicinal plants.


Assuntos
Cádmio , Pontos Quânticos , Espécies Reativas de Oxigênio , Salvia miltiorrhiza , Óxido de Zinco , Pontos Quânticos/química , Óxido de Zinco/química , Óxido de Zinco/toxicidade , Salvia miltiorrhiza/efeitos dos fármacos , Salvia miltiorrhiza/metabolismo , Cádmio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
13.
J Hazard Mater ; 470: 134263, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613951

RESUMO

Nanotechnology offers a promising and innovative approach to mitigate biotic and abiotic stress in crop production. In this study, the beneficial role and potential detoxification mechanism of biogenic selenium nanoparticles (Bio-SeNPs) prepared from Psidium guajava extracts in alleviating antimony (Sb) toxicity in rice seedlings (Oryza sativa L.) were investigated. The results revealed that exogenous addition of Bio-SeNPs (0.05 g/L) into the hydroponic-cultured system led to a substantial enhancement in rice shoot height (73.3%), shoot fresh weight (38.7%) and dry weight (28.8%) under 50 µM Sb(III) stress conditions. Compared to Sb exposure alone, hydroponic application of Bio-SeNPs also greatly promoted rice photosynthesis, improved cell viability and membrane integrity, reduced reactive oxygen species (ROS) levels, and increased antioxidant activities. Meanwhile, exogenous Bio-SeNPs application significantly lowered the Sb accumulation in rice roots (77.1%) and shoots (35.1%), and reduced its root to shoot translocation (55.3%). Additionally, Bio-SeNPs addition were found to modulate the subcellular distribution of Sb and the expression of genes associated with Sb detoxification in rice, such as OsCuZnSOD2, OsCATA, OsGSH1, OsABCC1, and OsWAK11. Overall, our findings highlight the great potential of Bio-SeNPs as a promising alternative for reducing Sb accumulation in crop plants and boosting crop production under Sb stress conditions.


Assuntos
Antimônio , Antioxidantes , Regulação da Expressão Gênica de Plantas , Nanopartículas , Oryza , Selênio , Oryza/efeitos dos fármacos , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/genética , Antimônio/toxicidade , Antioxidantes/metabolismo , Selênio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nanopartículas/toxicidade , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento
14.
J Hazard Mater ; 470: 134228, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626683

RESUMO

Cadmium (Cd) and arsenic (As) are two highly toxic heavy metals and metalloids that coexist in many situations posing severe threats to plants. Our investigation was conducted to explore the different regulatory mechanisms of ryegrass (Lolium perenne L.) responding to individual and combined Cd and As stresses in hydroponics. Results showed that the ryegrass well-growth phenotype was not affected by Cd stress of 10 mg·L-1. However, As of 10 mg·L-1 caused rapid water loss, proline surge, and chlorosis in shoots, suggesting that ryegrass was highly sensitive to As. Transcriptomic analysis revealed that the transcription factor LpIRO2 mediated the upregulation of ZIP1 and YSL6 that played an important role in Cd tolerance. We found that the presence of As caused the overexpression of LpSWT12, a process potentially regulated by bHLH14, to mitigate hyperosmolarity. Indoleacetic acid (IAA) and abscisic acid (ABA) contents and expression of their signaling-related genes were significantly affected by As stress rather than Cd. We predict a regulatory network to illustrate the interaction between transporters, transcription factors, and signaling transduction, and explain the antagonism of Cd and As toxicity. This present work provides a research basis for plant protection from Cd and As pollution.


Assuntos
Arsênio , Cádmio , Regulação da Expressão Gênica de Plantas , Lolium , Reguladores de Crescimento de Plantas , Estresse Fisiológico , Cádmio/toxicidade , Lolium/efeitos dos fármacos , Lolium/metabolismo , Lolium/genética , Arsênio/toxicidade , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácidos Indolacéticos/metabolismo , Ácido Abscísico/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
15.
Sci Total Environ ; 930: 172695, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38663613

RESUMO

General control non-derepressible-2 (GCN2) is widely expressed in eukaryotes and responds to biotic and abiotic stressors. However, the precise function and mechanism of action of GCN2 in response to cadmium (Cd) stress in Nicotiana tabacum L. (tobacco) remains unclear. We investigated the role of NtGCN2 in Cd tolerance and explored the mechanism by which NtGCN2 responds to Cd stress in tobacco by exposing NtGCN2 transgenic tobacco lines to different concentrations of CdCl2. NtGCN2 was activated under 50 µmol·L-1 CdCl2 stress and enhanced the Cd tolerance and photosynthetic capacities of tobacco by increasing chlorophyll content and antioxidant capacity by upregulating NtSOD, NtPOD, and NtCAT expression and corresponding enzyme activities and decreasing malondialdehyde and O2·- contents. NtGCN2 enhanced the osmoregulatory capacity of tobacco by elevating proline (Pro) and soluble sugar contents and maintaining low levels of relative conductivity. Finally, NtGCN2 enhanced Cd tolerance in tobacco by reducing Cd uptake and translocation, promoting Cd efflux, and regulating Cd subcellular distribution. In conclusion, NtGCN2 improves the tolerance of tobacco to Cd through a series of mechanisms, namely, increasing antioxidant, photosynthetic, and osmoregulation capacities and regulating Cd uptake, translocation, efflux, and subcellular distribution. This study provides a scientific basis for further exploration of the role of NtGCN2 in plant responses to Cd stress and enhancement of the Cd stress signaling network in tobacco.


Assuntos
Cádmio , Resistência a Medicamentos , Nicotiana , Proteínas de Plantas , Cádmio/toxicidade , Cádmio/metabolismo , Nicotiana/fisiologia , Nicotiana/metabolismo , Fotossíntese/efeitos dos fármacos , Fotossíntese/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Clorofila/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Resistência a Medicamentos/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Ativação Enzimática/genética , Osmorregulação/genética , Espaço Intracelular/metabolismo
16.
Plant Physiol Biochem ; 210: 108646, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657549

RESUMO

Whether nanoparticles (NPs) are boon or bane for society has been a centre of in-depth debate and key consideration in recent times. Exclusive physicochemical properties like small size, large surface area-to-volume ratio, robust catalytic activity, immense surface energy, magnetism and superior biocompatibility make NPs obligatory in many scientific, biomedical and industrial ventures. Nano-enabled products are newer entrants in the present era. To attenuate environmental stress and maximize crop yields, scientists are tempted to introduce NPs as augmented supplements in agriculture. The feasible approaches for NPs delivery are irrigation, foliar spraying or seed priming. Internalization of excessive NPs to plants endorses negative implications at higher trophic levels via biomagnification. The characteristics of NPs (dimensions, type, solubility, surface charge), applied concentration and duration of exposure are prime factors conferring nanotoxicity in plants. Several reports approved NPs persuaded toxicity can precisely mimic abiotic stress effects. The signature effects of nanotoxicity include poor root outgrowth, biomass reduction, oxidative stress evolution, lipid peroxidation, biomolecular damage, perturbed antioxidants, genotoxicity and nutrient imbalance in plants. NPs stress impels mitogen-activated protein kinase signaling cascade and urges stress responsive defence gene expression to counteract stress in plants. Exogenous supplementation of nitric oxide (NO), arbuscular mycorrhizal fungus (AMF), phytohormones, and melatonin (ME) is novel strategy to circumvent nanotoxicity. Briefly, this review appraises plants' physio-biochemical responses and adaptation scenarios to endure NPs stress. As NPs stress represents large-scale contaminants, advanced research is indispensable to avert indiscriminate NPs usage for synchronizing nano-security in multinational markets.


Assuntos
Nanopartículas , Nanopartículas/química , Plantas/metabolismo , Plantas/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/metabolismo
17.
Plant Physiol Biochem ; 210: 108573, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569423

RESUMO

Riboflavins are secreted under iron deficiency as a part of the iron acquisition Strategy I, mainly when the external pH is acidic. In plants growing under Fe-deficiency and alkaline conditions, riboflavins have been reported to accumulate inside the roots, with very low or negligible secretion. However, the fact that riboflavins may undergo hydrolysis under alkaline conditions has been so far disregarded. In this paper, we report the presence of riboflavin derivatives and products of their alkaline hydrolysis (lumichrome, lumiflavin and carboxymethylflavin) in nutrient solutions of Cucumis sativus plants grown under different iron regimes (soluble Fe-EDDHA in the nutrient solution, total absence of iron in the nutrient solution, or two different doses of FeSO4 supplied as a foliar spray), either cultivated in slightly acidic (pH 6) or alkaline (pH 8.8, 10 mM bicarbonate) nutrient solutions. The results show that root synthesis and exudation of riboflavins is controlled by shoot iron status, and that exuded riboflavins undergo hydrolysis, especially at alkaline pH, with lumichrome being the main product of hydrolysis.


Assuntos
Raízes de Plantas , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Hidrólise , Cucumis sativus/metabolismo , Cucumis sativus/efeitos dos fármacos , Deficiências de Ferro , Riboflavina/metabolismo , Concentração de Íons de Hidrogênio , Estresse Fisiológico/efeitos dos fármacos , Ferro/metabolismo , Exsudatos de Plantas/metabolismo
18.
Int J Biol Macromol ; 268(Pt 1): 131601, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626833

RESUMO

This study investigates the impact of water and salinity stress on Aloe vera, focusing on the role of Aloe vera polysaccharides in mitigating these stresses. Pectins and acemannan were the most affected polymers. Low soil moisture and high salinity (NaCl 80 mM) increased pectic substances, altering rhamnogalacturonan type I in Aloe vera gel. Aloe vera pectins maintained a consistent 60 % methyl-esterification regardless of conditions. Interestingly, acemannan content rose with salinity, particularly under low moisture, accompanied by 90 to 150 % acetylation increase. These changes improved the functionality of Aloe vera polysaccharides: pectins increased cell wall reinforcement and interactions, while highly acetylated acemannan retained water for sustained plant functions. This study highlights the crucial role of Aloe vera polysaccharides in enhancing plant resilience to water and salinity stress, leading to improved functional properties.


Assuntos
Aloe , Mananas , Pectinas , Aloe/química , Mananas/química , Pectinas/química , Água/química , Parede Celular/química , Parede Celular/efeitos dos fármacos , Salinidade , Polissacarídeos/química , Polissacarídeos/farmacologia , Tolerância ao Sal/efeitos dos fármacos , Acetilação , Estresse Fisiológico/efeitos dos fármacos
19.
Chemosphere ; 358: 142190, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685336

RESUMO

Selenium pollution can lead to a decrease in crop yield and quality. However, the toxicological mechanisms of high Se concentrations on crops remain unclear. This study aimed to elucidate the physiological and proteomic molecular responses to Se stress in Oryza sativa. The results showed that under selenium stress, enzymatic activities of catalase, peroxidase, and superoxide dismutase in indica rice decreased by 61%, 28%, and 68%, respectively. The contents of non-enzymatic antioxidant substances ascorbic acid, glutathione, cysteine, proline, anthocyanidin, and flavonoids were decreased by 13%, 39%, 46%, 32%, 20%, and 5%, respectively, which significantly inhibited the antioxidant stress process of plants. At the same time, the results of proteomics analysis showed that rice seedlings, under Se stress, are involved in photosynthesis, photosynthesis-antenna proteins, carbon fixation, porphyrin metabolism, glyoxylate, and dicarboxylate. The differentially expressed proteins in metabolism and glutathione metabolism pathways showed a downward trend. It significantly inhibited the anti-oxidative stress, photosynthesis, and energy cycling process in plant cells, destroyed the homeostasis balance of rice plants, and inhibited the growth and development of rice. This finding reveals the molecular toxicological mechanism of Se stress on rice seedlings and provides a possible way to improve Se-resistant rice seedlings.


Assuntos
Oryza , Fotossíntese , Proteômica , Selênio , Oryza/efeitos dos fármacos , Oryza/metabolismo , Oryza/fisiologia , Fotossíntese/efeitos dos fármacos , Selênio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Proteínas de Plantas/metabolismo , Antioxidantes/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Glutationa/metabolismo , Catalase/metabolismo , Poluentes do Solo/toxicidade , Peroxidase/metabolismo
20.
Fish Shellfish Immunol ; 149: 109582, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657880

RESUMO

Ammonia in aquatic environments is toxic to fish, directly impacting their growth performance and development. Activation of autophagy can facilitate intracellular component renewal and enhance an organism's adaptability to adverse environments. Therefore, this study investigates the impact of autophagy on the yellow catfish under acute ammonia stress. In this study, the yellow catfish intraperitoneally injected with 0.9 % sodium chloride were placed with 0 (CON group) and 125 (HA group) mg/L T-AN (Total ammonia nitrogen) dechlorinated water. The yellow catfish intraperitoneally injected with 30 mg/kg fish CQ (Chloroquine, HA + CQ group) and 1.5 mg/kg fish RAPA (rapamycin, HA + RAPA group) were placed in dechlorinated water containing 125 mg/L T-AN. The results showed that activation of autophagy by injecting with RAPA can alleviate oxidative stress (catalase, superoxide dismutase, total antioxidant capacity significantly increased, H2O2 content significantly decreased), and inflammatory response (pro-inflammatory factors TNF-α, MyD88, IL 1-ß gene expression decreased significantly), apoptosis (baxa, Bcl2, Tgf-ß, Smad2, Caspase3, Caspase 9 gene expression decreased significantly) induced by ammonia stress. In addition, activation of autophagy in yellow catfish can enhance ammonia detoxification by promoting the urea cycle and synthesis of glutamine (the mRNA level of CPS Ⅰ, ARG, OTC, ASS, ASL, and GS increased in the HA + RAPA group). The data above demonstrates that activating autophagy can alleviate oxidative stress, inflammatory responses, and cell apoptosis induced by ammonia stress. Therefore, enhancing autophagy is proposed as a potential strategy to mitigate the detrimental impacts of ammonia stress on yellow catfish.


Assuntos
Amônia , Apoptose , Autofagia , Peixes-Gato , Inflamação , Estresse Oxidativo , Animais , Peixes-Gato/imunologia , Amônia/toxicidade , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Inflamação/veterinária , Inflamação/induzido quimicamente , Poluentes Químicos da Água/toxicidade , Doenças dos Peixes/imunologia , Doenças dos Peixes/induzido quimicamente , Estresse Fisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA