Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.692
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732006

RESUMO

A pterygium is a common conjunctival degeneration and inflammatory condition. It grows onto the corneal surface or limbus, causing blurred vision and cosmetic issues. Ultraviolet is a well-known risk factor for the development of a pterygium, although its pathogenesis remains unclear, with only limited understanding of its hereditary basis. In this study, we collected RNA-seq from both pterygial tissues and conjunctival tissues (as controls) from six patients (a total of twelve biological samples) and retrieved publicly available data, including eight pterygium samples and eight controls. We investigated the intrinsic gene regulatory mechanisms closely linked to the inflammatory reactions of pterygiums and compared Asian (Korea) and the European (Germany) pterygiums using multiple analysis approaches from different perspectives. The increased expression of antioxidant genes in response to oxidative stress and DNA damage implies an association between these factors and pterygium development. Also, our comparative analysis revealed both similarities and differences between Asian and European pterygiums. The decrease in gene expressions involved in the three primary inflammatory signaling pathways-JAK/STAT, MAPK, and NF-kappa B signaling-suggests a connection between pathway dysfunction and pterygium development. We also observed relatively higher activity of autophagy and antioxidants in the Asian group, while the European group exhibited more pronounced stress responses against oxidative stress. These differences could potentially be necessitated by energy-associated pathways, specifically oxidative phosphorylation.


Assuntos
Inflamação , Fosforilação Oxidativa , Estresse Oxidativo , Pterígio , RNA-Seq , Pterígio/genética , Pterígio/metabolismo , Humanos , Estresse Oxidativo/genética , Inflamação/genética , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/patologia , Masculino , Feminino , Regulação da Expressão Gênica , Pessoa de Meia-Idade , Transdução de Sinais/genética
2.
Braz Oral Res ; 38: e042, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747829

RESUMO

The aim of this study was to investigate the DNA methylation profile in genes encoding catalase (CAT) and superoxide dismutase (SOD3) enzymes, which are involved in oxidative stress mechanisms, and in genes encoding pro-inflammatory cytokines interleukin-6 (IL6) and tumor necrosis factor-alpha (TNF-α) in the oral mucosa of oncopediatric patients treated with methotrexate (MTX®). This was a cross-sectional observational study and the population comprised healthy dental patients (n = 21) and those with hematological malignancies (n = 64) aged between 5 and 19 years. Oral conditions were evaluated using the Oral Assessment Guide and participants were divided into 4 groups: 1- healthy individuals; 2- oncopediatric patients without mucositis; 3- oncopediatric patients with mucositis; 4- oncopediatric patients who had recovered from mucositis. Methylation of DNA from oral mucosal cells was evaluated using the Methylation-Specific PCR technique (MSP). For CAT, the partially methylated profile was the most frequent and for SOD3 and IL6, the hypermethylated profile was the most frequent, with no differences between groups. For TNF-α, the hypomethylated profile was more frequent in the group of patients who had recovered from mucositis. It was concluded that the methylation profiles of CAT, SOD3, and IL6 are common profiles for oral cells of children and adolescents and have no association with oral mucositis or exposure to chemotherapy with MTX®. Hypomethylation of TNF-α is associated with oral mucosal recovery in oncopediatric patients who developed oral mucositis during chemotherapy.


Assuntos
Catalase , Metilação de DNA , Interleucina-6 , Metotrexato , Mucosa Bucal , Estomatite , Superóxido Dismutase , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/genética , Criança , Estudos Transversais , Adolescente , Pré-Escolar , Masculino , Feminino , Adulto Jovem , Interleucina-6/genética , Interleucina-6/análise , Catalase/genética , Mucosa Bucal/efeitos dos fármacos , Superóxido Dismutase/genética , Metotrexato/uso terapêutico , Metotrexato/efeitos adversos , Estomatite/genética , Estomatite/induzido quimicamente , Regiões Promotoras Genéticas/genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/tratamento farmacológico , Valores de Referência , Antimetabólitos Antineoplásicos/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Reação em Cadeia da Polimerase , Estatísticas não Paramétricas , Mucosite/genética , Mucosite/induzido quimicamente , Estudos de Casos e Controles
3.
Medicine (Baltimore) ; 103(18): e37933, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701300

RESUMO

BACKGROUND: Sepsis-induced myopathy (SIM) a complication of sepsis that results in prolonged mechanical ventilation, long-term functional disability, and increased patient mortality. This study was performed to identify potential key oxidative stress-related genes (OS-genes) as biomarkers for the diagnosis of SIM using bioinformatics. METHODS: The GSE13205 was obtained from the Gene Expression Omnibus (GEO) database, including 13 SIM samples and 8 healthy samples, and the differentially expressed genes (DEGs) were identified by limma package in R language. Simultaneously, we searched for the genes related to oxidative stress in the Gene Ontology (GO) database. The intersection of the genes selected from the GO database and the genes from the GSE13205 was considered as OS-genes of SIM, where the differential genes were regarded as OS-DEGs. OS-DEGs were analyzed using GO enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and protein-protein interaction (PPI) networks. Hub genes in OS-DEGs were selected based on degree, and diagnostic genes were further screened by gene expression and receiver operating characteristic (ROC) curve. Finally, a miRNA-gene network of diagnostic genes was constructed. RESULTS: A total of 1089 DEGs were screened from the GSE13205, and 453 OS-genes were identified from the GO database. The overlapping DEGs and OS-genes constituted 25 OS-DEGs, including 15 significantly upregulated and 10 significantly downregulated genes. The top 10 hub genes, including CD36, GPX3, NQO1, GSR, TP53, IDH1, BCL2, HMOX1, JAK2, and FOXO1, were screened. Furthermore, 5 diagnostic genes were identified: CD36, GPX3, NQO1, GSR, and TP53. The ROC analysis showed that the respective area under the curves (AUCs) of CD36, GPX3, NQO1, GSR, and TP53 were 0.990, 0.981, 0.971, 0.971, and 0.971, which meant these genes had very high diagnostic values of SIM. Finally, based on these 5 diagnostic genes, we found that miR-124-3p and miR-16-5p may be potential targets for the treatment of SIM. CONCLUSIONS: The results of this study suggest that OS-genes might play an important role in SIM. CD36, GPX3, NQO1, GSR, and TP53 have potential as specific biomarkers for the diagnosis of SIM.


Assuntos
Doenças Musculares , Estresse Oxidativo , Sepse , Humanos , Estresse Oxidativo/genética , Sepse/genética , Doenças Musculares/genética , Biologia Computacional , Mapas de Interação de Proteínas/genética , MicroRNAs/genética , Curva ROC , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Ontologia Genética , Bases de Dados Genéticas
4.
Mol Immunol ; 170: 76-87, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640818

RESUMO

Peroxiredoxins are antioxidant proteins that detoxify peroxynitrite, hydrogen peroxide, and organic hydroperoxides, impacting various physiological processes such as immune responses, apoptosis, cellular homeostasis, and so on. In the present study, we identified and characterized peroxiredoxin 1 from Antheraea pernyi (thereafter designated as ApPrx-1) that encodes a predicted 195 amino acid residue protein with a 21.8 kDa molecular weight. Quantitative real-time PCR analysis revealed that the mRNA level of ApPrx-1 was highest in the hemocyte, fat body, and midgut. Immune-challenged larval fat bodies and hemocytes showed increased ApPrx-1 transcript. Moreover, ApPrx-1 expression was induced in hemocytes and the whole body of A. pernyi following exogenous H2O2 administration. A DNA cleavage assay performed using recombinant ApPrx-1 protein showed that rApPrx-1 protein manifests the ability to protect supercoiled DNA damage from oxidative stress. To test the rApPrx-1 protein antioxidant activity, the ability of the rApPrx-1 protein to remove H2O2 was assessed in vitro using rApPrx-1 protein and DTT, while BSA + DDT served as a control group. The results revealed that ApPrx-1 can efficiently remove H2O2 in vitro. In the loss of function analysis, we found that ApPrx-1 significantly increased the levels of H2O2 in ApPrx-1-depleted larvae compared to the control group. We also found a significantly lower survival rate in the larvae in which ApPrx-1 was knocked down. Interestingly, the antibacterial activity was significantly higher in the ApPrx-1 depleted larvae, compared to the control. Collectively, evidence strongly suggests that ApPrx-1 may regulate physiological activities and provides a reference for further studies to validate the utility of the key genes involved in reliving oxidative stress conditions and regulating the immune responses of insects.


Assuntos
Hemócitos , Peróxido de Hidrogênio , Mariposas , Estresse Oxidativo , Peroxirredoxinas , Animais , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/imunologia , Mariposas/imunologia , Mariposas/genética , Estresse Oxidativo/genética , Peróxido de Hidrogênio/farmacologia , Hemócitos/metabolismo , Hemócitos/imunologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/genética , Antioxidantes/metabolismo , Sequência de Aminoácidos , Dano ao DNA
5.
Hum Mol Genet ; 33(9): 818-834, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38641551

RESUMO

Telomeres are nucleoprotein structures at the end of chromosomes that maintain their integrity. Mutations in genes coding for proteins involved in telomere protection and elongation produce diseases such as dyskeratosis congenita or idiopathic pulmonary fibrosis known as telomeropathies. These diseases are characterized by premature telomere shortening, increased DNA damage and oxidative stress. Genetic diagnosis of telomeropathy patients has identified mutations in the genes TERT and TERC coding for telomerase components but the functional consequences of many of these mutations still have to be experimentally demonstrated. The activity of twelve TERT and five TERC mutants, five of them identified in Spanish patients, has been analyzed. TERT and TERC mutants were expressed in VA-13 human cells that express low telomerase levels and the activity induced was analyzed. The production of reactive oxygen species, DNA oxidation and TRF2 association at telomeres, DNA damage response and cell apoptosis were determined. Most mutations presented decreased telomerase activity, as compared to wild-type TERT and TERC. In addition, the expression of several TERT and TERC mutants induced oxidative stress, DNA oxidation, DNA damage, decreased recruitment of the shelterin component TRF2 to telomeres and increased apoptosis. These observations might indicate that the increase in DNA damage and oxidative stress observed in cells from telomeropathy patients is dependent on their TERT or TERC mutations. Therefore, analysis of the effect of TERT and TERC mutations of unknown function on DNA damage and oxidative stress could be of great utility to determine the possible pathogenicity of these variants.


Assuntos
Disceratose Congênita , Telomerase , Humanos , Apoptose/genética , DNA/metabolismo , Dano ao DNA/genética , Disceratose Congênita/genética , Disceratose Congênita/metabolismo , Disceratose Congênita/patologia , Mutação , Estresse Oxidativo/genética , RNA/genética , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo
6.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630337

RESUMO

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Assuntos
Morte Celular , Etanol , Neurônios , Fármacos Neuroprotetores , Extratos Vegetais , Folhas de Planta , Sterculia , Animais , Ratos , Caspase 3/metabolismo , Etanol/administração & dosagem , Etanol/química , Etanol/toxicidade , Peróxido de Hidrogênio/toxicidade , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Ratos Wistar , Sterculia/química , Folhas de Planta/química , Plantas Medicinais/química , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/patologia , Lactato Desidrogenases/metabolismo , Proteína GAP-43/análise , Apoptose/genética , Estresse Oxidativo/genética , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Cerebelo/fisiologia , Masculino , Feminino , Células Cultivadas , Morte Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Espectrometria de Massa com Cromatografia Líquida , Metabolismo Secundário
7.
Lupus Sci Med ; 11(1)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637124

RESUMO

BACKGROUND: Lupus nephritis (LN) is a complication of SLE characterised by immune dysfunction and oxidative stress (OS). Limited options exist for LN. We aimed to identify LN-related OS, highlighting the need for non-invasive diagnostic and therapeutic approaches. METHODS: LN-differentially expressed genes (DEGs) were extracted from Gene Expression Omnibus datasets (GSE32591, GSE112943 and GSE104948) and Molecular Signatures Database for OS-associated DEGs (OSEGs). Functional enrichment analysis was performed for OSEGs related to LN. Weighted gene co-expression network analysis identified hub genes related to OS-LN. These hub OSEGs were refined as biomarker candidates via least absolute shrinkage and selection operator. The predictive value was validated using receiver operating characteristic (ROC) curves and nomogram for LN prognosis. We evaluated LN immune cell infiltration using single-sample gene set enrichment analysis and CIBERSORT. Additionally, gene set enrichment analysis explored the functional enrichment of hub OSEGs in LN. RESULTS: The study identified four hub genes, namely STAT1, PRODH, TXN2 and SETX, associated with OS related to LN. These genes were validated for their diagnostic potential, and their involvement in LN pathogenesis was elucidated through ROC and nomogram. Additionally, alterations in immune cell composition in LN correlated with hub OSEG expression were observed. Immunohistochemical analysis reveals that the hub gene is most correlated with activated B cells and CD8 T cells. Finally, we uncovered that the enriched pathways of OSEGs were mainly involved in the PI3K-Akt pathway and the Janus kinase-signal transducer and activator of transcription pathway. CONCLUSION: These findings contribute to advancing our understanding of the complex interplay between OS, immune dysregulation and molecular pathways in LN, laying a foundation for the identification of potential diagnostic biomarkers and therapeutic targets.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Nefrite Lúpica/diagnóstico , Nefrite Lúpica/genética , Fosfatidilinositol 3-Quinases , Estresse Oxidativo/genética , Aprendizado de Máquina , DNA Helicases , RNA Helicases , Enzimas Multifuncionais
8.
Nat Commun ; 15(1): 3213, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615060

RESUMO

Oxidative stress-induced lipid accumulation is mediated by lipid droplets (LDs) homeostasis, which sequester vulnerable unsaturated triglycerides into LDs to prevent further peroxidation. Here we identify the upregulation of lipopolysaccharide-binding protein (LBP) and its trafficking through LDs as a mechanism for modulating LD homeostasis in response to oxidative stress. Our results suggest that LBP induces lipid accumulation by controlling lipid-redox homeostasis through its lipid-capture activity, sorting unsaturated triglycerides into LDs. N-acetyl-L-cysteine treatment reduces LBP-mediated triglycerides accumulation by phospholipid/triglycerides competition and Peroxiredoxin 4, a redox state sensor of LBP that regulates the shuttle of LBP from LDs. Furthermore, chronic stress upregulates LBP expression, leading to insulin resistance and obesity. Our findings contribute to the understanding of the role of LBP in regulating LD homeostasis and against cellular peroxidative injury. These insights could inform the development of redox-based therapies for alleviating oxidative stress-induced metabolic dysfunction.


Assuntos
Proteínas de Fase Aguda , Gotículas Lipídicas , Glicoproteínas de Membrana , Proteínas de Fase Aguda/metabolismo , Proteínas de Transporte/metabolismo , Homeostase , Gotículas Lipídicas/metabolismo , Lipopolissacarídeos/metabolismo , Glicoproteínas de Membrana/metabolismo , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Triglicerídeos
9.
Islets ; 16(1): 2344622, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38652652

RESUMO

Chronically elevated levels of glucose are deleterious to pancreatic ß cells and contribute to ß cell dysfunction, which is characterized by decreased insulin production and a loss of ß cell identity. The Krüppel-like transcription factor, Glis3 has previously been shown to positively regulate insulin transcription and mutations within the Glis3 locus have been associated with the development of several pathologies including type 2 diabetes mellitus. In this report, we show that Glis3 is significantly downregulated at the transcriptional level in INS1 832/13 cells within hours of being subjected to high glucose concentrations and that diminished expression of Glis3 is at least partly attributable to increased oxidative stress. CRISPR/Cas9-mediated knockdown of Glis3 indicated that the transcription factor was required to maintain normal levels of both insulin and MafA expression and reduced Glis3 expression was concomitant with an upregulation of ß cell disallowed genes. We provide evidence that Glis3 acts similarly to a pioneer factor at the insulin promoter where it permissively remodels the chromatin to allow access to a transcriptional regulatory complex including Pdx1 and MafA. Finally, evidence is presented that Glis3 can positively regulate MafA transcription through its pancreas-specific promoter and that MafA reciprocally regulates Glis3 expression. Collectively, these results suggest that decreased Glis3 expression in ß cells exposed to chronic hyperglycemia may contribute significantly to reduced insulin transcription and a loss of ß cell identity.


Assuntos
Regulação para Baixo , Glucose , Células Secretoras de Insulina , Insulina , Proteínas Repressoras , Células Secretoras de Insulina/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Animais , Insulina/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Transativadores/genética , Transativadores/metabolismo , Linhagem Celular , Ratos , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Estresse Oxidativo/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
10.
PLoS Genet ; 20(4): e1011248, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662777

RESUMO

The health risks that arise from environmental exposures vary widely within and across human populations, and these differences are largely determined by genetic variation and gene-by-environment (gene-environment) interactions. However, risk assessment in laboratory mice typically involves isogenic strains and therefore, does not account for these known genetic effects. In this context, genetically heterogenous cell lines from laboratory mice are promising tools for population-based screening because they provide a way to introduce genetic variation in risk assessment without increasing animal use. Cell lines from genetic reference populations of laboratory mice offer genetic diversity, power for genetic mapping, and potentially, predictive value for in vivo experimentation in genetically matched individuals. To explore this further, we derived a panel of fibroblast lines from a genetic reference population of laboratory mice (the Diversity Outbred, DO). We then used high-content imaging to capture hundreds of cell morphology traits in cells exposed to the oxidative stress-inducing arsenic metabolite monomethylarsonous acid (MMAIII). We employed dose-response modeling to capture latent parameters of response and we then used these parameters to identify several hundred cell morphology quantitative trait loci (cmQTL). Response cmQTL encompass genes with established associations with cellular responses to arsenic exposure, including Abcc4 and Txnrd1, as well as novel gene candidates like Xrcc2. Moreover, baseline trait cmQTL highlight the influence of natural variation on fundamental aspects of nuclear morphology. We show that the natural variants influencing response include both coding and non-coding variation, and that cmQTL haplotypes can be used to predict response in orthogonal cell lines. Our study sheds light on the major molecular initiating events of oxidative stress that are under genetic regulation, including the NRF2-mediated antioxidant response, cellular detoxification pathways, DNA damage repair response, and cell death trajectories.


Assuntos
Arsênio , Estresse Oxidativo , Locos de Características Quantitativas , Animais , Camundongos , Arsênio/toxicidade , Estresse Oxidativo/genética , Estresse Oxidativo/efeitos dos fármacos , Humanos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Linhagem Celular , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Interação Gene-Ambiente , Intoxicação por Arsênico/genética , Mapeamento Cromossômico
11.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 168-173, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650138

RESUMO

Genetic predisposition to oxidative stress (OS) may influence the risk of Painful Diabetic Peripheral Neuropathy (PDPN). This study employed a Mendelian Randomization (MR) approach to investigate the causal relationship between genetic predisposition to OS and PDPN. Genetic instruments associated with OS biomarkers were selected as exposures. Summary-level data on PDPN was obtained from the largest available genome-wide association study (GWAS). MR analyses were conducted using the inverse-variance weighted (IVW) method, with sensitivity analyses employing the MR-Egger, weighted median, and MR-PRESSO approaches. Genetic predisposition to increased glutathione S-transferase (GST) activity was associated with a reduced risk of PDPN (OR=0.66, 95%CI: 0.49-0.89, P=0.006). Higher ascorbate levels conferred a protective effect against PDPN (OR=0.83, 95%CI: 0.71-0.97, P=0.018). No significant association was observed between genetic predisposition to OS biomarkers and PDPN severity. Genetic predisposition to increased GST activity and higher ascorbate levels protect against the development of PDPN, suggesting a causal relationship.


Assuntos
Ácido Ascórbico , Neuropatias Diabéticas , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Glutationa Transferase , Análise da Randomização Mendeliana , Estresse Oxidativo , Humanos , Estresse Oxidativo/genética , Neuropatias Diabéticas/genética , Glutationa Transferase/genética , Ácido Ascórbico/metabolismo , Polimorfismo de Nucleotídeo Único , Biomarcadores/metabolismo
12.
Comput Biol Med ; 174: 108346, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581999

RESUMO

Non-Communicable Diseases (NCDs) significantly impact global health, contributing to over 70% of premature deaths, as reported by the World Health Organization (WHO). These diseases have complex and multifactorial origins, involving genetic, epigenetic, environmental and lifestyle factors. While Genome-Wide Association Study (GWAS) is widely recognized as a valuable tool for identifying variants associated with complex phenotypes; the multifactorial nature of NCDs necessitates a more comprehensive exploration, encompassing not only the genetic but also the epigenetic aspect. For this purpose, we employed a bioinformatics-multiomics approach to examine the genetic and epigenetic characteristics of NCDs (i.e. colorectal cancer, coronary atherosclerosis, squamous cell lung cancer, psoriasis, type 2 diabetes, and multiple sclerosis), aiming to identify novel biomarkers for diagnosis and prognosis. Leveraging GWAS summary statistics, we pinpointed Single Nucleotide Polymorphisms (SNPs) independently associated with each NCD. Subsequently, we identified genes linked to cell cycle, inflammation and oxidative stress mechanisms, revealing shared genes across multiple diseases, suggesting common functional pathways. From an epigenetic perspective, we identified microRNAs (miRNAs) with regulatory functions targeting these genes of interest. Our findings underscore critical genetic pathways implicated in these diseases. In colorectal cancer, the dysregulation of the "Cytokine Signaling in Immune System" pathway, involving LAMA5 and SMAD7, regulated by Hsa-miR-21-5p, Hsa-miR-103a-3p, and Hsa-miR-195-5p, emerged as pivotal. In coronary atherosclerosis, the pathway associated with "binding of TCF/LEF:CTNNB1 to target gene promoters" displayed noteworthy implications, with the MYC factor controlled by Hsa-miR-16-5p as a potential regulatory factor. Squamous cell lung carcinoma analysis revealed significant pathways such as "PTK6 promotes HIF1A stabilization," regulated by Hsa-let-7b-5p. In psoriasis, the "Endosomal/Vacuolar pathway," involving HLA-C and Hsa-miR-148a-3p and Hsa-miR-148b-3p, was identified as crucial. Type 2 Diabetes implicated the "Regulation of TP53 Expression" pathway, controlled by Hsa-miR-106a-5p and Hsa-miR-106b-5p. In conclusion, our study elucidates the genetic framework and molecular mechanisms underlying NCDs, offering crucial insights into potential genetic/epigenetic biomarkers for diagnosis and prognosis. The specificity of pathways and related miRNAs in different pathologies highlights promising candidates for further clinical validation, with the potential to advance personalized treatments and alleviate the global burden of NCDs.


Assuntos
Inflamação , MicroRNAs , Doenças não Transmissíveis , Estresse Oxidativo , Polimorfismo de Nucleotídeo Único , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Inflamação/genética , Estresse Oxidativo/genética , Estudo de Associação Genômica Ampla , Transdução de Sinais/genética , Epigênese Genética
13.
Int J Biol Sci ; 20(6): 2008-2026, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617548

RESUMO

Renal aging may lead to fibrosis and dysfunction, yet underlying mechanisms remain unclear. We explored whether deficiency of the Polycomb protein Bmi1 causes renal aging via DNA damage response (DDR) activation, inducing renal tubular epithelial cell (RTEC) senescence and epithelial-mesenchymal transition (EMT). Bmi1 knockout mice exhibited oxidative stress, DDR activation, RTEC senescence, senescence-associated secretory phenotype (SASP), and age-related fibrosis in kidneys. Bmi1 deficiency impaired renal structure and function, increasing serum creatinine/urea, reducing creatinine clearance, and decreasing cortical thickness and glomerular number. However, knockout of the serine-threonine kinase Chk2 alleviated these aging phenotypes. Transcriptomics identified transforming growth factor beta 1 (TGFß1) upregulation in Bmi1-deficient RTECs, but TGFß1 was downregulated upon Chk2 knockout. The tumor suppressor protein p53 transcriptionally activated TGFß1, promoting EMT in RTECs. Bmi1 knockout or oxidative stress (induced with H2O2) increased TGFß1 expression, and EMT in RTECs and was partly reversed by p53 inhibition. Together, Bmi1 deficiency causes oxidative stress and DDR-mediated RTEC senescence/SASP, thus activating p53 and TGFß1 to induce EMT and age-related fibrosis. However, blocking DDR (via Chk2 knockout) or p53 ameliorates these changes. Our study reveals mechanisms whereby Bmi1 preserves renal structure and function during aging by suppressing DDR and p53/TGFß1-mediated EMT. These pathways represent potential targets for detecting and attenuating age-related renal decline.


Assuntos
Peróxido de Hidrogênio , Proteína Supressora de Tumor p53 , Animais , Camundongos , Envelhecimento , Creatinina , Dano ao DNA/genética , Transição Epitelial-Mesenquimal/genética , Rim , Estresse Oxidativo/genética , Complexo Repressor Polycomb 1/genética , Proteínas Proto-Oncogênicas/genética , Proteína Supressora de Tumor p53/genética
14.
Nat Commun ; 15(1): 3070, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594249

RESUMO

Cellular response to redox imbalance is crucial for organismal health. microRNAs are implicated in stress responses. ALG-1, the C. elegans ortholog of human AGO2, plays an essential role in microRNA processing and function. Here we investigated the mechanisms governing ALG-1 expression in C. elegans and the players controlling lifespan and stress resistance downstream of ALG-1. We show that upregulation of ALG-1 is a shared feature in conditions linked to increased longevity (e.g., germline-deficient glp-1 mutants). ALG-1 knockdown reduces lifespan and oxidative stress resistance, while overexpression enhances survival against pro-oxidant agents but not heat or reductive stress. R02D3.7 represses alg-1 expression, impacting oxidative stress resistance at least in part via ALG-1. microRNAs upregulated in glp-1 mutants (miR-87-3p, miR-230-3p, and miR-235-3p) can target genes in the protein disulfide isomerase pathway and protect against oxidative stress. This study unveils a tightly regulated network involving transcription factors and microRNAs which controls organisms' ability to withstand oxidative stress.


Assuntos
Proteínas de Caenorhabditis elegans , MicroRNAs , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
15.
Cancer Rep (Hoboken) ; 7(4): e1978, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38599581

RESUMO

BACKGROUND AND AIMS: Oncogenesis and tumor development have been related to oxidative stress (OS). The potential diagnostic utility of OS genes in hepatocellular carcinoma (HCC), however, remains uncertain. As a result, this work aimed to create a novel OS related-genes signature that could be used to predict the survival of HCC patients and to screen OS related-genes drugs that might be used for HCC treatment. METHODS: We used The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database to acquire mRNA expression profiles and clinical data for this research and the GeneCards database to obtain OS related-genes. Following that, biological functions from Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed on differentially expressed OS-related genes (DEOSGs). Subsequently, the prognostic risk signature was constructed based on DEOSGs from the TCGA data that were screened by using univariate cox analysis, and the Least Absolute Shrinkage and Selection Operator (LASSO) regression, and multivariate cox analysis. At the same time, we developed a prognostic nomogram of HCC patients based on risk signature and clinical-pathological characteristics. The GEO data was used for validation. We used the receiver operating characteristic (ROC) curve, calibration curves, and Kaplan-Meier (KM) survival curves to examine the prediction value of the risk signature and nomogram. Finally, we screened the differentially expressed OS genes related drugs. RESULTS: We were able to recognize 9 OS genes linked to HCC prognosis. In addition, the KM curve revealed a statistically significant difference in overall survival (OS) between the high-risk and low-risk groups. The area under the curve (AUC) shows the independent prognostic value of the risk signature model. Meanwhile, the ROC curves and calibration curves show the strong prognostic power of the nomogram. The top three drugs with negative ratings were ZM-336372, lestaurtinib, and flunisolide, all of which inversely regulate different OS gene expressions. CONCLUSION: Our findings indicate that OS related-genes have a favorable prognostic value for HCC, which sheds new light on the relationship between oxidative stress and HCC, and suggests potential therapeutic strategies for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Estresse Oxidativo/genética , Nomogramas , Área Sob a Curva
16.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38573174

RESUMO

Transcriptomic analyses across large scales of evolutionary distance have great potential to shed light on regulatory evolution but are complicated by difficulties in establishing orthology and limited availability of accessible software. We introduce here a method and a graphical user interface wrapper, called Annotator-RNAtor, for performing interspecies transcriptomic analysis and studying intragenus evolution. The pipeline uses third-party software to infer homologous genes in various species and highlight differences in the expression of the core-genes. To illustrate the methodology and demonstrate its usefulness, we focus on the emergence of the highly virulent Leptospira subclade known as P1+, which includes the causative agents of leptospirosis. Here, we expand on the genomic study through the comparison of transcriptomes between species from P1+ and their related P1- counterparts (low-virulent pathogens). In doing so, we shed light on differentially expressed pathways and focused on describing a specific example of adaptation based on a differential expression of PerRA-controlled genes. We showed that P1+ species exhibit higher expression of the katE gene, a well-known virulence determinant in pathogenic Leptospira species correlated with greater tolerance to peroxide. Switching PerRA alleles between P1+ and P1- species demonstrated that the lower repression of katE and greater tolerance to peroxide in P1+ species was solely controlled by PerRA and partly caused by a PerRA amino-acid permutation. Overall, these results demonstrate the strategic fit of the methodology and its ability to decipher adaptive transcriptomic changes, not observable by comparative genome analysis, that may have been implicated in the emergence of these pathogens.


Assuntos
Leptospira , Leptospirose , Leptospira/genética , Leptospirose/genética , Estresse Oxidativo/genética , Peróxidos , Perfilação da Expressão Gênica
17.
PLoS One ; 19(4): e0300958, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625890

RESUMO

Oxidative damage to erythroid cells plays a key role in the pathogenesis of thalassemia. The oxidative stress in thalassemia is potentiated by heme, nonheme iron, and free iron produced by the Fenton reaction, due to degradation of the unstable hemoglobin and iron overload. In addition, the levels of antioxidant enzymes and molecules are significantly decreased in erythrocytes in α- and ß-thalassemia. The control of oxidative stress in red blood cells (RBCs) is known to be mediated by microRNAs (miRNAs). In erythroid cells, microR-214 (miR-214) has been reported to respond to external oxidative stress. However, the molecular mechanisms underlying this phenomenon remain unclear, especially during thalassemic erythropoiesis. In the present study, to further understand how miR-214 aggravates oxidative stress in thalassemia erythroid cells, we investigated the molecular mechanism of miR-214 and its regulation of the oxidative status in thalassemia erythrocytes. We have reported a biphasic expression of miR-214 in ß- and α-thalassemia. In the present study the effect of miR-214 expression was investigated by using miR -inhibitor and -mimic transfection in erythroid cell lines induced by hemin. Our study showed a biphasic expression of miR-214 in ß- and α-thalassemia. Subsequently, we examined the effect of miR-214 on erythroid differentiation in thalassemia. Our study reveals the loss-of-function of miR-214 during translational activation of activating transcription factor 4 mRNA, leading to decreased reactive oxygen species levels and increased glutathione levels in thalassemia erythroid cell. Our results suggest that the expression of activating transcription factor 4 regulated by miR-214 is important for oxidative stress modulation in thalassemic erythroid cells. Our findings can help to better understand the molecular mechanism of miRNA and transcription factors in regulation of oxidative status in erythroid cells, particularly in thalassemia, and could be useful for managing and relieving severe anemia symptoms in patients in the future.


Assuntos
MicroRNAs , Talassemia alfa , Talassemia beta , Humanos , Fator 4 Ativador da Transcrição/metabolismo , Estresse Oxidativo/genética , Células Eritroides/metabolismo , Talassemia beta/patologia , MicroRNAs/metabolismo , Ferro
18.
PeerJ ; 12: e17249, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685943

RESUMO

Ascorbate peroxidase (APX) plays a critical role in molecular mechanisms such as plant development and defense against abiotic stresses. As an important economic crop, hemp (Cannabis sativa L.) is vulnerable to adverse environmental conditions, such as drought, cold, salt, and oxidative stress, which lead to a decline in yield and quality. Although APX genes have been characterized in a variety of plants, members of the APX gene family in hemp have not been completely identified. In this study, we (1) identified eight members of the CsAPX gene family in hemp and mapped their locations on the chromosomes using bioinformatics analysis; (2) examined the physicochemical characteristics of the proteins encoded by these CsAPX gene family members; (3) investigated their intraspecific collinearity, gene structure, conserved domains, conserved motifs, and cis-acting elements; (4) constructed a phylogenetic tree and analyzed interspecific collinearity; and (5) ascertained expression differences in leaf tissue subjected to cold, drought, salt, and oxidative stresses using quantitative real-time-PCR (qRT-PCR). Under all four stresses, CsAPX6, CsAPX7, and CsAPX8 consistently exhibited significant upregulation, whereas CsAPX2 displayed notably higher expression levels under drought stress than under the other stresses. Taken together, the results of this study provide basic genomic information on the expression of the APX gene family and pave the way for studying the role of APX genes in abiotic stress.


Assuntos
Ascorbato Peroxidases , Cannabis , Regulação da Expressão Gênica de Plantas , Filogenia , Estresse Fisiológico , Cannabis/genética , Cannabis/enzimologia , Cannabis/metabolismo , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Estresse Fisiológico/genética , Família Multigênica/genética , Secas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Oxidativo/genética , Mapeamento Cromossômico , Genoma de Planta/genética , Cromossomos de Plantas/genética
19.
Mol Biol Rep ; 51(1): 588, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683237

RESUMO

BACKGROUND: Mechanisms by which varicocele causes infertility are not clear and few studies have reported that some miRNAs show expression alterations in men with varicocele. Recently, sperm promoter methylation of MLH1 has been shown to be higher in men diagnosed with varicocele. This study aimed to assess the potential effects of miR-145, which was determined to target MLH1 mRNA in silico on sperm quality and function in varicocele. METHODS: Sperm miR-145 and MLH1 expressions of six infertile men with varicocele (Group 1), nine idiopathic infertile men (Group 2), and nine fertile men (control group) were analyzed by quantitative PCR. Sperm DNA fragmentation was evaluated by TUNEL and the levels of seminal oxidative damage and total antioxidant capacity were analyzed by ELISA. RESULTS: Our results have shown that sperm expression of miR-145 was decreased in Group 1 compared to Group 2 (P = 0.029). MLH1 expression was significantly higher in Group 2 than the controls (P = 0.048). Total antioxidant level and sperm DNA fragmentations of Group 1 and Group 2 were decreased (P = 0.001 and P = 0.011, respectively). Total antioxidant capacity was positively correlated with sperm concentration (ρ = 0.475, P = 0.019), total sperm count (ρ = 0.427, P = 0.037), motility (ρ = 0.716, P < 0.0001) and normal morphological forms (ρ = 0.613, P = 0.001) and negatively correlated with the seminal oxidative damage (ρ=-0.829, P = 0.042) in varicocele patients. CONCLUSION: This is the first study investigating the expressions of sperm miR-145 and MLH1 in varicocele patients. Further studies are needed to clarify the potential effect of miR-145 on male fertility.


Assuntos
Fragmentação do DNA , Infertilidade Masculina , MicroRNAs , Proteína 1 Homóloga a MutL , Estresse Oxidativo , Espermatozoides , Varicocele , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Varicocele/genética , Varicocele/metabolismo , Varicocele/patologia , Estresse Oxidativo/genética , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Espermatozoides/metabolismo , Adulto , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides/genética , Antioxidantes/metabolismo
20.
Mol Biol Rep ; 51(1): 583, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683407

RESUMO

PURPOSE: Oxidative stress in chronic hyperglycemia could injure the tissues and onset of diabetes-related complications like retinopathy and neuropathy. This study investigates the association between methylenetetrahydrofolate reductase (MTHFR) and glutathione peroxidase (GPx) genetic variants with these complications. METHODS: In this case-control study, 400 individuals, including 100 healthy subjects and 300 patients with type 2 diabetes mellitus (T2DM) in three subgroups: with retinopathy(n = 100), with neuropathy(n = 100), and without complication (n = 100) from West Iran, were studied. MTHFR (rs1801133) and GPx-1 (rs1050450) variants were identified by the PCR-RFLP method. The plasma levels of GPx activity, glutathione, malondialdehyde (MDA), total antioxidant capacity (TAC), and total oxidative stress (TOS) were measured by chemical methods. RESULTS: Higher BMI, TOS and MDA levels were observed in patients with neuropathy compared to other patients and controls. Diabetic patients with neuropathy had lower levels of glutathione (7.8 ± 4.5; P < 0.001), GPx activity (39.5 ± 8.5; P < 0.001), and TAC (703.1 ± 129.1; P = 0.0001) in comparison with other groups. The patients without complication and retinopathic patients had higher plasma levels of glutathione (12.2 ± 2.4; p = 0.02) and TAC (793.4 ± 124.6; P < 0.001), respectively. MTHFR TT genotype significantly correlated with lower levels of TOS (3.5 ± 1.1; P < 0.001) and OSI (0.0050 ± 0.001; P < 0.001). Subjects with the GPx-1 TT genotype had higher levels of MDA (6.8 ± 2.5; P = 0.02) and lower levels of TOS (3.7 ± 1.6; P < 0.001), which is statistically significant. TT genotype of MTHFR was associated with 3.9 fold (95% CI 1.04-4.76; P = 0.0436) increased risk of neuropathy. Also, GPx-1 CT genotype increased the risk of retinopathy [OR = 2.7 (95% CI = 1.38-5.44; P = 0.0039)]. CONCLUSION: The MTHFR TT genotype increased the risk of neuropathy in diabetic patients significantly. The GPx-1 CT genotype is related to increased retinopathy risk among diabetic patients. Both MTHFR and Gpx-1 TT genotypes were associated with higher BMI levels.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Retinopatia Diabética , Predisposição Genética para Doença , Glutationa Peroxidase GPX1 , Glutationa Peroxidase , Metilenotetra-Hidrofolato Redutase (NADPH2) , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicações , Neuropatias Diabéticas/genética , Retinopatia Diabética/genética , Estudos de Associação Genética , Genótipo , Glutationa Peroxidase/genética , Irã (Geográfico) , Malondialdeído/sangue , Malondialdeído/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Estresse Oxidativo/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA