Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.370
Filtrar
2.
J Med Primatol ; 53(3): e12701, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38725092

RESUMO

BACKGROUND: Stress profoundly affects physical and emotional well-being, extending its physiological influence to the female menstrual cycle, impeding the hypothalamus-pituitary-gonadal (HPG) axis, and affecting fertility by suppressing sex-stimulating hormones. METHODS: In this study, we meticulously analyzed menstrual cycles and corresponding hormonal fluctuations in three female Cynomolgus monkeys. RESULTS: The preliminary findings indicated lower-than-normal levels of cortisol, follicle-stimulating hormone (FSH), and estradiol. Anovulatory bleeding occurred in one monkey, which could be linked to stress. In contrast to cortisol, alkaline phosphatase (ALP), which is correlated to cortisol levels, was consistently elevated in menstruating monkeys, suggesting its potential as a stress indicator. The non-menstruating group exhibited stress-related weight loss, emphasizing the observed ALP trends. CONCLUSIONS: Non-menstruating monkeys may experience more stress than menstruating monkeys. The implications of this study extend beyond the confines of primate studies and offer a valuable method for enhancing the welfare of female Cynomolgus monkeys.


Assuntos
Estradiol , Hidrocortisona , Macaca fascicularis , Ciclo Menstrual , Estresse Fisiológico , Animais , Macaca fascicularis/fisiologia , Feminino , Estradiol/sangue , Ciclo Menstrual/fisiologia , Hidrocortisona/sangue , Estresse Fisiológico/fisiologia , Hormônio Foliculoestimulante/sangue , Estresse Psicológico
3.
Stress ; 27(1): 2327333, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38711299

RESUMO

Although dysregulated stress biology is becoming increasingly recognized as a key driver of lifelong disparities in chronic disease, we presently have no validated biomarkers of toxic stress physiology; no biological, behavioral, or cognitive treatments specifically focused on normalizing toxic stress processes; and no agreed-upon guidelines for treating stress in the clinic or evaluating the efficacy of interventions that seek to reduce toxic stress and improve human functioning. We address these critical issues by (a) systematically describing key systems and mechanisms that are dysregulated by stress; (b) summarizing indicators, biomarkers, and instruments for assessing stress response systems; and (c) highlighting therapeutic approaches that can be used to normalize stress-related biopsychosocial functioning. We also present a novel multidisciplinary Stress Phenotyping Framework that can bring stress researchers and clinicians one step closer to realizing the goal of using precision medicine-based approaches to prevent and treat stress-associated health problems.


Assuntos
Fenótipo , Estresse Psicológico , Humanos , Estresse Fisiológico/fisiologia , Biomarcadores , Medicina de Precisão/métodos
4.
Front Endocrinol (Lausanne) ; 15: 1272270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689729

RESUMO

During parturition and the immediate post-partum period there are two opposite, yet interdependent and intertwined systems that are highly active and play a role in determining lifelong health and behaviour in both the mother and her infant: the stress and the anti-stress (oxytocin) system. Before attempting to understand how the environment around birth determines long-term health trajectories, it is essential to understand how these two systems operate and how they interact. Here, we discuss together the hormonal and neuronal arms of both the hypothalamic-pituitary-adrenal (HPA) axis and the oxytocinergic systems and how they interact. Although the HPA axis and glucocorticoid stress axis are well studied, the role of oxytocin as an extremely powerful anti-stress hormone deserves more attention. It is clear that these anti-stress effects depend on oxytocinergic nerves emanating from the supraoptic nucleus (SON) and paraventricular nucleus (PVN), and project to multiple sites at which the stress system is regulated. These, include projections to corticotropin releasing hormone (CRH) neurons within the PVN, to the anterior pituitary, to areas involved in sympathetic and parasympathetic nervous control, to NA neurons in the locus coeruleus (LC), and to CRH neurons in the amygdala. In the context of the interaction between the HPA axis and the oxytocin system birth is a particularly interesting period as, for both the mother and the infant, both systems are very strongly activated within the same narrow time window. Data suggest that the HPA axis and the oxytocin system appear to interact in this early-life period, with effects lasting many years. If mother-child skin-to-skin contact occurs almost immediately postpartum, the effects of the anti-stress (oxytocin) system become more prominent, moderating lifelong health trajectories. There is clear evidence that HPA axis activity during this time is dependent on the balance between the HPA axis and the oxytocin system, the latter being reinforced by specific somatosensory inputs, and this has long-term consequences for stress reactivity.


Assuntos
Sistema Hipotálamo-Hipofisário , Ocitocina , Sistema Hipófise-Suprarrenal , Ocitocina/metabolismo , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/fisiologia , Feminino , Animais , Estresse Psicológico/metabolismo , Estresse Fisiológico/fisiologia , Gravidez , Yin-Yang
5.
PLoS One ; 19(5): e0302933, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38701075

RESUMO

Animals in urban areas often encounter novel and potentially stressful conditions. It is important to understand how wildlife cope with anthropogenic disturbance. To investigate this specific adaptation we live-trapped squirrels in two study sites in Warsaw: a forest reserve and an urban park and we estimated stress responses at three levels: long-term and medium-term stress (the level of stress hormones, i.e. cortisol and cortisone concentrations, in hair and feces) and acute reaction to human-induced stress (measured during handling with the aid of the three indices: breath rate, struggle rate, and vocalization). According to GLMM models no difference in the stress hormones level was found between the two populations. The only differences in cortisol concentrations clearly depended on the season, i.e. being higher in autumn and winter comparying to other seasons. There was no influence of sex, or reproductive status on stress hormones. Forest squirrels had significantly higher breath rates, suggesting they were more stressed by handling. There was no difference in the struggle rate between study areas, this index was mostly affected by season (i.e. being highest in winter). First-trapped squirrels vocalized less than during the subsequent trappings. Assumingly, during the first, and more stressful trapping, squirrels used 'freezing' and/or little vocalization, while during next captures they used alarm calls to warn conspecifics. Overall, we showed that the two squirrel populations differed only in terms of their breath rate. This suggests that they did not differ in medium-term and long-term stress in general, but they can differ in acute response to handling. This also suggests that both populations were similarly affected by environmental factors. The lack of clear effects may also be due to population heterogeneity. Thus, in order to assess the effects of anthropogenic stressors a broader range of indicators and diverse analytical methods, including behavioral analyses, should be employed.


Assuntos
Hidrocortisona , Sciuridae , Estresse Fisiológico , Animais , Sciuridae/fisiologia , Hidrocortisona/metabolismo , Hidrocortisona/análise , Estresse Fisiológico/fisiologia , Humanos , Masculino , Estações do Ano , Feminino , Cidades , Vocalização Animal/fisiologia , População Urbana
6.
Stress ; 27(1): 2352626, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38766757

RESUMO

The cold pressor test (CPT) elicits strong cardiovascular reactions via activation of the sympathetic nervous system (SNS), yielding subsequent increases in heart rate (HR) and blood pressure (BP). However, little is known on how exposure to the CPT affects cardiac ventricular repolarization. Twenty-eight healthy males underwent both a bilateral feet CPT and a warm water (WW) control condition on two separate days, one week apart. During pre-stress baseline and stress induction cardiovascular signals (ECG lead II, Finometer BP) were monitored continuously. Salivary cortisol and subjective stress ratings were assessed intermittently. Corrected QT (QTc) interval length and T-wave amplitude (TWA) were assessed for each heartbeat and subsequently aggregated individually over baseline and stress phases, respectively. CPT increases QTc interval length and elevates the TWA. Stress-induced changes in cardiac repolarization are only in part and weakly correlated with cardiovascular and cortisol stress-reactivity. Besides its already well-established effects on cardiovascular, endocrine, and subjective responses, CPT also impacts on cardiac repolarization by elongation of QTc interval length and elevation of TWA. CPT effects on cardiac repolarization share little variance with the other indices of stress reactivity, suggesting a potentially incremental value of this parameter for understanding psychobiological adaptation to acute CPT stress.


Assuntos
Pressão Sanguínea , Temperatura Baixa , Eletrocardiografia , Frequência Cardíaca , Hidrocortisona , Humanos , Masculino , Frequência Cardíaca/fisiologia , Adulto , Hidrocortisona/metabolismo , Pressão Sanguínea/fisiologia , Adulto Jovem , Estresse Fisiológico/fisiologia , Sistema Nervoso Simpático/fisiologia , Saliva/metabolismo , Saliva/química , Estresse Psicológico/fisiopatologia , Coração/fisiologia
7.
Sci Rep ; 14(1): 11349, 2024 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762532

RESUMO

Passive translational acceleration (PTA) has been demonstrated to induce the stress response and regulation of autonomic balance in healthy individuals. Electrodermal activity (EDA) and heart rate variability (HRV) measurements are reliable indicators of the autonomic nervous system (ANS) and can be used to assess stress levels. The objective of this study was to investigate the potential of combining EDA and HRV measurements in assessing the physiological stress response induced by PTA. Fourteen healthy subjects were randomly assigned to two groups of equal size. The experimental group underwent five trials of elevator rides, while the control group received a sham treatment. EDA and HRV indices were obtained via ultra-short-term analysis and compared between the two groups to track changes in the ANS. In addition, the complexity of the EDA time series was compared between the 4 s before and the 2-6 s after the onset of PTA to assess changes in the subjects' stress levels in the experimental group. The results revealed a significant increase in the skin conductance response (SCR) frequency and a decrease in the root mean square of successive differences (RMSSD) and high frequency (HF) components of HRV. In terms of stress assessment, the results showed an increase in the complexity of the EDA time series 2-6 s after the onset of PTA. These results indicate an elevation in sympathetic tone when healthy subjects were exposed to a translational transport scenario. Furthermore, evidence was provided for the ability of EDA complexity to differentiate stress states in individual trials of translational acceleration.


Assuntos
Sistema Nervoso Autônomo , Resposta Galvânica da Pele , Voluntários Saudáveis , Frequência Cardíaca , Estresse Fisiológico , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Aceleração , Sistema Nervoso Autônomo/fisiologia , Resposta Galvânica da Pele/fisiologia , Frequência Cardíaca/fisiologia , Projetos Piloto , Estresse Fisiológico/fisiologia
8.
PeerJ ; 12: e17171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646487

RESUMO

As the analysis of blood metabolites has become more readily accessible thanks to the use of point-of-care analyzers, it is now possible to evaluate stress level of wild animals directly in the field. Lactate is receiving much attention as a good stress level proxy in individuals subjected to capture, manual restraint, and data sampling in the wild, and appropriate protocols to maintain lactate values low should be preferred. In this study we compare how two different capture methodologies, hand grab vs. noose pole, affect the variation of blood lactate values in Cyclura carinata iguanas when captured for sampling. We used blood lactate concentration, measured immediately upon- and 15 min after-capture, as a proxy for stress level. While the primary goal of this work is to determine the least stressful capture methodology to be favored when sampling this and other wild iguanas, we also evaluated additional baseline physiological parameters relevant to the health and disease monitoring for this species. Our results show that while initial lactate values level-out in sampled individuals after 15 min in captivity, regardless of the capture methodology, rock iguanas captured by noose pole showed significantly higher lactate concentration and increased heartbeat rate immediately after capture. While the overall health evaluation determined that all analyzed individuals were in good health, based on our results we recommend that, when possible, hand capture should be preferred over noose pole when sampling wild individuals.


Assuntos
Iguanas , Ácido Láctico , Estresse Fisiológico , Animais , Estresse Fisiológico/fisiologia , Ácido Láctico/sangue , Masculino , Feminino , Espécies em Perigo de Extinção , Frequência Cardíaca , Animais Selvagens
9.
Trends Neurosci ; 47(5): 319-321, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614892

RESUMO

In a recent study, Oliveira and colleagues revealed how growth arrest and DNA damage-inducible protein 34 (GADD34), an effector of the integrated stress response, initiates the translation of synaptic plasticity-related mRNAs following brain-derived neurotrophic factor (BDNF) stimulation. This work suggests that GADD34 may link transcriptional products with translation control upon neuronal activation, illuminating how protein synthesis is orchestrated in neuronal plasticity.


Assuntos
Plasticidade Neuronal , Neurônios , Biossíntese de Proteínas , Proteína Fosfatase 1 , Neurônios/metabolismo , Neurônios/fisiologia , Animais , Proteína Fosfatase 1/metabolismo , Humanos , Biossíntese de Proteínas/fisiologia , Plasticidade Neuronal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Estresse Fisiológico/fisiologia
11.
Plant Cell Rep ; 43(4): 103, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502356

RESUMO

KEY MESSAGE: Methylglyoxal and glyoxalase function a significant role in plant response to heavy metal stress. We update and discuss the most recent developments of methylglyoxal and glyoxalase in regulating plant response to heavy metal stress. Methylglyoxal (MG), a by-product of several metabolic processes, is created by both enzymatic and non-enzymatic mechanisms. It plays an important role in plant growth and development, signal transduction, and response to heavy metal stress (HMS). Changes in MG content and glyoxalase (GLY) activity under HMS imply that they may be potential biomarkers of plant stress resistance. In this review, we summarize recent advances in research on the mechanisms of MG and GLY in the regulation of plant responses to HMS. It has been discovered that appropriate concentrations of MG assist plants in maintaining a balance between growth and development and survival defense, therefore shielding them from heavy metal harm. MG and GLY regulate plant physiological processes by remodeling cellular redox homeostasis, regulating stomatal movement, and crosstalking with other signaling molecules (including abscisic acid, gibberellic acid, jasmonic acid, cytokinin, salicylic acid, melatonin, ethylene, hydrogen sulfide, and nitric oxide). We also discuss the involvement of MG and GLY in the regulation of plant responses to HMS at the transcriptional, translational, and metabolic levels. Lastly, considering the current state of research, we present a perspective on the future direction of MG research to elucidate the MG anti-stress mechanism and offer a theoretical foundation and useful advice for the remediation of heavy metal-contaminated environments in the future.


Assuntos
Lactoilglutationa Liase , Metais Pesados , Aldeído Pirúvico/metabolismo , Plantas/metabolismo , Lactoilglutationa Liase/metabolismo , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Desenvolvimento Vegetal , Estresse Fisiológico/fisiologia
12.
Plant Physiol Biochem ; 208: 108504, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38507841

RESUMO

Nitric oxide (NO) is a gaseous free radical that acts as a messenger for various plant phenomena corresponding to photomorphogenesis, fertilisation, flowering, germination, growth, and productivity. Recent developments have suggested the critical role of NO in inducing adaptive responses in plants during salinity. NO minimises salinity-induced photosynthetic damage and improves plant-water relation, nutrient uptake, stomatal conductance, electron transport, and ROS and antioxidant metabolism. NO contributes active participation in ABA-mediated stomatal regulation. Similar crosstalk of NO with other phytohormones such as auxins (IAAs), gibberellins (GAs), cytokinins (CKs), ethylene (ET), salicylic acid (SA), strigolactones (SLs), and brassinosteroids (BRs) were also observed. Additionally, we discuss NO interaction with other gaseous signalling molecules such as reactive oxygen species (ROS) and reactive sulphur species (RSS). Conclusively, the present review traces critical events in NO-induced morpho-physiological adjustments under salt stress and discusses how such modulations upgrade plant resilience.


Assuntos
Óxido Nítrico , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/fisiologia , Plantas/metabolismo , Estresse Salino , Salinidade
13.
Arch Orthop Trauma Surg ; 144(5): 2357-2363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38498157

RESUMO

INTRODUCTION: While increased body mass index (BMI) in patients undergoing total hip arthroplasty (THA) increases surgical complexity, there is a paucity of objective studies assessing the impact of patient BMI on the cardiovascular stress experienced by surgeons during THA. The aim of this study was to assess the impact of patient BMI on surgeon cardiovascular strain during THA. METHODS: We prospectively evaluated three fellowship-trained arthroplasty surgeons performing a total of 115 THAs. A smart-vest worn by the surgeons recorded mean heart rate, stress index (correlate of sympathetic activation), respiratory rate, minute ventilation, and energy expenditure throughout the procedures. Patient demographics as well as perioperative data including surgical approach, surgery duration, number of assistants, and the timing of the surgery during the day were collected. Linear regression was utilized to assess the impact of patient characteristics and perioperative data on cardiorespiratory metrics. RESULTS: Average surgeon heart rate, energy expenditure, and stress index during surgery were 98.50 beats/min, 309.49 cal/h, and 14.10, respectively. Higher patient BMI was significantly associated with increased hourly energy expenditure (P = 0.027), mean heart rate (P = 0.037), and stress index (P = 0.027) independent of surgical approach. Respiratory rate and minute ventilation were not associated with patient BMI. The number of assistants and time of surgery during the day did not impact cardiorespiratory strain on the surgeon. CONCLUSION: The physiologic burden on surgeons during primary THA significantly increases as patient BMI increases. This study suggests that healthcare systems should consider adjusting reimbursement models to account for increased surgeon workload due to obesity. Further surgeons should adopt strategies in operative planning and case scheduling to handle this added physical strain. LEVEL OF EVIDENCE: III.


Assuntos
Artroplastia de Quadril , Índice de Massa Corporal , Humanos , Masculino , Feminino , Estudos Prospectivos , Pessoa de Meia-Idade , Idoso , Frequência Cardíaca/fisiologia , Metabolismo Energético/fisiologia , Cirurgiões/estatística & dados numéricos , Estresse Fisiológico/fisiologia
14.
Nature ; 627(8005): 839-846, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509363

RESUMO

The bone marrow adjusts blood cell production to meet physiological demands in response to insults. The spatial organization of normal and stress responses are unknown owing to the lack of methods to visualize most steps of blood production. Here we develop strategies to image multipotent haematopoiesis, erythropoiesis and lymphopoiesis in mice. We combine these with imaging of myelopoiesis1 to define the anatomy of normal and stress haematopoiesis. In the steady state, across the skeleton, single stem cells and multipotent progenitors distribute through the marrow enriched near megakaryocytes. Lineage-committed progenitors are recruited to blood vessels, where they contribute to lineage-specific microanatomical structures composed of progenitors and immature cells, which function as the production sites for each major blood lineage. This overall anatomy is resilient to insults, as it was maintained after haemorrhage, systemic bacterial infection and granulocyte colony-stimulating factor (G-CSF) treatment, and during ageing. Production sites enable haematopoietic plasticity as they differentially and selectively modulate their numbers and output in response to insults. We found that stress responses are variable across the skeleton: the tibia and the sternum respond in opposite ways to G-CSF, and the skull does not increase erythropoiesis after haemorrhage. Our studies enable in situ analyses of haematopoiesis, define the anatomy of normal and stress responses, identify discrete microanatomical production sites that confer plasticity to haematopoiesis, and uncover unprecedented heterogeneity of stress responses across the skeleton.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Estresse Fisiológico , Animais , Feminino , Masculino , Camundongos , Envelhecimento/fisiologia , Infecções Bacterianas/patologia , Infecções Bacterianas/fisiopatologia , Vasos Sanguíneos/citologia , Linhagem da Célula , Eritropoese , Fator Estimulador de Colônias de Granulócitos/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hemorragia/patologia , Hemorragia/fisiopatologia , Linfopoese , Megacariócitos/citologia , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Mielopoese , Crânio/irrigação sanguínea , Crânio/patologia , Crânio/fisiopatologia , Esterno/irrigação sanguínea , Esterno/citologia , Esterno/metabolismo , Estresse Fisiológico/fisiologia , Tíbia/irrigação sanguínea , Tíbia/citologia , Tíbia/metabolismo
15.
Am J Ind Med ; 67(5): 466-473, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493300

RESUMO

RATIONALE: Monitoring physiological strain is recommended to safeguard workers during heat exposure, but is logistically challenging. The perceptual strain index (PeSI) is a subjective estimate thought to reflect the physiological strain index (PSI) that requires no physiological monitoring. However, sex is known to influence perceptions of heat stress, potentially limiting the utility of the PeSI. OBJECTIVES: The objective of this study was to assess whether sex modifies the relationship between PeSI and PSI. METHODS: Thirty-four adults (15 females) walked on a treadmill (moderate intensity; ~200 W/m2) for 180 min or until termination (volitional fatigue, rectal temperature ≥39.5°C) in 16°C, 24°C, 28°C, and 32°C wet-bulb globe temperatures. Rectal temperature and heart rate were recorded to calculate PSI (0-10 scale). Rating of perceived exertion and thermal sensation were recorded to calculate PeSI (0-10 scale). Relationships between PSI and PeSI were evaluated via linear mixed models. Mean bias (95% limits of agreement [LoA]) between PSI and PeSI was assessed via Bland-Altman analysis. Mean absolute error between measures was calculated by summing absolute errors between the PeSI and the PSI and dividing by the sample size. FINDINGS: PSI increased with PeSI (p < 0.01) but the slope of this relation was not different between males and females (p = 0.83). Mean bias between PSI and PeSI was small (-0.4 points), but the 95% LoA (-3.5 to 2.7 points) and mean absolute error were wide (1.3 points). IMPACT: Our findings indicate that sex does not appreciably impact the agreement between the PeSI and PSI during simulated occupational heat stress. The PeSI is not a suitable surrogate for the PSI in either male or female workers.


Assuntos
Transtornos de Estresse por Calor , Estresse Ocupacional , Adulto , Humanos , Masculino , Feminino , Temperatura Corporal/fisiologia , Autorrelato , Resposta ao Choque Térmico , Teste de Esforço , Frequência Cardíaca/fisiologia , Temperatura Alta , Estresse Fisiológico/fisiologia
16.
Plant Cell Environ ; 47(5): 1895-1915, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38358119

RESUMO

Plant responses to abiotic stresses are dynamic, following the unpredictable changes of physical environmental parameters such as temperature, water and nutrients. Physiological and phenotypical responses to stress are intercalated by periods of recovery. An earlier stress can be remembered as 'stress memory' to mount a response within a generation or transgenerationally. The 'stress priming' phenomenon allows plants to respond quickly and more robustly to stressors to increase survival, and therefore has significant implications for agriculture. Although evidence for stress memory in various plant species is accumulating, understanding of the mechanisms implicated, especially for crops of agricultural interest, is in its infancy. Rice is a major food crop which is susceptible to abiotic stresses causing constraints on its cultivation and yield globally. Advancing the understanding of the stress response network will thus have a significant impact on rice sustainable production and global food security in the face of climate change. Therefore, this review highlights the effects of priming on rice abiotic stress tolerance and focuses on specific aspects of stress memory, its perpetuation and its regulation at epigenetic, transcriptional, metabolic as well as physiological levels. The open questions and future directions in this exciting research field are also laid out.


Assuntos
Oryza , Oryza/metabolismo , Estresse Fisiológico/fisiologia , Temperatura , Produtos Agrícolas
17.
Ann Bot ; 133(7): 969-982, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38366557

RESUMO

BACKGROUND AND AIMS: Plant water status is important for fruit development, because many fleshy fruits contain large amounts of water. However, there is no information on vascular flows of Persea americana 'Hass' avocado. The aims of this research were to explore the impact of drought stress on the water relationships of the 'Hass' avocado plant and its fruit growth. METHODS: Well-watered and water-stressed 'Hass' avocado plants were compared. Over 4 weeks, water flows through the shoot and fruit pedicel were monitored using external sap flow gauges. Fruit diameter was monitored using linear transducers, and stomatal conductance (gs), photosynthesis (A) and leaf and stem water potentials (Ñ°leaf and Ñ°stem) were measured to assess the response of the plants to water supply. KEY RESULTS: In well-watered conditions, the average water inflow to the shoot was 72 g day-1. Fruit water inflow was 2.72 g day-1, but there was water loss of 0.37 g day-1 caused by the outflow (loss back into the tree) through the vascular tissues and 1.06 g day-1 from the fruit skin. Overall, fruit volume increased by 1.4 cm3 day-1. In contrast, water flow into fruit of water-stressed plants decreased to 1.88 g day-1, with the outflow increasing to 0.61 g day-1. As a result, increases in fruit volume were reduced to 0.4 cm3 day-1. The values of A, gs and sap flow to shoots were also reduced during drought conditions. Changes in the hourly time-courses of pedicel sap flow, fruit volume and stem water potential during drought suggest that the stomatal response prevented larger increases in outflow from the fruit. Following re-watering, a substantial recovery in growth rate was observed. CONCLUSIONS: In summary, a reduction in growth of avocado fruit was observed with induced water deficit, but the isohydric stomatal behaviour of the leaves helped to minimize negative changes in water balance. Also, there was substantial recovery after re-watering, hence the short-term water stress did not decrease avocado fruit size. Negative impacts might appear if the drought treatment were prolonged.


Assuntos
Secas , Frutas , Persea , Fotossíntese , Estômatos de Plantas , Água , Persea/fisiologia , Persea/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia , Frutas/fisiologia , Frutas/crescimento & desenvolvimento , Água/fisiologia , Água/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Transpiração Vegetal/fisiologia , Caules de Planta/fisiologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/anatomia & histologia , Brotos de Planta/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Estresse Fisiológico/fisiologia , Desidratação
18.
Plant Cell Environ ; 47(5): 1592-1605, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38282262

RESUMO

Reactive oxygen species (ROS) can serve as signaling molecules that are essential for plant growth and development but abiotic stress can lead to ROS increases to supraoptimal levels resulting in cellular damage. To ensure efficient ROS signaling, cells have machinery to locally synthesize ROS to initiate cellular responses and to scavenge ROS to prevent it from reaching damaging levels. This review summarizes experimental evidence revealing the role of ROS during multiple stages of plant reproduction. Localized ROS synthesis controls the formation of pollen grains, pollen-stigma interactions, pollen tube growth, ovule development, and fertilization. Plants utilize ROS-producing enzymes such as respiratory burst oxidase homologs and organelle metabolic pathways to generate ROS, while the presence of scavenging mechanisms, including synthesis of antioxidant proteins and small molecules, serves to prevent its escalation to harmful levels. In this review, we summarized the function of ROS and its synthesis and scavenging mechanisms in all reproductive stages from gametophyte development until completion of fertilization. Additionally, we further address the impact of elevated temperatures induced ROS on impairing these reproductive processes and of flavonol antioxidants in maintaining ROS homeostasis to minimize temperature stress to combat the impact of global climate change on agriculture.


Assuntos
Pólen , Reprodução , Espécies Reativas de Oxigênio/metabolismo , Pólen/metabolismo , Estresse Fisiológico/fisiologia , Plantas/metabolismo , Antioxidantes/metabolismo
19.
Plant Physiol Biochem ; 207: 108359, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237420

RESUMO

The plant cytoskeletal proteins play a key role that control cytoskeleton dynamics, contributing to crucial biological processes such as cell wall morphogenesis, stomatal conductance and abscisic acid accumulation in repercussion to water-deficit stress or dehydration. Yet, it is still completely unknown which specific biochemical processes and regulatory mechanisms the cytoskeleton uses to drive dehydration tolerance. To better understand the role of cytoskeleton, we developed the dehydration-responsive cytoskeletal proteome map of a resilient rice cultivar. Initially, four-week-old rice plants were exposed to progressive dehydration, and the magnitude of dehydration-induced compensatory physiological responses was monitored in terms of physicochemical indices. The organelle fractionation in conjunction with label-free quantitative proteome analysis led to the identification of 955 dehydration-responsive cytoskeletal proteins (DRCPs). To our knowledge, this is the first report of a stress-responsive plant cytoskeletal proteome, representing the largest inventory of cytoskeleton and cytoskeleton-associated proteins. The DRCPs were apparently involved in a wide array of intra-cellular molecules transportation, organelles positioning, cytoskeleton organization followed by different metabolic processes including amino acid metabolism. These findings presented open a unique view on global regulation of plant cytoskeletal proteome is intimately linked to cellular metabolic rewiring of adaptive responses, and potentially confer dehydration tolerance, especially in rice, and other crop species, in general.


Assuntos
Fenômenos Bioquímicos , Oryza , Desidratação/metabolismo , Proteoma/metabolismo , Oryza/metabolismo , Sobrevivência Celular , Proteínas de Plantas/metabolismo , Citoesqueleto/química , Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/metabolismo , Estresse Fisiológico/fisiologia
20.
J Exp Zool B Mol Dev Evol ; 342(3): 178-188, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38247307

RESUMO

Extreme environmental conditions have profound impacts on shaping the evolutionary trajectory of organisms. Exposure to these conditions elicits stress responses, that can trigger phenotypic changes in novel directions. The Mexican Tetra, Astyanax mexicanus, is an excellent model for understanding evolutionary mechanisms in response to extreme or new environments. This fish species consists of two morphs; the classical surface-dwelling fish and the blind cave-dwellers that inhabit dark and biodiversity-reduced ecosystems. In this review, we explore the specific stressors present in cave environments and examine the diverse adaptive strategies employed by cave populations to not only survive but thrive as successful colonizers. By analyzing the evolutionary responses of A. mexicanus, we gain valuable insights into the genetic, physiological, and behavioral adaptations that enable organisms to flourish under challenging environmental conditions.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Cavernas , Characidae , Ambientes Extremos , Estresse Fisiológico , Animais , Characidae/fisiologia , Estresse Fisiológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA